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We present a comprehensive study of a one-dimensional two-orbital model at and below quarter filling that
realizes a number of unconventional phases. In particular, we find an excitonic density wave in which excitons
quasicondense with finite center-of-mass momentum and an order parameter that changes phase with wave
vector Q. In this phase, excitons behave as hard-core bosons without charge order. In addition, excitons can
pair to form biexcitons in a state that is close to a charge- density-wave instability. When pairing dominates
over the interorbital repulsion, we encounter a regime in which one orbital is metallic, while the other forms
a spin-gapped superconductor, a genuine orbital-selective paired state. All these results are supported by both
analytical and numerical calculations. By assuming a quasiclassical approximation, we solve the three-body
hole-electron-spinon problem and show that excitons are held together by forming a bound state with spinons.
In order to preserve the antiferromagnetic background, excitons acquire a dispersion that has a minimum away
from k = 0. The full characterization of the different phases is obtained by means of extensive density-matrix
renormalization-group calculations.
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I. INTRODUCTION

Charge recombination and photoinduced charge transfer lie
at the heart of current attempts to construct viable optoelec-
tronic devices using organic semiconducting devices [1–3].
In particular, a great deal of interest has focused on one-
dimensional (1D) materials due to the band edge singularities
that could give rise to a high-differential optical gain. One-
dimensional materials such as conjugated polymers [4,5] have
already found uses in a wide range of applications such as
light-emitting diodes, lasers, sensors, and molecular switches
[2,6–12].

Excitons in low-dimensional strongly correlated electronic
materials have received much theoretical attention [13–19],
and they have also been observed experimentally in 1D Mott
insulators [20,21]. The behavior of excitations in interacting
1D systems is very peculiar: Due to the pervasive nesting at
all electron densities, the Fermi liquid picture breaks down,
giving rise to a different paradigm, the Luttinger liquid (LL).
In a spinful Luttinger liquid elementary degrees of freedom are
not fermions with well-defined charge and spin, but bosonic
collective quasiparticles carrying spin (spinon) and charge
(holon), leading to the concept of spin-charge separation.

Excitonic instabilities in multiorbital systems typically
arise as photoinduced excitations and give rise to a complex
interplay between charge, spin, and orbital degrees of freedom
[21,22]. Understanding this interplay and how these bosonic
excitations decay is one of the main goals of pump-probe
spectroscopy. While much theoretical work has focused on
single-band problems, a rich phenomenology can occur in
more realistic multiorbital cases, where in addition to Coulomb
interactions, Hund physics plays an important role. Among
other important correlation-driven phenomena one could cite
orbital-selective Mott transitions [23–26], spin-orbital sepa-
ration [21,27–30], spin-incoherent behavior [31,32], and pair
density waves [33–35].

Wannier-Mott excitons in semiconductors and their subse-
quent condensation have been well understood since the 1960s
[36–39]. In strongly correlated systems one finds Frenkel
excitons, Mott-Hubbard excitons, and the recently proposed
Hund excitons [40,41], which are more tightly bound objects.
Excitonic condensation in strongly correlated models has been
studied in a number of scenarios [42]. Early in this area of
research it was pointed out that in multiband Mott insulators
not only can the spin and charge order, but so can the orbital
degree of freedom [43]. In one dimension one encounters that
the associated excitations (orbitons) may also decouple from
the spin in what is referred to as “spin-orbital” separation. One
way to understand this phenomenon is by starting with the
simplest model describing a Mott insulator and accounting for
both spin and orbital degrees of freedom, the Kugel-Komskhii
chain [43]. It has been shown that the problem of a propagating
orbiton can be mapped onto the dynamics of a hole in an
antiferromagnet [21,27–30]. This leads to an effective t-J
model which is much simpler and has been extensively studied
in the literature. In one dimension, the physics is described
in terms of LL theory, which naturally explains spin-orbital
separation.

