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Protected zero modes in quantum physics traditionally arise in the context of ground states of many-body
Hamiltonians. Here we study the case where zero modes exist in the center of a reflection-symmetric many-
body spectrum, giving rise to the notion of a protected “infinite-temperature” degeneracy. For a certain class of
nonintegrable spin chains, we show that the number of zero modes is determined by a chiral index that grows
exponentially with system size. We propose a dynamical protocol, feasible in ongoing experiments in Rydberg
atom quantum simulators, to detect these many-body zero modes and their protecting spectral reflection symmetry.
Finally, we consider whether the zero-energy states obey the eigenstate thermalization hypothesis, as is expected
of states in the middle of the many-body spectrum. We find intriguing differences in their eigenstate properties
relative to those of nearby nonzero-energy eigenstates at finite system sizes.

DOI: 10.1103/PhysRevB.98.035139

I. INTRODUCTION

Zero modes in quantum physics first came to prominence
with the seminal work of Jackiw and Rebbi [1], Su, Schrieffer,
and Heeger [2], and Jackiw and Rossi [3]. They discovered pro-
tected zero-energy single-particle states bound to topological
defects like solitons in one spatial dimension [1,2] and vortices
in two dimensions [3]. The robustness of these zero modes was
later understood to be guaranteed by an index theorem [4].
Much later, these concepts were generalized to all classes of
topological insulators (TIs), which generically have protected
zero modes at topological defects of various codimensions,
including spatial boundaries [5].

Protected zero modes also manifest themselves in super-
symmetric (SUSY) lattice models [6,7]. Unlike their coun-
terparts in TIs, SUSY zero modes are many-body entities
whose existence does not require spatial boundaries or defects.
However, their robustness is also guaranteed by an index
theorem due to Witten [8]. In both cases, zero modes arise in the
context of ground states of many-body Hamiltonians and are
therefore relevant at low energies; in SUSY, zero-energy states
must be ground states, while in TIs the zero-energy single-
particle states sit atop a filled Fermi sea of negative-energy
states.

In this paper, we explore a class of quantum spin systems
that host symmetry-protected zero modes at finite energy
densities above the ground state. They are protected by a
reflection symmetry of the energy spectrum of the many-body
Hamiltonian H , generated by an operatorC satisfying {C,H } =
0, which pins the zero modes to the center of the spectrum.
We classify these zero modes by a symmetry-resolved index
and propose a dynamical protocol that allows one to measure
the number of zero modes systematically. We exemplify
these results in a nonintegrable spin system motivated by the
mixed-field Ising chain near the saturation field, which can be
simulated using Rydberg atoms in optical lattices [9–11].

The existence of spectral reflection symmetry implies that
every eigenstate |E〉 of H has a chiral partner C|E〉 = |−E〉.

Zero modes of H , if they exist, are unique among eigenstates
of H because they can be chosen to diagonalize C and acquire
definite chiral charge. As a result, one may define an index
W = tr(C e−βH ) that lower bounds the number of zero modes
N0 � |W |, similar to the Witten index of SUSY (here β is the
inverse temperature). When the Hamiltonian has a symmetry
S that commutes with C, one can define an index

WS = tr(PS C e−βH ) (1)

for each symmetry sector of S using the projector PS . The
number of zero modes thus obeys a much stronger bound in
this case: N0 � trS |WS |. In this work, we show that a striking
scenario arises when the total charges of C and S in the zero-
mode manifold are O(1), while trS |WS | � 1. This implies that
the intertwining of C and S in the zero-mode manifold can lead
to a dramatic enhancement of the number of zero modes. As we
discuss later, this intertwining of symmetries in the zero-mode
manifold can also be exploited for their detection.

Here we focus on point-group symmetries and show that
they can lead to exponential growth of the number of zero
modes with system size L, similar to superfrustrated SUSY
models [6,12–16]. The simplest example is the paramagnet
with the Hamiltonian

Hpara =
∑

i

Xi, (2)

where Xi,Yi,Zi are Pauli operators on sites i = 1, . . . ,L of a
lattice with point-group symmetry S . The spectral reflection
operator

C =
∏

i

Zi (3)

measures the parity of the number of “down” spins. Construct-
ing zero modes of Hpara is straightforward for even L: align
half the spins parallel to X and the other half antiparallel. The
number of zero modes, N0 = ( L

