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Non-Hermitian perspective of the band structure in heavy-fermion systems
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We analyze a two-dimensional Kondo lattice model with special emphasis on non-Hermitian properties of the
single-particle spectrum, following a recent proposal by Kozii and Fu. Our analysis based on the dynamical mean-
field theory elucidates that the single-particle spectral weight shows the exceptional points (EPs). Correspondingly,
the spectral weight exhibits the band touching, resulting in a structure similar to the Fermi arc. Furthermore, we
find an intriguing phenomenon arising from the periodicity of the lattice. The EPs generated by two distinct Dirac
points merge and change into a hybrid point, which vanishes as the exchange interaction is increased. Accordingly,
the paramagnetic phase in the low-temperature region shows a significant difference from noninteracting fermions:
the imaginary part of the self-energy yields the Fermi loop without any defective points.

DOI: 10.1103/PhysRevB.98.035141

I. INTRODUCTION

The importance of the topological perspective in condensed
matter systems is rapidly growing [1–4]. In particular, topo-
logical systems are extended to superconductors [5–8] and
semimetals [9–13] where topologically nontrivial properties
induce robust degenerate states, providing platforms for novel
excitations in solids, such as Weyl fermions and Majorana
fermions. In particular, the realization of Majorana fermions
attracts much interest in terms of application to quantum
computation [14]. Great progress in topological systems has
also brought impact on strongly correlated systems where
various intriguing phenomena have been reported because
of topology and correlations [15–21]; the topological Mott
insulators emerge whose topology is reflected only in collective
gapless edge modes [22–25]; electron correlations reduce the
Z classifications for free fermions [26–44]. The destruction of
the degenerate states by the electron correlations is the origin
of these phenomena.

Intriguingly, a very recent study by Kozii and Fu has pro-
posed a new mechanism of robust degenerate states described
by a non-Hermitian matrix for electron systems in equilibrium
[45]. They have found robust degenerate states induced by
electron correlations, and have clarified their topological prop-
erties. The single-particle spectrum of the multiband systems is
described by a non-Hermitian matrix due to the imaginary part
of the self-energy, describing quasiparticle lifetime. Remark-
ably, in non-Hermitian systems, the diagonalizability of the
matrix can be violated at a certain point in the Brillouin zone
(BZ), which is denoted as EP. At this point, the eigenvalues of
the non-Hermitian matrix are degenerate, which is robust and
does not require any symmetry [46–48]. The EPs in the BZ
are connected with lines where the single-particle spectrum
shows band touching, resulting in the Fermi arc. The proposal
in Ref. [45] bridges two distinct issues of condensed matter:
electron systems in equilibrium and systems described by a

non-Hermitian matrix where various intriguing properties have
been reported so far [49–55]. After this proposal, systems with
disorder have been extensively studied as platforms of the new
robust degenerate states induced by the self-energy [56,57].
These robust degenerate states also attract interest because of
their potential to solve the puzzle of quantum oscillations in
SmB6 and YbB12 [56,58–60].

In spite of the extensive studies, strongly correlated electron
systems where the self-energy plays an important role have
not been sufficiently explored yet from the non-Hermitian
perspective. In particular, the effects of the lattice periodicity,
which is a significant characteristic of crystals, have not been
analyzed yet for any systems in this context.

Under this background, we here study strongly correlated
electron systems as an arena for the degenerate states arising
from non-Hermitian properties, which provides a new direction
in the study of correlated topological systems. In particular,
we analyze a heavy-fermion system in two dimensions by
employing the dynamical mean-field theory combined with the
numerical renormalization group method (DMFT+NRG). Our
analysis elucidates that the imaginary part of the self-energy
splits the Dirac point into two EPs with vorticity ν = ±1/2.
Furthermore, we find an intriguing phenomenon arising from
the periodicity of the lattice. The EPs generated by two distinct
Dirac points merge and change to a hybrid point, which
vanishes when the Kondo temperature becomes large. Remark-
ably, the paramagnetic phase in the low-temperature region
shows a significant difference from noninteracting fermions:
the imaginary part of the self-energy yields a Fermi loop where
the generalized charge gap becomes pure imaginary.