In this work we study a more general problem that, in
addition to orbital and spin degrees of freedom, accounts
for charge fluctuations. Our model bears resemblance to the
so-called two-orbital Hubbard model, also referred to as the
electron-hole Hubbard model. This problem has been exten-
sively studied in higher dimensions and also in one dimension
[44–53]. Here we consider a modified version of it that applies
in the strong-coupling limit, and we derive, both theoretically
and numerically, a number of important results that highlight
the nontrivial nature of the excitations. We analyze the case
of bound electron-hole pairs and spinons and the eventual
deconfinement of the excitations in one dimension. We show
that the nontrivial dispersion of the spinons leads to the
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formation of an excitonic condensate with finite center-of-mass
momentum and biexcitons. The coexistence of excitonic den-
sity waves with a “normal” electronic sea resembles the case
of a Fulde-Ferell-Larkin-Ovchinnikov (FFLO) superconductor
[54,55], with unpaired electrons concentrating at the nodes
of the oscillating condensate. Unlike the conventional FFLO
state, our model supports an excitonic condensate with a
finite-momentum Q, while the normal electrons behave as a
fluid, without breaking translational symmetry.

This paper is organized as follows: In Sec. II we introduce
the model and describe certain limits; in Sec. III we solve
the three-body problem of an electron-hole pair and a spinon,
offering a rigorous and intuitive picture of the formation of
bound states with finite center-of-mass momentum. In Sec. IV
we provide numerical support of our analysis using the density-
matrix renormalization-group method (DMRG) [56–60]. We
conclude with a discussion of the results.

II. TWO-ORBITAL t- J MODEL

We consider a two-orbital t-J model described by the
Hamiltonian

H = −t
∑
i,σ,λ

(c†iσλci+1σλ + H.c.) + U ′ ∑
i

ni1ni2

+ J
∑
i,λ

(
�Si,λ · �Si+1,λ − 1

4
niλni+1,λ

)
(1)

+ �
∑

i

(ni2 − ni1),

where c
†
i,λ,σ is a fermionic creation operator acting on site i

and orbital λ (λ = 1,2) with spin σ =↑ ,↓ and the constraint
forbidding double occupancy is implicit as usual. The operators
ni,λ represent the local density, and �Si,λ refer to the local spin.
The hoppings along the two legs t are taken to be equal for
simplicity and to be our unit of energy, implying that for
large � the model will display an indirect gap. In addition,
we include a Coulomb repulsion between electrons on both
orbitals parametrized by U ′ and a Heisenberg interaction be-
tween fermions on the same orbital chain. We have ignored the
Hund coupling and interchain hopping since, for instance, in
Sr2CuO3 the Hund coupling is one order of magnitude smaller
than the on-site Coulomb repulsion [61]. By analogy, this
model represents strongly interacting electrons on two parallel
chains interacting via an electrostatic Coulomb repulsion and
is a well-defined limit of the two-orbital Hubbard model at half
filling with J = 4t2/(U + U ′). We consider the total number
of electrons to be constant, and a crystal-field splitting �

determines the relative population of the two bands in the
ground state. Clearly, the total spin Sz and the number of
electrons N are conserved, but N1, N2, S

z
1, and Sz

2 on each
orbital chain are also conserved independently. This means that
N2 = N − N1, and the last term of the Hamiltonian becomes
just a constant shift:

�
∑

i

(ni1 − ni2) = �(2N1 − N ),

which tells us that the crystal-field splitting acts basically as
a chemical potential for orbital excitations. The number of

particle-hole pairs in the ground state could be arbitrarily tuned
by changing � or by creating photoinduced excitations (notice
that for this mechanism to be applicable, interorbital hopping
needs to be included). For � = 0 one obtains N1 = N2, while
for � > 2t, N2 = 0. Regardless, one could independently
fix N and N1. Clearly, the case N1 = N2 = L (half filling)
describes two independent Heisenberg spin chains without
charge fluctuations. In the following we focus on the case
N � L, or density below quarter filling.