L/2) ∼ 2L, grows exponentially
with system size.
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At first glance, this dramatic growth of the number of zero
modes with L is a trivial consequence of the integrability of
the paramagnet. However, the existence of an exponentially
large index WS guarantees that it is not. Rather, exponentially
many zero modes of the paramagnet persist in the presence
of arbitrary perturbations that preserve spectral reflection
symmetry and the point-group symmetry S . For example, one
can add to the Hamiltonian Hpara in Eq. (2) a set of terms that
anticommute with C and commute with S , such as

δH =
∑
〈ij〉

(a0,ij ZiXj + a1,ij XiZj + · · · )

+
∑
〈ijk〉

(a2,ijk ZiXjZk + a3,ijk XiXjXk + · · · )

+ · · · , (4)

where 〈 · 〉 denotes that the enclosed indices label nearest-
neighbor sites. Here, in order to ensure {C,δH } = 0, the only
allowed terms are those for which the total number of operators
Oi = Xi or Yi is odd. Furthermore, the coefficient of each
term must be chosen such that the point-group symmetry S is
maintained. For the case of a one-dimensional lattice where
the point-group symmetry S is given by spatial inversion
symmetry I, the symmetry-resolved index (1) is given by

W± = ±2L/2−1for even L, (5)

where ± label the eigenvalues ±1 of I. One thus has N0 �
2L/2 zero modes, despite the presence of strong integrability-
breaking perturbations. Moreover, the zero modes are even
robust to breaking I as long as {CI,H } = 0, in which case
N0 � |tr(CI e−βH )| = 2L/2. In other words, as long as one can
define an appropriate spectral reflection symmetry, these zero
modes persist.

Like the Witten index, the indices WS are well-defined at
finite temperature. Unlike the Witten index, however, WS is
trivially zero at zero temperature since the density operator
e−βH becomes a projector onto the ground state in the limit
β → ∞. The latter fact suggests that physical signatures of the
spectral reflection symmetry and zero modes become impor-
tant only at high temperatures or in the far-from-equilibrium
dynamics of the system. We discuss the physical consequences
of the exponentially large zero-mode manifold in Sec. IV.

The rest of the paper is organized as follows. In Sec. II
we review a model relevant for ongoing experiments studying
Rydberg-atom arrays and show how the low-energy sector of
the Hilbert space asymptotically acquires the spectral reflection
symmetry. In Sec. III we introduce and calculate the symmetry-
resolved chiral indices for the low-energy, projected model.
In Sec. IV we discuss how to detect the presence of zero
modes and their effect on the Loschmidt echo dynamics of
experimentally preparable product states. We also consider the
question of whether or not the zero modes obey the eigenstate
thermalization hypothesis. Conclusions are summarized in
Sec. V.

II. MODEL

In this paper we focus on a model that is relevant to ongoing
experiments studying arrays of Rydberg atoms [9,11], namely,

the mixed-field Ising chain with the Hamiltonian

H =
∑
i<j

Vij ZiZj +
∑

i

(hx Xi + hz Zi). (6)

Here hz,hx are the longitudinal and transverse fields, and Vij

is a repulsive (antiferromagnetic) interaction. This system can
be simulated using Rydberg atoms in an optical lattice, where
Vij arises due to van der Waals coupling between atoms and
therefore decays rapidly with |i − j |. In the optical tweezer
arrays of Refs. [9,11] and in the quantum gas microscope of
Ref. [10], the interatomic spacing can be tuned, allowing one
to selectively truncate to the nearest- or next-nearest-neighbor
coupling. Unless otherwise specified, we restrict ourselves
to the nearest-neighbor case and denote the nearest-neighbor
coupling Vii+1 ≡ V1.

In the limit hx 	 V1 and near the saturation field hz ∼ 2V1,
the low-energy eigenstates of Eq. (6) are linear combinations
of Zi eigenstates in which no two neighboring spins point “up.”
This means that the effective low-energy Hamiltonian H̃ can
be written (up to an overall energy shift) using projectors as
[9,17]

H̃ =
∑

i

(hx X̃i + �Z̃i), (7)

where � = hz − 2V1, Õi = Oi

∏
j∈nn(i) Pj . and Pi = (1 −

Zi)/2 is the local projector onto spin down. For � = 0,
the Hamiltonian H̃ acquires a spectral reflection symmetry
generated by C = ∏

i Zi , just like for the paramagnet discussed
above. Unlike the paramagnet, however, the Hamiltonian (7) is
strongly interacting and nonintegrable due to the low-energy
constraint imposed on the Hilbert space. It is straightforward
to generalize Eq. (7) to higher-dimensional bipartite lattices,
where the saturation field is hz = zcV1, with zc being the
coordination number.