The rest of this paper is organized as follows. In Sec. II, we
describe our setup and give a brief explanation of our approach.
In Sec. III, we observe the emergence of EPs and the fusion of
them induced by the Kondo effect. The last section is devoted
to a brief summary.
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II. MODEL AND METHOD

We consider the following Kondo lattice model on the
square lattice:

H =
∑

〈ij〉sαβ

tiα,jβc
†
iαscjβs +

∑
i

J si · Si , (1)

where c
†
iαs creates an electron with spin s =↑,↓ at orbital

α = a, b of site i. si := c
†
ibsσ ss ′c

†
ibs ′/2σ ’s are the Pauli matrices

acting on the spin space. S is the spin 1/2 operator of the local
spin. The first term describes the noninteracting part, which is
written in the momentum space as follows:

ĥ(k) = dz(k)τz + dx (k)τx, (2)

with dz(k) = −ε0 − 2t (cos kx + cos ky ) and dx (k) =
2tsp sin ky . The Pauli matrices τ ’s act on the orbital space.
In the noninteracting case, this system hosts Dirac cones
at points in the BZ where dx (k) and dz(k) become zero.
These Dirac points are protected by the chiral symmetry with
τyĥ(k)τy = −ĥ(k). We note that only electrons at orbital
b interact with the localized spins. In general, the coupling
strength depends on the details of the itinerant orbital and thus
can be different for each orbital. In this study, we take the
extreme case where only electrons in one of the orbitals couple
with the localized spins. We note that the low-energy physics
of this model is relevant to the Kondo lattice model of the
honeycomb lattice structure and for Weyl-Kondo semimetals.
The former system can be realized for cold atoms [61–63].
In addition, the possibility of a Weyl-Kondo semimetal is
discussed for Ce3Bi4Pt3 [64,65].

In order to analyze correlation effects, we employ the
dynamical mean-field theory (DMFT), which treats local
correlations exactly [66–68]. We note that this approximation
becomes more accurate in the three-dimensional systems
whose dispersion relation shows weak momentum dependence
in the third direction. In the DMFT framework, the lattice
model is mapped onto the following effective impurity model:

Zimp =
∫
Dc̄bσ (τ )Dcbσ (τ )TrS exp(−Simp), (3a)

Simp =
∫

dτdτ ′
[ ∑

σ

c̄bσ (τ )Gσ (τ − τ ′)cb(τ ′)

− J s(τ ) · Sδ(τ − τ ′)
]
, (3b)

where c̄bσ is a Grassmannian variable corresponding to the
creation operator at the orbital b of site 0. TrS denotes the trace
for states of the localized spin. Here, we note that the electrons
of the orbital a are integrated out in the above effective model.
Gσ (τ − τ ′) denotes the Green’s function of the effective bath,
which can be obtained by solving the following self-consistent
equation:

G−1
σ (ω) =

[∑
k

{
(ω + iδ)1l − h(k) − �R

σ (ω)
}−1

]
bb

+�R
bσ (ω), (4)

where �R
σ (ω) := diag(0 �R

bσ (ω)), and �R
bσ (ω) denotes the

self-energy of the retarded Green’s function describing elec-
trons in orbital b.

In order to solve the self-consistent equation (4), we employ
the numerical renormalization group (NRG) method, which
provides accurate results even around zero temperature [69–
71]. In this study, we also analyze the magnetic order with the
DMFT by dividing the lattice into two sublattices.