We can gain some basic intuition into the problem by
looking at three particular cases. First, we consider J = 0:
In the absence of spin interactions, this degree of freedom
becomes spurious. We can map each band onto a pseudospin
quantum number and identify λ = 1(2) → σ =↓ (↑). The
problem is now equivalent to a one-dimensional, single-band
Hubbard chain with U ′ → U and a magnetic field 2�. If we
assume � = 0, quarter filling corresponds now to half filling,
and the ground state is an unpolarized Mott insulator. Creating
an exciton by applying c

†
2c1 can now be understood as S+ =

c
†
↑c↓. The Mott-insulating Hubbard chain has no spin gap, and

therefore, this costs no energy. However, the single-particle
spectrum is gapped in the charge sector. The charge gap can
now be associated with the binding energy that holds the
exciton together: It costs energy of the order of U ′ for an up
particle to hop to a neighboring site already occupied by a down
particle. However, away from quarter filling this is no longer the
case, and there are empty sites the up particle can hop to. In this
situation both spin and charge are gapless, the system becomes
a Luttinger liquid, and particles and holes move freely.

A second limit corresponds to U ′ = 0: This maps onto two
decoupled t-J chains, and excitons are not stable quasipar-
ticles. The ground state for this model has been extensively
studied [62]. For large J/t > 2 and intermediate densities
the ground state presents dominant pair-pair correlations
that decay algebraically. This indicates the formation of a
quasicondensate (actual superconductivity is not realized in
one dimension and correlations decay algebraically), which
has to be distinguished from an excitonic quasicondensate.
Therefore, by introducing a crystal-field splitting, one band
can realize pairing, while the other one remains a metal.

Finally, for finite J and large U ′ and � at quarter filling we
find that a single exciton is strongly bound and the particle-hole
pair can move coherently through high-order processes. This
particular scenario can be identified with the motion of a single
hole in an antiferromagnet [28]. However, the case at finite
exciton density that occupies our attention in this study does not
allow for such a simple interpretation, and a deeper description
of this regime is still lacking.

III. THE ELECTRON-HOLE-SPINON PROBLEM

A. Single exciton

To develop some insight into the nature of the exciton
condensate in this model we study a toy problem of one single
exciton in the limit of strong uniaxial anisotropy (Ising). We
assume that the system is at quarter filling with one electron per
site and the band splitting 2� is larger than the bandwidth 4t .
In this situation, a single band is half filled, and the ground state
is just an Ising antiferromagnet. We now create an exciton by
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FIG. 1. Cartoon describing a typical state with the excited electron
at the origin, a hole at a relative distance r , and a spinon at a relative
distance r ′ from the hole.

promoting an electron to the upper band, thus creating a hole in
the lower band. It is intuitive to see that the Coulomb repulsion
U ′ acts as an attractive potential between the electron and the
hole, and thus, they will form a bound state. The formation of
a two-particle bound state in Hubbard-like models is a simple
problem that has been studied in a number of setups in the
literature [63–71] (see an interesting analogy with phonons
in Ref. [72]). However, in our scenario, the situation is more
complex since the motion of the hole will leave behind a
misaligned spin, a domain wall or spinon, that costs an energy
J . Therefore, our analysis should also account for the presence
of this defect in what now becomes a three-body problem in one
dimension. As complicated as it may sound, it turns out to be
tractable as follows. We consider a basis of states characterized
by the position of the electron re, the position of the hole relative
to the electron r = rh − re, and the position of the domain wall
relative to the position of the hole r ′ = rs − rh, as illustrated
in Fig. 1:

H |re,r,r
′〉 = −t(|re + 1,r − 1,r ′〉 + |re − 1,r + 1,r ′〉

+ |re,r + 1,r ′ − 1〉 + |re,r − 1,r ′ + 1〉)
+ U ′δr,0|re,r,r

′〉 − Jδr ′,−1|re,r,r
′〉

+ J (|re,r,r
′ + 2〉 + |re,r,r

′ − 2〉). (2)

We assume periodic boundary conditions, which allows us to
construct a basis of states that are translationally invariant and
labeled by a momentum k:

|r,r ′,k〉 = 1√
L

L−1∑
x=0

eikxTx |re = 0,r,r ′〉. (3)

Within each momentum sector we can easily obtain the
Hamiltonian matrix elements and numerically diagonalize the
problem for very large chains. In the J = 0 limit, we should
recover the results for two particles without a spinon and
observe a band of bound states with a minimum at k = 0 for
sufficiently large U ′. Our intuition tells us that if the binding
energy is smaller than the kinetic energy of a free electron and
a free hole, we will not obtain bound states.