III. SYMMETRY-RESOLVED CHIRAL INDICES

As pointed out in Ref. [17], H̃ (sometimes called the
Fibonacci chain) equivalently describes a system of Fibonacci
anyons [18–21] whose Hilbert space dimension D(L) =
FL+2 ∼ ϕL, where Fi are the Fibonacci numbers (with F1 = 1
and Fi+1 = Fi + Fi−1, which yields the famous sequence
1,1,2,3,5, . . . ) and ϕ = 1.618 . . . is the golden ratio. A recent
experiment using Rydberg atoms [9] has shown that this system
exhibits peculiar quench dynamics in the form of persistent
oscillations that last long after the natural timescale of H̃ , 1/hx .
In Ref. [22] this phenomenon was attributed to “scarring” of
the many-body wave function in analogy to single-particle
quantum chaos. The authors of Refs. [22,23] also pointed out
the existence of an exponentially large number of zero modes
of H̃ that are sensitive to inversion symmetry.

Here we see that, in the presence of the Z2 inversion
symmetry I = S , such zero modes are guaranteed by an index,

W± = tr

(
1 ± I

2
C e−βH

)
, (8)

where the trace is taken over the constrained Hilbert space. The
total number of zero modes satisfies N0 � |W+| + |W−|. For
the Fibonacci chain, the indices can be computed explicitly;
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for open boundary conditions, they are given by

W± =
{−a(L)±FL/2+1

2 even L,

a(L)∓F(L−1)/2

2 odd L,
(9)

where a(L) = 1
2 (−1)�(L−2)/3
 + 1

2 (−1)�(L−1)/3
 is related to
tr C and �·
 is the integer part. Since the sign of W± is
determined by the chiral charge of the zero modes, we find
that for even L the inversion even (odd) zero modes have
positive (negative) chiral charge, while for odd L inversion
even (odd) zero modes have negative (positive) chiral charge.
As we show in Sec. IV, this intertwining of chiral charge and
inversion symmetry eigenvalues in the zero-mode manifold is
an important feature that can be exploited to measure the zero-
mode count. The total number of zero modes of Hamiltonian
(7) at � = 0 in fact saturates the bound N0 � |W+| + |W−|,
namely,

N0 =
{
FL/2+1 even L,

F(L−1)/2 odd L,
(10)

in agreement with Refs. [22,23]. For large L, this implies that
N0(L) ∼ ϕL/2, and thus N0(L) ∼ √

D(L).
One can readily generalize the results (9)–(10) to the

case where the kth nearest-neighbor coupling Vk exceeds
hx . As shown in Ref. [9], this leads to a sequence of Zk

symmetry-broken ground states. The low-energy subspaces
can be obtained as before by dressing operators with projectors
that eliminate Rydberg excitations (“up spins”) within a radius
of k sites:

∏
1�j�k Pi−jPi+j . The dimension of the constrained

Hilbert space can be computed recursively in terms of the
system length. For an open chain, the constrained Hilbert space
dimension at system size L obeys

Dk(L) =
{Dk(L − 1) + Dk(L − k − 1) L > k + 1,

Dk(L) = L + 1 L � k + 1.
(11)

In terms of this sequence, one can compute the index
tr(CIe−βH ) explicitly, leading to the lower bound

Nk,0 �
{
Dk

(
L
2 − � k+1

2 
) even L,

Dk

(
L−1

2 − � k
2
) − Dk

(
L−1

2 − k
)

odd L.
(12)

The above results reduce to those of the previous paragraph
in the case k = 1, where D1(L) ≡ D(L). For large L, the
constrained Hilbert space dimension grows exponentially,
Dk(L) ∼ αL, where the base α is the positive root of αk+1 −
αk − 1 = 0. From Eq. (12) we see that for all k, Nk,0(L) �√
Dk(L) for L � k.
That N0 scales with the square root of the total Hilbert space

dimension is a generic consequence of the fact that I is a Z2

symmetry and the fact that spins on different sites commute.
Since the first term in W±, 1

2 tr(Ce−βH ), is O(1), the total
number of zero modes is actually bounded by tr(CIe−βH ) =∑

n∈{n}I Cn, where {n}I denotes the set of inversion-invariant
product states of Zi . In a system with even L it is clear that
every inversion-invariant state has C = 1 and I = 1. For odd
L, exponentially more inversion-invariant states have C = −1
due to the Hilbert space constraints. This leads to tr(CI) < 0
and the opposite pairing (compared to that of even L) of C
and I eigenvalues in the zero-mode manifold. In either case,
the Z2 inversion symmetry effectively halves the number of

degrees of freedom in the trace, thus giving N0 ∼ √
D. This

square-root scaling of the number of zero modes is also present
in the example of the paramagnet (2) perturbed by the generic
inversion- and chiral-symmetric interactions (4) [see Eq. (5)].