III. RESULTS

A. Defective points via spectral functions A(ω, k)
and their characterization

Here, we discuss the condition where the momentum-
resolved spectral function shows physics arising from the
breakdown of diagonalizability, a characteristic behavior of
non-Hermitian systems. We assume that the system is para-
magnetic, i.e., �R

b (ω) := �R
b↑(ω) = �R

b↓(ω). In this case, the
Green’s function is written as

G(ω + iδ, k)−1 = (ω + iδ)τ0 − Heff (ω, k), (5a)

with the effective Hamiltonian

Heff (ω, k) = h(k) + �R
b (ω)

2
(τ0 − τz). (5b)

Heff (ω, k) is a non-Hermitian matrix because of the imaginary
part of the self-energy. If Heff (ω, k) is not diagonalizable, the
effective Hamiltonian is defective.

When Heff (ω, k) is not defective, we obtain the following
representation of the spectral function A(ω, k) by diagonaliz-
ing the effective Hamiltonian:

A(ω, k) = − 1

π
Im

∑
s=±1

[ω + iδ − Es (ω, k)]−1, (6a)

with the frequency-dependent eigenvalues

E±(ω, k) = �R
bσ (ω)

2
±

√(
dz(k) − �R

bσ (ω)

2

)2

+ d2
x (k).

(6b)

When the effective Hamiltonian is defective, its eigenval-
ues are degenerate. This robust degeneracy can be observed
via spectral weight at (ω0, k0) specified by the following
conditions:

ω0 − Re

[
�R

bσ (ω0)

2

]
= 0, (7a)

dz(k0) − Re

[
�R

bσ (ω0)

2

]
= 0, (7b)

−(
Im�R

bσ (ω0)
)2 + 4d2

x (k0) = 0. (7c)

Equation (7a) specifies the energy ω0 where the robust de-
generate states are observed. The other two equations specify
points in the BZ where the effective Hamiltonian (5b) becomes
defective (see Appendix).
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FIG. 1. The self-energy of the single-particle Green’s function
for several values of exchange interaction J : (a) the real part; (b) the
imaginary part. As the interaction J is increased, the Kondo effect
is enhanced, which results in strong renormalization observed in (a)
and a peak in the imaginary part around ω ∼ 0 as observed in (b).

We note that a topological aspect of the defective points can
be characterized by the vorticity defined as [48]

ν =
∮

dk
2π

· ∇karg[E+(k) − E−(k)], (8)

where the integral is along a closed path in the BZ. If the
defective point is characterized by a half-integer vorticity, it is
denoted as an exceptional point (EP).

B. DMFT results

In the following, we discuss the DMFT results obtained
for (t, tsp, ε) = (1, 0.667, 0.667) where the linear dispersion
relation holds for a relatively wide range of energy. We fix
the Fermi energy to zero rather than fixing the filling of the
electrons. We note that similar behaviors can also be observed
for other sets of parameters.

1. Emergence of EPs and disappearance of them in the
high-temperature region

Let us first summarize a few basic properties of Kondo
lattice systems for a given temperature. When the antifer-
romagnetic interaction J is small, the itinerant electrons
are effectively decoupled from the localized spins due to
temperature effects. In this case, the electrons are essentially
free fermions. With increasing interaction J one can observe
that the singlet correlation of electrons and localized spins
is enhanced, corresponding to the increase of the Kondo
temperature. Accordingly, the band structure of the electrons
is renormalized and the imaginary part of the self-energy is
enhanced.

The renormalization of the band structure and the increase
of the imaginary part of the self-energy are observed around
J = 1.8t for T = 0.048t . As seen in Fig. 1, the real part of
the self-energy shows an abrupt change around ω ∼ 0. Corre-
spondingly, the imaginary part of the self-energy shows a dip.
These structures of the self-energy induce the characteristic
behaviors of the momentum-resolved spectral weight A(ω, k).