After introducing J , it is easy to see that the bound
electron-hole pair behaves as a hole in the antiferromagnet
that propagates coherently. This is the main idea behind the
mapping to an effective t-J model [28]. For sufficiently large

FIG. 2. Cartoons describing the high-order effective hopping of
an exciton-spinon bound state. Each spin flip shifts the spinon by two
lattice spaces. The exciton moves to remove the magnetic domain
wall. We show the spinon moving as a single object.

values, the free spinon and the electron-hole pair will also form
a bound state, where the domain wall will be “absorbed” by
the excitation. In order to account for the spin fluctuations we
assume the approximation used in the seminal paper by Villain
[73], and we consider only spin-flip processes that move the
domain wall and ignore those that create new ones because
they are energetically too costly. It is easy to see that the spinon
propagates by two sites for each spin flip [see Fig. 2(b)], and
therefore, it has a dispersion εs(k) = 2J cos (2k). The larger
mass of the spinon will tend to localize the electron-hole pair,
giving it a quite flat dispersion. However, it can still move
without leaving a domain wall, as shown in Fig. 2. In order
for this to happen, the bound state has to hop by two lattice
spaces accompanied by a spin flip, such that the resulting
motion does not distort the antiferromagnetic background.
These high-order processes allow for the spinon-electron-hole
object to propagate with an effective second-neighbor hopping,
leading to a minimum in the dispersion at k = ±π/2 and a
maximum at k = 0 (see Fig. 3).

As a hint of what this means, let us consider a finite density
of excitons. These electron-hole pairs are now bosons that can
condense with momentum k = ±π/2. This condensate can
break Z2 symmetry by choosing one of the two momenta, or,

FIG. 3. Excitation energies for the electron-hole-spinon problem.
The lowest-energy band has a double-dip dispersion with minima at
k = ±π/2. The system size is L = 40, and we used U ′ = 8; J = 6
to enhance the main features.
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more likely, can form an equal superposition, corresponding
to an order parameter that would oscillate in space as �cond ∼
cos (πx/2).

We cannot forget that this picture assumes a classical
magnetic ordering. In the isotropic SU (2) limit the spinon
forms a deconfined excitation and propagates independently,
giving rise to the spin-orbital separation picture.

B. Biexcitons and phase segregation

A low density of excitons corresponds to a low density of
electrons in the upper band. From the phase diagram of the 1D
t-J chain [62], for sufficiently large values of J and at low den-
sities the ground state of the model becomes superconducting
with a quasicondensate of singlets held together by a binding
energy of the order of J . In our model such pairs will be formed
by excitons; that is, they will form biexcitons that are bound
by an energy dictated by J in both, upper and lower band
bands. Therefore, it is to expected that for moderate values of
J ∼ t the system will realize a quasicondensate of biexcitons.
Notice that this argument does not prevent the formation of
excitonic “strings,” where the excitons clump together, forming
a separate domain. This would give rise to phase segregation
and would be manifested by a region of instability in the phase
diagram where excitons and conduction electrons are spatially
separated. This occurs when the interaction U ′ is large and the
excitons become very heavy. In this case it is easy to see that
electrons on each band will form a string coupled only via the
Heisenberg exchange term and will occupy distinct regions of
space, hence behaving as two independent Heisenberg chains.