IV. DYNAMICAL SIGNATURES OF SPECTRAL
REFLECTION SYMMETRY AND MANY-BODY

ZERO MODES

In this section we discuss possible physical consequences of
the existence of many-body zero modes protected by spectral
reflection symmetry. In Sec. IV A, we show how to detect the
presence of zero modes and their chiral index by studying the
late-time dynamics of the chiral charge C(t) when the system
is initialized in a Zi product state. In Sec. IV B, we make the
connection between the dynamics of the chiral charge and
the Loschmidt echo of arbitrary Zi product states, showing
how the presence of zero modes drastically enhances the
echo response. Finally, in Sec. IV C, we discuss the notion of
eigenstate thermalization within the exponentially large zero-
mode manifold and present numerical evidence supporting a
modified version of the eigenstate thermalization hypothesis
(ETH) for local operators evaluated in the manifold.

A. Zero-mode index from chiral charge dynamics

The most direct signature of the many-body zero modes
arises from studying the dynamics of the average chiral charge
〈C(t)〉. Below, we show that this quantity serves as a sensitive
indicator for zero modes. We take the initial states to be
arbitrary (but constrained) Zi product states, which are readily
preparable experimentally. Chiral charge can be measured by
simply counting the number of “down” spins in the final state,
N↓ = ∑

i(1 − Zi)/2, giving C = (−1)N↓ . Denoting the initial
state by |ψ〉, the time-averaged chiral charge is given by

〈Ct 〉ψ ≡
∫ t

0

dt ′

t
〈ψ |C(t ′)|ψ〉. (13)

An example is shown in Fig. 1, where |ψ〉 is the Néel
state. In the presence of spectral reflection symmetry, the

FIG. 1. Dynamics of the moving average 〈Ct 〉 =∫ t

0
dt ′
t

〈ψ |C(t ′)|ψ〉, where |ψ〉 = | ↑↓ · · · 〉 is the Néel state, for
L = 8. Time t is measured in units of h−1

x , and energy is measured in
units of hx . We set � = 0.1 to slightly break the spectral reflection
symmetry. The strong sensitivity of 〈Ct 〉 to variations of theI-breaking
energy scale δ is indirect evidence of the symmetry-protected zero
modes; see discussion after Eq. (14). (δ is defined pictorially in the
inset as a local substitution hx → hx − δ on a single off-centered
site.) For δ � � the late-time value of 〈Ct 〉 approaches zero rapidly.
The dashed line indicates the infinite-time value 〈C∞〉 for � = δ = 0.
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late-time average limt→∞ 〈Ct 〉ψ ≡ 〈C∞〉ψ can be written in the
eigenbasis of H as

〈C∞〉ψ =
∑
E=0

〈E|ψ〉〈ψ |E〉 CE, (14)

where CE = 〈E|C|E〉. We notice that in Eq. (14) only the
zero modes, which have definite chiral charge CE = ±1,
contribute to the long-time expectation value. As a result,
one can reconstruct the index tr C by summing the late-time
average (14) over the complete set of initial product states:
tr C = ∑

ψ 〈C∞〉ψ . However, this index is O(1) and does not
capture the exponentially large number of zero modes.

Naively, it appears that in order to reconstruct the indices
W± one must make a challenging simultaneous measurement
of C and I. However, one can show that measuring I is not
necessary due to the pairing of C and I eigenvalues in the
zero-mode manifold [see discussion below Eq. (9)]. If one can
group the zero modes by their chiral charge, they will inevitably
be grouped by their inversion eigenvalue as well.

It turns out that choosing the initial states |ψ〉 to be Zi

product states automatically groups the set of zero modes
entering Eq. (14) by their chiral charge. Since each such
product state has a definite chiral charge Cψ = ±1, it can only
project onto zero modes with the same chiral charge. As a
result, the indices W± can be obtained simply by restricting
the summation in (14) to run over the set of initial product
states with a particular chiral charge:

W± = (−1)L
∑

ψ,Cψ=±1

〈C∞〉ψ, (15)

where (−1)L accounts for the fact that chiral-charge and
inversion eigenvalues are paired oppositely for even and odd L.
The total number of zero modes for the open Fibonacci chain
at � = 0 is given by N0 = N0, where