To see this, we first analyze the renormalization effects of
the band structure by setting the imaginary part to zero. We note
that the spectral function is symmetric under transformations
(kx, ky ) → (−kx, ky ) and (kx, ky ) → (kx,−ky ). In Fig. 2(a),
the spectral function shows a peak at ky = π , which corre-
sponds to the Dirac cone. Next, we analyze the effect of the
imaginary part of the self-energy on the spectral function. Due

FIG. 2. Momentum-resolved spectral function for a given fre-
quency ω0. In (a), we plot the spectral function by setting the
imaginary part of the self-energy to zero. We note that the spec-
tral function is symmetric under the transformations, (kx, ky ) →
(−kx, ky ) and (kx, ky ) → (kx, −ky ). Because of the imaginary part
of the self-energy, the effective Hamiltonian (5b) becomes defective
at (k0x, k0y ) = (0.93, 2.71), which is denoted as a green dot in (b).

to the imaginary part, the effective Hamiltonian (5) becomes
defective at k ∼ (k0x, k0y ) := (0.93, 2.71) and (k0x,−k0y )
denoted with green dots in Fig. 2(b). Taking into account the
symmetry of the spectrum we observe four defective points,
which are connected with low-energy excitations forming a
structure similar to the Fermi arc [see Fig. 2(b)]. The origin of
the Fermi arc can be understood by examining Eq. (6). This
equation indicates that only the real part of E± governs the
position of the peak. Thus, we can understand that the band
touching of the spectral function, leading to the Fermi arc, is
observed along the line where the generalized charge gap

�c(k) = E+(k) − E−(k), (9)

becomes pure imaginary. We note that the emergence of the
Fermi arc enhances the weight of the local density of states
around ω ∼ 0 [see Fig. 3(a)].

Next, for the characterization of the defective point, we
compute the vorticity ν. In Fig. 3(b), the square of the charge
gap �2

c is plotted [see also Eq. (8)]. The integral is taken
along the green line in the figure. We can observe that the
path of the integral crosses the branch cut once, which results
in the vorticity ν = −1/2. Thus, this defective point is an EP
with ν = −1/2. In a similar way, we find three other EPs; an
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FIG. 3. (a) Local density of states for J = 1.8t . The dashed lines
represent the data obtained by setting Im�R

b (ω) = 0. The local density
of states is enhanced by the imaginary part of the self-energy, which
induces the Fermi arc observed for the momentum resolved spectral
functions. (b) Color map of �2

c . The dashed white lines denote the
branch cut. The white arrows point at EPs. The green line with arrows
denotes the path of the integral of Eq. (8).
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FIG. 4. Momentum-resolved spectral function for a given fre-
quency ω0. Because the conduction electrons are effectively de-
coupled, we can observe the peak at ky = π in (a), signaling the
emergence of the Dirac point. In (b), the effective Hamiltonian is
not defective in the entire BZ although the imaginary part of the
self-energy show a sharp dip around ω = 0 [see Fig. 1(b)].

EP with ν = −1/2 at (−k0x,−k0y ) and EPs with ν = 1/2 at
(k0x,−k0y ) and (−k0x, k0y ).

We finish this section with showing that two EPs merge and
change into the Dirac point. As J decreases, the self-energy ap-
proaches to zero [see the data for J = t of Fig. 1]. Correspond-
ingly, the two EPs with ν = 1/2 and −1/2 merge and change
into the Dirac point observed for free fermions [see Fig. 4(a)].
This behavior is reasonable because these EPs are generated
from the Dirac cone. Intriguingly, however, we find that the
fusion of two EPs can yield another type of defective point,
which has not been observed for solids. As we see below, the
lattice periodicity plays an important role for this behavior. We
confirm this intriguing scenario in the low-temperature region.

2. Fragile hybrid point and the Fermi loop without defective points

Now, let us analyze the effect of the lattice periodicity
on EPs, which is a characteristic of crystals. Increasing the
exchange interaction J enhances the peak of the self-energy
and shifts the position of EPs, which can lead to the fusion
of two EPs at kx = π . Remarkably, the fusion of two EPs
generated from two distinct Dirac points yields a hybrid point,
whose characterization is discussed below.