IV. NUMERICAL RESULTS

A. Ground state

We conduct DMRG calculations for chains up to L = 64
with open boundary conditions while keeping the truncation
error below 10−6, which requires of the order of 2000 states in
some cases. Most results, unless otherwise stated, correspond
to L = 64,N1 = 48, and N2 = 16, with Fermi momenta kF1 =
3π/8 and kF2 = π/8, respectively. We first analyze N1 vs �

for different values of the interaction U ′ and J , as shown in
Fig. 4. We ran the simulations in the canonical ensemble with
fixed values of N1 and obtained the curves by carrying out a
Maxwell construction. For small values of J and U the curves
show a smooth behavior, with the particle number changing
in discrete steps of one at a time. However, for densities close
to N1/L = 1 or 0 and especially when J is increased, we find
that in certain density regimes the jumps are now in steps of
two. This is an indication of a pairing instability corresponding
to the formation of biexcitons. In order to determine whether
these biexcitons are stable objects in the thermodynamic limit,
we need to carry out a finite-size analysis of the binding
energies. To distinguish different regimes we first define the
binding energy for two particles pairing on each orbital chain
separately as

�λ=1 = [E(N1 − 2,N2) − E(N1,N2)]

−2[E(N1 − 1,N2) − E(N1,N2)]

= E(N1,N2) + E(N1−2,N2)−2E(N1−1,N2), (4)

FIG. 4. Ground-state occupation N1 of the first orbital chain as
a function of the band splitting � for a chain of length L = 32. The
total density is quarter filling, and the occupation of the second chain
is given by N2 = L − N1. Results for (a) J = 0.6 and (b) J = 1 for
several values of U ′. The biexciton instability is signaled by jumps in
steps of two.

with a similar expression for λ = 2 obtained by exchanging the
labels. These quantities determine whether it is energetically
costlier to remove two particles compared to twice the energy
of removing one. The difference between the two indicates the
binding energy, which is negative in the case of an attraction
between particles. This idea can be generalized to the case of
a particle-hole pair: the binding energy for the formation of a
single exciton is given by

�ex = E(N1,N2) − E(N1 − 1,N2)

−E(N1,N2 + 1) + E(N1 − 1,N2 + 1). (5)

Results for several parameter regimes and system sizes are
shown in Fig. 5(a), focusing on the regime N1/L = 0.75.
In Fig. 5(b) we also plot the values in the thermodynamic
limit, as obtained from a quadratic fit in 1/L. For small
values of U ′ it is difficult to tell from our results if the
particle-hole excitations form bound states. It is also possible
that the electrons in the upper band form bound singlets that
propagate independently, as observed in the 1D t-J chain.
However, this would occur for large values of J ∼ 2t . On the
other hand, increasing the value of U ′ makes the mass of the
excitons very heavy, they clump together, and the system phase
segregates.

B. Excitonic density waves and charge order

In order to determine the ground-state properties we study
several correlation functions, paying particular attention to
the cases with J = 1.2. In Fig. 6 we plot the exciton and
biexciton momentum distribution functions (MDFs), defined
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FIG. 5. (a) Finite-size scaling of the single-exciton binding energy
as defined in the text for J = 1.2 and different values of U ′ and den-
sities N1/L = 3/4 and N2/L = 1/4. (b) Results of the extrapolation
to the thermodynamic limit as a function of U ′.

as

Nex(k,σ,σ ′) = 1

L

∑
x,y

eik(x−y)〈b†xσ byσ ′ 〉,

N2ex(k) = 1

L

∑
x,y

eik(x−y)〈�†
x�y〉. (6)

A conventional approach in DMRG calculations with open
boundary conditions consists of averaging data taken at dis-
tances that are equidistant from the center (we refer the reader
to Ref. [74] for details). In large systems, particularly with

FIG. 6. Single-exciton momentum distribution function (MDF)
for L = 64, N1 = 48, N2 = 16, and (a) J = 1.2,U ′ = 2 in the exci-
tonic phase and (b) J = 1.2,U ′ = 4 in the biexcitonic phase. (c) and
(d) The biexciton MDF for the same parameters, respectively.