N0 =
∣∣∣∣∣∣

∑
ψ,Cψ=1

〈C∞〉ψ

∣∣∣∣∣∣ +
∣∣∣∣∣∣

∑
ψ,Cψ=−1

〈C∞〉ψ

∣∣∣∣∣∣. (16)

It is important to stress that the quantity N0 is strictly
quantized to N0 only in the presence of spectral reflection
symmetry and is highly sensitive to the presence of inversion
symmetry. This is seen in the � → 0 limit of Fig. 2, where
N0 → 0 rapidly upon even slightly breaking I. (We break I
by changing hx → hx − δ on a noncentered site; see inset of
Fig. 1.) It is also evident in the dynamics of 〈C(t)〉ψ , as seen
in Fig. 1. The sensitivity to inversion breaking is smoothed
out in the presence of a weak reflection-symmetry-breaking
perturbation �. While a finite � also abruptly changes the
zero-mode count, we see from Fig. 2 that N0 changes smoothly
with �, becoming nonquantized. This is due to the fact that
once reflection symmetry is broken, states with E �= 0 also
contribute to 〈C∞〉ψ , and Eq. (14) no longer holds. This
will also be true for the mixed-field Ising model (6) where
spectral reflection symmetry-breaking terms arise at order
h2

x/V1 [17] even for hz = 2V1. In the experiment of Ref. [9]
the small parameter hx/V1 ≈ 0.04 indicates that the spectral
reflection symmetry breaking due to virtual processes is a small
perturbation compared to the direct symmetry-breaking term
∝ � when �/hx � 0.04.

FIG. 2. The quantity N0, Eq. (16), at system size L = 10 as a
function of the C-breaking energy scale � for different values of the
I-breaking energy scale δ (see inset of Fig. 1). The initial state |ψ〉 is
again the Néel state. When δ = 0 and I is preserved, N0 = N0 = 8
at � = 0, as expected, and decreases smoothly for � > 0. When I is
broken, N0 = 0, and N 0 decreases sharply to zero.

The results shown in Figs. 1 and 2 indicate that N0

is far more sensitive to inversion symmetry breaking than
spectral reflection symmetry breaking. In the presence of both
symmetry-breaking perturbations, there is a crossover between
the two limits of exponentially large N0 and N0 ∼ O(1) when
the perturbation strengths become comparable.

We note that although we have shown that the zero-mode
count can be measured, in principle, by summing over all initial
product states with fixed chiral charge, there is a practical limit
to this protocol: the requisite number of initial product states
one must prepare in an experiment grows exponentially with
system size. As discussed in the Appendix, it is possible to
overcome this drawback via a random sampling of 〈C∞〉ψ over
initial states ψ .

B. Loschmidt echo

We now discuss the dynamics of the Loschmidt echo,
L(t) = 〈eiH2t e−iH1t 〉, which has been extensively studied in
other models in the context of both quantum information and
quantum chaotic systems [24,25]. We focus on the special case
where the backward evolution is dictated by the Hamiltonian
H2 = −H1 ≡ H , in which case it is readily seen that the
Loschmidt echo dynamics of any eigenstate of C (spanned by
Zi product states) exhibits perfect time correlation with the
expectation value of the chiral charge |〈C(t)〉| = |〈e−2iH t 〉| in
the presence of spectral reflection symmetry. This follows from
the fact that C also acts as a “time reflection” operator [26] for
Zi product states (not to be confused with time reversal T ),
which sends t → −t without complex conjugation. When the
spectral reflection symmetry is weakly broken, the temporal
correlations persist up to a time of the order of the inverse
strength of the perturbation, allowing one to measure the
symmetry breaking directly, as shown in Fig. 3. In the system
described by Eq. (6) at hz = 2V1, this measurement could
allow one to detect the degree of spectral reflection symmetry
breaking due to virtual processes involving higher-energy
states with nearest-neighbor spin-up defects.
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FIG. 3. Temporal correlation between 〈C(t)〉 and the Loschmidt
echoL(t) = 〈e−2iH t 〉 in the Fibonacci chain (7) at L = 8 starting from
the Néel state |↑↓↑↓↑↓↑↓〉. We choose � = 0.1 to weakly break the
spectral reflection symmetry. The two quantities exhibit near-perfect
correlation out to a time t ∼ 1/�, where t is measured in units of h−1

x .

Importantly, since each eigenstate of C has exactly zero
average energy, 〈H 〉 = 0, these states are nominally “infinite-
temperature” states. This implies that, generically, late-time
observables initiated in C eigenstates should be controlled by
energy eigenstates in the middle of the many-body spectrum,
where the zero modes are pinned. As we show below, one of
the defining features of the presence of such zero modes is the
relatively large residual value of the time-averaged Loschmidt
echo at late times, L∞ ≡ L(t → ∞).