We first demonstrate the fragility of the hybrid point because
of the periodicity of the Hamiltonian. The lattice periodicity
requires dx (k) to be continuous and periodic in the BZ, which
indicates that dx (k)2 has an upper bound. Therefore, the
following relation holds for any point of the BZ when the imag-
inary part of the self-energy takes a sufficiently large value,

−[
Im�R

b (ω0)
]2 + 4d2

x ( p0) < 0, (10)

and thus, the condition (7c) is not satisfied, which results
in the disappearance of the defective point with increasing
temperature. We note, however, that the spectrum still shows
an intriguing behavior arising from the non-Hermiticity
although the effective Hamiltonian is no longer defective.
Namely, the spectral function shows the Fermi loop signaling
the band touching of the spectral function even in the absence
of EPs [see Fig. 4(b)]. Because of the Fermi loop, the spectral
weight is enhanced in the low-energy region [see Fig. 5(a)].
The origin of this Fermi loop is that the line of the BZ where
the generalized charge gap becomes pure imaginary forms a
loop, corresponding to the absence of the defective point.
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FIG. 5. Local density of states and the color map of �2
c for J = 2t ,

which are plotted in a similar way to Fig. 3.

Finally, we compute the vorticity of the hybrid point. At
the parameter where the two EPs merge, the condition (7) is
satisfied at kx = π . Corresponding to the change of Fermi arc
to the Fermi loop, the branch cut of �2

c also forms a loop, which
can be seen even without the hybrid point [see Fig. 5(b)]. In
this case, the vorticity takes zero because any path enclosing
the hybrid point crosses the branch cut twice.

3. Antiferromagnetic instability

So far, we have been concerned with nonmagnetic proper-
ties. Here, we have a natural question: how does a magnetic
order modify the conclusion obtained here.

To address this question, we have performed the DMFT
calculations by searching for magnetic solutions. The obtained
phase diagram is shown in Fig. 6. Red dots denote data
points. It shows the typical behavior inherent to heavy-fermion
systems: the transition temperature of the antiferromagnetic
phase increases with increasing J , reaches a maximum, and
then decreases, entering into the Kondo insulating region. We
confirm that the antiferromagnetic order changes the band
structure, thereby eliminating the EPs. We note, however,
that the EPs and the Fermi loop indeed emerge at finite
temperatures higher than the Neel temperature (see Fig. 6).
Thus, we conclude that the topological phenomena arising
from the non-Hermitian matrix survive in our model.

 0.04

 0.08

T
/t 

 0
 0  0.5  1  1.5  2  2.5  3  3.5  4

J/J/t 

FIG. 6. Phase diagram of the spin exchange interaction J vs. the
temperature T . The solid green line denotes the Neel temperature. The
dashed blue line denotes the Kondo temperature, which is estimated
from saturation of the singlet correlation between the conduction
electron and the localized spin. The dashed horizontal line denotes
the temperature T = 0.048t . The EPs and the Fermi arc are observed
above the Neel temperature.
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IV. SUMMARY

In this paper, we have analyzed the effect of the imaginary
part of the self-energy on the band structure for heavy-fermion
systems by taking into account the lattice periodicity. Partic-
ularly, we have analyzed the Kondo lattice model on a square
lattice, which shows two Dirac cones for J = 0.