FIG. 7. Natural orbitals for the exciton condensate with L =
64,N1 = 48,N2 = 16 in two parameter regimes: (a) J = 0.6,U ′ = 2,
corresponding to the excitonic phase, and (b) J = 1.2,U ′ = 2 in
the biexcitonic phase. (c) The natural orbital for the biexcitonic
condensate. We also show the local occupation of the two orbitals, n1

and n2.

a gap, boundary corrections are typically small. As we shall
see below, in the particular cases of interest, edge effects
involve very few lattice spaces (see, for instance, Fig. 7).
These expressions assume that the excitons are local objects
that can be described in terms of bosonic operators b

†
xσ =

c
†
xσ2cxσ1 and that the biexcitons can form pairs [46,75] �

†
x =

1√
2
(b†x↑b

†
x+1,↓ − b

†
x↓b

†
x+1,↑). Since our model does not take

into account interorbital hybridization or Hund’s coupling, Nex

is always diagonal in the spin index, and from now on we
consider only Nex(k, ↑ ,↑) [76]. It is clear beforehand that the
actual excitonic wave function may actually spread over several
lattice spaces, but these quantities offer a quite good description
of the underlying ground state and its pairing tendencies. The
excitonic MDF, for instance, shows a clear peak at k = π/2,
indicating that the quasicondensate of excitons has a finite
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center-of-mass momentum, an excitonic density wave (EDW),
as anticipated. The biexcitonic MDF shows some structure for
U ′ = 2, but the maximum at k = π cannot be characterized as
a peak, particularly by looking at the scale on the y axis. On the
other hand, the one for U ′ = 4 shows a quite dramatic peak.
This can be interpreted as a quasicondensate of biexcitons with
finite center-of-mass momentum Q = π formed by single-
exciton pairs with momentum π/2. This also gives rise to a
small peak at zero momentum, but it is less defined and much
broader.

These observations can be made more explicit by studying
the quasicondensate wave function by means of Penrose and
Onsager’s description of the superfluid order parameter [77].
The natural orbitals (NOs) ψα of the system will simply be the
single-particle eigenstates, in the bosonic sense, of the bosonic
single-particle density matrix:

Gex(x,y) = 〈b†x↑by↑〉,
G2ex(x,y) = 〈�†

x�y〉. (7)

The NO with the largest eigenvalue, ψ0, is the single-particle
state in which quasicondensation takes place. We generalize
this concept to the case of excitons and biexcitons and show
the results in Fig. 7 for U ′ = 2 in the excitonic phase and
U ′ = 4 in the biexcitonic phase. The periodicity of the wave
functions is determined by the momentum of the condensate:
Q = kF1 + kF2 = π/2 and Q = π for single excitons and
biexcitons, respectively (see Fig. 6).

It is important to point out that a condensate with periodicity
π/2 does not indicate charge order with period π/2 (i.e., 1-
1-0-0). This would only occur at quarter filling with N2 =
N1 = L/2. As a matter of fact, the density of excitons is not
commensurate with this order. This is illustrated in Fig. 8 by
our results for the density-density structure factor:

Dλ(k) = 1

L

∑
x,y

eik(x−y)〈nxλnyλ〉, (8)

where nxλ = ∑
σ c

†
xσλcxσλ; there is a similar expression for the

excitonic density,

Dex(k) = 1

L

∑
x,y

eik(x−y)〈nex,xnex,y〉, (9)

where nex,x = b
†
x,↑bx,↑ is the number operator for excitons.

The excitonic structure factor and the one for orbital λ = 2
are practically indistinguishable, indicating that holes and
electrons are forming tightly bound pairs. Signatures of charge
order would be identified as peaks at finite momentum. The
case U ′ = 2 does not show any structure and is practically
featureless, as expected from a dilute condensate of hard-core
bosons/excitons. On the other hand, for U ′ = 4 one can clearly
see the onset of charge order with momentum 2kF2 = π/4.
This resembles a state in which EDW and charge-density-
wave (CDW) orders coexist and are intertwined. In order to
determine if this state is a CDW, we calculate the charge gap
for adding/removing pairs of excitons. This is defined as

�ch = E(N1 + 2,N2 − 2)

+E(N1 − 2,N1 + 2) − 2E(N1,N2). (10)

FIG. 8. Density structure factor for excitons and electrons in
orbital λ = 2 for L = 64,N1 = 48,N2 = 16, and parameters (a) J =
1.2,U ′ = 2 in the excitonic phase and (b) J = 1.2,U ′ = 4 in the
biexcitonic phase. (c) and (d) The spin structure factor for the same
parameters, respectively.