Any finite residual value of L∞ is generically unexpected
because the infinite-time average washes out any oscillating
contribution. However, in the presence of zero modes the time-
averaged Loschmidt echo at late times becomes

L∞ =
∑
E=0

〈E|ψ〉〈ψ |E〉. (17)

If the initial state |ψ〉 is an eigenstate ofC and thus nominally an
infinite-temperature state with respect to H when {C,H } = 0,
we expect its overlap with any eigenstate to scale with the
Hilbert space dimension as

〈E|ψ〉 ∝ 1/
√
D. (18)

Since the dimension of the zero-mode manifold scales with√
D and therefore increases exponentially with system size,

it follows that the average Loschmidt echo becomes L∞ ∝
1/

√
D, whereas it would be zero in the case without zero

modes. We show this behavior for the Fibonacci chain (7) in
Fig. 4 for cases with and without zero modes. In contrast to the
dynamics of chiral charge discussed in Sec. IV A, the late-time
value of the Loschmidt echo depends on only the presence of
zero modes and is thus roughly equally sensitive to the breaking
of C as it is to breaking I.

It is also worth mentioning that the Fourier transform of the
Loschmidt echo L̃(ω) determines the statistics of work done
on a system after a quantum quench [25]. Equation (17) then
represents the amplitude of a quench to perform zero work
on the system, which can occur only in the presence of zero
modes.

Another intriguing aspect of the Fibonacci chain worth
returning to is the scarring of the many-body eigenstates
[22]. The scarring leads to a significant enhancement of the
projection of the Néel states onto the zero-mode manifold (as
well as finite-energy scarred bands). The projection of an initial
state onto the zero modes is given by Eq. (17) and can therefore

FIG. 4. Moving average of the Loschmidt echo starting from the
Néel state for L = 14. The infinite-time value (dashed black line) is
finite only in the presence of zero modes. The decaying curve occurs
when the zero modes are lifted by breaking inversion symmetry, which
is done by reducing hx on site 3 by 10%. The inset shows the infinite-
time value L∞ as a function of system size L in the presence of
zero modes. A logarithmic scale is used on the vertical axis, so that
a straight line indicates exponential scaling. The scarring leads to a
significant enhancement compared to a random state, L∞ = N0/D
(yellow).

be measured by the late-time dynamics of L(t). In the inset
of Fig. 4, we show the infinite-time value of the Loschmidt
echo for the Fibonacci chain as a function of system size L.
In contrast to the Néel states, a random (infinite-temperature)
state projects onto the zero-mode manifold with a weight
N0/D ∼ 1/

√
D. As indicated in the inset of Fig. 4, the presence

of scarred zero modes in certain initial states thus provides a
substantial increase in the late-time value of the Loschmidt
echo for moderately large systems.

C. Zero-mode eigenstate thermalization

We now turn to the question of the dynamics of generic local
observablesO in the Fibonacci chain, focusing in particular on
the role played by the presence of zero modes. To facilitate the
discussion it is useful to introduce the eigenstate thermaliza-
tion hypothesis [27–30], first developed to explain how closed
quantum systems approach thermal equilibrium despite unitary
time evolution. Formally, one may say that a closed quantum
system thermalizes when the reduced density matrix of an
arbitrary finite subsystem approaches the Boltzmann-Gibbs
thermal density matrix at late times after a quantum quench.
The temperature of the thermal ensemble is determined by
the global energy density of the initial state. However, the
equivalence between the grand-canonical and microcanonical
ensembles implies that any single eigenstate |E〉 with the
correct energy density [29,30] can be used to form the density
matrix |E〉〈E|. If ETH holds, then

〈E|O|E〉 = tr(Oe−βH )/Z, (19)

up to exponentially small in L corrections.
Another way to view this result is to consider the moving