When the coupling is antiferromagnetic, increasing the
exchange interaction J induces the Kondo effect, which results
in a finite imaginary part of the self-energy in the low-energy
region. Correspondingly, we have observed the emergence of
EPs with vorticity ν = ±1/2 accompanied by a Fermi arc in
the BZ where the charge gap �c becomes pure imaginary.
Along this line of the BZ, the real part of the energy is
degenerate, which can be observed via the spectral weight.
Furthermore, we have observed the intriguing behavior arising
from the lattice periodicity. With further increasing the spin
exchange interaction J , the EPs are shifted and finally merge
in the BZ as the Kondo effect enhances the imaginary part
of the self-energy. The fusion of the two EPs, induced by the
enhanced Kondo effect, yields a hybrid point, which is still
defective but is characterized by ν = 0. We have observed that
this hybrid point is fragile against the slight change of the
exchange interaction and vanishes with increasing J , leaving
a Fermi loop in the low-energy states without any defective
point. The above results are obtained by the simulation for fixed
chemical potential. We note, however, that the emergence of
EPs, the fusion of EPs, and the emergence of the Fermi loop
are supposed to be valid also when changing the chemical
potential. A shift of the chemical potential just changes the
position of EPs. Furthermore, the lattice periodicity is essential
for the emergence of the hybrid point and the Fermi loop.

We conclude with a few remarks. One of the important
issues to be addressed is the relation to experiments. We note
that the above intriguing phenomena, induced by correlation
effects, can be observed by ARPES measurements. Concerning
the effects on the specific heat, we consider that the emergence
of EPs enhances it because the LDOS, which governs the
specific heat, is enhanced due to EPs. We leave a detailed
analysis of the effects on the specific heat, and the other
physical properties (e.g., transport properties, quantum oscil-
lations, etc.) as a future work.

In addition, understanding effects of spatial fluctuation
remains to be addressed. Our DMFT analysis treats only
local correlations, which is justified for the three-dimensional
systems. Thus, our results are more accurate for the three-
dimensional systems whose dispersion relation shows weak
momentum dependence in the third direction. In such systems,
exceptional points are considered to form rings because the
points satisfying Eq. (7) would extend to the third direction.

Thus, our results concerning fusion of defective points hold for
exceptional rings. We note, however, that for two-dimensional
systems the spatial fluctuations are important, and thus, more
accurate simulations based on the cluster-DMFT or the dy-
namical cluster approximation should be performed for two-
dimensional systems. We also leave this issue as a future work.
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APPENDIX: DIAGONALIZATION OF
TWO-DIMENSIONAL NON-HERMITIAN MATRIX

Here, we review the diagonalization of 2 × 2 non-Hermitian
matrix, which is, in general, given by

H = (b0 + ib1) · ρ, (A1)

where ρi (i = 1, 2, 3) denotes the Pauli matrix. b0, b1 ∈ R3.
When the Hamiltonian is not defective, the eigenvalues are

given by

E± = ±
√

b2
0 − b2

1 + 2ib0 · b1. (A2)

We note that the Hamiltonian is defective when the following
relation holds:

b0 = b1, b0 · b1 = 0. (A3)

This can be seen by applying unitary transformation, which
maps b0 · ρ → b0ρx and b1 · ρ → b1ρy . Under this transfor-
mation, we obtain

H = 2b0

(
0 1
0 0

)
, (A4)

whose eigenstates cannot span the two-dimensional space.
For characterization of the topological properties, the vor-

ticity defined by Eq. (8) is used. If a defective point is
characterized by vorticity of a half-integer, the defective point
is denoted as an EP. EPs can merge and change into other types
of points (see Table I), which is analyzed with the Hamiltonian
in the continuum limit [48]. When the two EPs with ν = 1/2
and −1/2 merge, these two points changes to a Dirac point or
a hybrid point. The former (latter) scenario is observed for our
model in the high- (low-)temperature region, respectively.

TABLE I. Four types of degenerate points and fusion of two EPs. A Dirac point and a hybrid point can be created with two EPs with ν = 1/2
and −1/2. A double exceptional point and vortex point can be created with two EPs with ν = 1/2.

Degenerate points Vorticity Defectiveness Creation from two EPs

Dirac point ν = 0 not defective EPs with ν = 1/2 and −1/2
hybrid point ν = 0 defective EPs with ν = 1/2 and −1/2
double exceptional point ν = 1 defective EPs with ν = 1/2 and 1/2
vortex point ν = 1 not defective EPs with ν = 1/2 and 1/2
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