average of an observable. It is readily shown that in the absence
of degeneracies this projects onto the diagonal ensemble
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FIG. 5. Eigenstate thermalization within and outside the zero-mode manifold. (a)–(c) The distributions of diagonal matrix elements of the
local operators (a) XL/2, (b) ZL/2, and (c) ZL/2ZL/2+1 over N0 eigenstates at zero energy (blue) and at nonzero energy (yellow) at system size
L = 20. For zero-energy states, the matrix elements are taken using linear combinations of the zero modes that diagonalize the operator in
question. The nonzero-energy states are chosen from an energy window centered around an energy density E/L ∼ 1/200, so that the zero-
and nonzero-energy states have comparable effective temperatures. In all cases, both the E = 0 and E �= 0 distributions are peaked near the
infinite-system-size thermal values (red vertical lines) given by Eqs. (21a), (21b), and (21c), for (a), (b), and (c), respectively. However, the
E = 0 distributions are significantly wider and less sharply peaked than the E �= 0 distributions. (d)–(f) The L dependence of the average values
computed from the distributions shown in (a)–(c), respectively. The error bars indicate a region of uncertainty of one standard deviation above
and below each data point. The red lines indicate the thermal values given by Eqs. (21a), (21b), and (21c). In all cases, both the E = 0 and
E �= 0 values are consistent with the corresponding thermal values, and the magnitude of the error bars decreases as a function of L. However,
at any fixed L the error bars on the E = 0 value exceed those on the E �= 0 value, indicating that the E = 0 distribution is broader than the
E �= 0 distribution.

[31,32] at late times:

〈O(t → ∞)〉 →
∑
E

|cE|2〈E|O|E〉. (20)

If ETH holds, 〈E|O|E〉 is essentially the same in every
eigenstate that has appreciable overlap cE with the initial
state. The diagonal matrix elements of the observable can
then be pulled out of the sum over energy and the remain-
ing sum becomes 1, independent of the initial state, due to
unitarity.

When the many-body spectrum acquires exact degenera-
cies, the diagonal ensemble is no longer directly applicable.
One must first diagonalize the observable in the basis of
degenerate eigenstates and only then use the diagonal ensem-
ble. When the distribution of eigenvalues of arbitrary local
operators in a degenerate manifold becomes sharply peaked at
the thermal expectation value (with the width decreasing with
increasing system size), those eigenstates satisfy ETH.

We show the eigenvalue distribution of a few local observ-
ables in the manifold of zero modes of Eq. (7) in Figs. 5(a)–5(c)
(blue curves). As a function of system size L the distributions

become more strongly peaked near their infinite-temperature
and infinite-size thermal expectation values, 〈O〉0 = tr(O)/D
[see Figs. 5(d)–5(f) (blue curves), where the size of the error
bars decreases with system size]. This supports the notion
that the states in the degenerate zero-mode manifold of the
Hamiltonian (7) satisfy ETH. For the operators considered in
Fig. 5 we find, for L → ∞,

tr(XL/2)/D = 0, (21a)

tr(ZL/2)/D = 1/
√

5, (21b)

tr(ZL/2ZL/2+1)/D = −1 + 2/
√

5. (21c)

These values are indicated as red vertical lines in Figs. 5
(a)–5(c) and red horizontal lines in Figs. 5 (d)–5(f). We note
that in Eqs. (21b) and-(21c) the nonvanishing value of the trace
of the Pauli operators arises due to the constrained Hilbert
space of Eq. (7).

It is interesting to compare the matrix-element distributions
obtained from the zero-mode manifold to the distributions
of diagonal matrix elements obtained from nearby nonzero-
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energy states. The latter should also satisfy ETH at a tempera-
ture close to that of the zero modes (i.e., near infinite), as they
are nondegenerate states in the middle of the many-body spec-
trum. The results of this analysis are shown in Figs. 5(a)–5(c),
where the diagonal-matrix-element distributions for nonzero-
energy states are shown in yellow. At L = 20, the latter
distributions are significantly more sharply peaked about their
mean value compared to the eigenvalue distributions in the
zero-mode manifold, shown in blue. Figures 5(d)–5(f) compare
the mean and standard deviation of the two distributions as a
function of L. Evidently, the nonzero-energy states yield a
significantly more sharply peaked distribution at each system
size studied.

These results suggest an intriguing conclusion, namely, that
the states in the zero-mode manifold thermalize more “slowly”
as a function of L than nearby states at similar energy densities.
It is likely, if ETH holds, that the observed discrepancy between
the two sets of states will lessen in the thermodynamic limit.
Nevertheless, at the system sizes studied here, the difference
between the widths of the zero- and nonzero-energy matrix-
element distributions does not appear to diminish as a function
of L. We have also verified numerically using another model
with exponentially many zero modes, namely, the paramagnet
(2) perturbed by interactions of the form (4), that the same
discrepancy in the two distributions arises. Hence, it appears
that this discrepancy is not a consequence of the constrained
nature of the Fibonacci-chain model, but rather is a generic
property of thermalizing quantum systems with zero modes.
One possible explanation for the slower thermalization of the
zero modes has to do with the fact that the zero-energy states
have a constraint that their neighbors at nearby energies do not:
a conserved chiral charge. However, more work is necessary in
order to sharpen these observations and identify the mechanism
underlying the difference between the two distributions.

Despite these differences, in the thermodynamic limit, it
is reasonable to expect both the E = 0 and E �= 0 diagonal-
matrix-element distributions to become infinitely sharp and
peaked at their thermal values. If ETH holds, any eigenstate
within or near the zero-energy manifold can be used to con-
struct the microcanonical ensemble at that energy scale. As a
result, ETH implies that the presence or absence of zero modes
in the spectrum (even exponentially many) is irrelevant for the
late-time dynamics of observables in the thermodynamic limit
since the precise value of the energy of the eigenstate used is
insignificant.

We stress that the validity of ETH depends both on the
observable and on the initial state and may be violated in
certain circumstances where the dynamics displays nonergodic
behavior. One such example is the Fibonacci chain studied
here, where the scarring of the many-body wave functions leads
to dynamics that are sensitive to the choice of initial state [22].
However, further work is required to determine to what degree
ETH is violated in this system. Another class of systems known
to violate ETH is those which are many-body localized [33,34],
where strong disorder precludes ergodic dynamics.

V. CONCLUSION

In this paper, we have shown that an exponential number of
protected many-body zero modes can arise in a large class of

nonintegrable quantum spin chains with spectral reflection and
point-group symmetries. We showed that their robustness is
guaranteed by an index theorem and that they can be measured
in systems that are relevant to several ongoing experiments
[9–11]. We have provided numerical evidence supporting
the eigenstate thermalization of the manifold of zero modes,
despite the fact that there is manifestly no level repulsion.
Understanding the character and role of zero modes in the
presence of (symmetry-preserving) disorder in the many-body
localization regime where the breakdown of ETH occurs is an
interesting direction for future work.

Note added. A manuscript just appeared, reporting on the
eigenstate properties of the scarred many-body states of Eq. (7)
at nonzero energies [35].
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APPENDIX: SAMPLING THE ZERO-MODE COUNT

In this appendix we show that it is possible to measure the
quantity N0, Eq. (16), with reasonable accuracy by a random
sampling of 〈C∞〉ψ over initial states ψ . Instead of summing
over all initial states with fixed chiral charge, let us choose a
random sample s of Ns initial states with fixed chiral charge

FIG. 6. Top: Probability distribution P of [〈C∞〉+]40 [see
Eq. (A1)] for various system sizes at � = δ = 0. Here [〈C∞〉+]40

is normalized against the number N0,+ of zero modes in the C = 1
sector; 20 000 realizations of the random sample are used to generate
each distribution. Bottom: Standard deviation σ of the distribution P

as a function of the sample size Ns . The dashed line indicates a 5%
precision threshold. The inset shows the sample size N∗ required to
reach this threshold as a function of L.
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±1. For a fixed Ns , we can then define the quantity

[〈C∞〉±]Ns
=

∣∣∣∣∣∣
D±
Ns

∑
ψ∈s

〈C∞〉ψ

∣∣∣∣∣∣, (A1)

where D± = 1/2 [D(L) ∓ (−1)L a(L)] is the number of (con-
strained) Zi product states with C = ±1, as an approxima-
tion to |W±|. This approximation becomes exact when Ns =
D±. More precisely, we can consider the distribution P of
[〈C∞〉±]Ns

over different realizations of the random sample s.
As Ns increases, the mean of P approaches the number of zero
modes with C = ±1, N0,±, while the standard deviation σ of P

approaches zero. Examples of the distribution P for C = +1,
Ns = 40, and varying system sizes are shown in the top panel

of Fig. 6. The bottom panel of Fig. 6 depicts the decrease of σ

with Ns as a function of system size.
What sample size Ns is necessary to estimate N0,± to a

fixed degree of precision? For a precision threshold of 5% (σ =
0.05), we find numerically that the number of required random
samples N∗ scales much more slowly with system size than
D+ ∼ D(L)/2 over the range 10 � L � 18, as shown in the
inset of Fig. 6. This is an enormous simplification relative to the
naive implementation of the protocol described before Eq. (14),
which requires the preparation of every possible initial product
state. For example, D+ = 3383 for L = 18, but a random
sample of only 150 of these initial states suffices to achieve
the 5% threshold. Augmenting the naive protocol with these
sampling techniques may render it feasible in the experimental
setups of, e.g., Refs. [9–11].
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