A finite-size scaling (not shown) indicates that this quantity
vanishes in the thermodynamic limit. Therefore, this state is
not quite a CDW, but a condensate of biexcitons, and the
modulation observed in the charge density (Fig. 7) corresponds
to slowly decaying Friedel oscillations due to the open bound-
aries, as also observed in t-J ladders [78]. We could have
anticipated this conclusion from the density profile shown in
Fig. 4: A CDW would be reflected as plateaus, which clearly
are not observed.

Finally, for completeness, in Fig. 8 we also show the spin
structure factor:

Sλ(k) = 1

L

∑
x,y

eik(x−y)〈Sz
xλS

z
yλ

〉
. (11)

For U ′ = 2, both orbitals display small peaks at k = 2kFλ.
However, in the biexcitonic phase the peak or orbital λ = 1 has
moved to k = π , while the structure factor for the orbital λ = 2
is now completely featureless. This is expected from excitons
bound into spin-singlet pairs with short-range correlations. In
addition, the peak at π indicates that the biexcitons do not
disrupt the antiferromagnetic order.

C. Orbital-selective pairing

An additional feature of our model is that it naturally realizes
a phase in which one of the orbitals behaves as a Luttinger
liquid, while the second one undergoes a pairing instability. For
small U ′, the orbitals are practically decoupled, and our model
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FIG. 9. Finite-size scaling of the (a) single-particle binding en-
ergy for each orbital chain and (b) exciton binding energy. Results are
for J = 1.2, U ′ = 1, and density N1/L = 0.75.

behaves as two independent t-J chains. At relatively large
values of J ∼ 2t and low densities the t-J chain presents a
singlet-superconducting phase with a spin gap [62]. Therefore,
one can tune the parameter � such that the occupation of each
orbital falls into a different phase. This occurs, for instance,
for U ′ = 0.5,J = 2.4,N1/L = 0.75,N2/L = 0.25. In Fig. 9
we show that the binding energy for the low-density chain
is finite, while it remains positive for the high-density one.
In addition, the binding energy for exciton formation is also
positive. This description offers a simple and natural scenario
for the realization of this type of orbital-selective paired states.

D. Away from quarter filling

The excitonic physics discussed for the quarter-filling case
extends to other filling fractions as well. Without attempting to
determine a phase diagram, we just show some typical results
that we obtained for small densities in Fig. 10. As shown
in Fig. 10(a), the exciton MDF is peaked at a finite value
of Q = kF1 + kF2, which is reflected in the behavior of the
natural orbitals, displayed in Fig. 10(b). The charge structure
factor (not shown) indicates a state with no charge order. In our
exploration of parameter space we have not found biexcitonic

FIG. 10. (a) Excitonic momentum distribution function for L =
64, N1 = 24, N2 = 16, J = 1.2, and U ′ = 2. (b) Natural orbital for
the exciton condensate and the local occupation of the two orbitals,
n1 and n2, as in Fig. 7. The edge effects are due to the open boundary
conditions.

FIG. 11. Schematic phase diagram of the two-orbital model as a
function of U ′ and J for fixed densities N1/L = 3/4, N2/L = 1/4.
Along the U ′ = 0 line the system consists of two copies of a t-J chain
at different densities. Finite values of U ′ induce the formation of an
exciton density wave (EDW), and increasing J drives an instability
toward pairing of excitons (biexciton condensate). At small values
of U ′ and large values of J we find the orbital-selective paired
phase (OSP).

physics, but this may appear at values of J larger than the ones
we considered. An extended study is currently underway and
will be presented elsewhere.

V. CONCLUSIONS

We have presented a detailed study of the exciton and
biexciton formation in a one-dimensional two-orbital t-J
model. The stability of the excitons is determined by the
strength of the interorbital Coulomb interaction U ′, while the
formation of biexcitons is controlled by the antiferromagnetic
exchange J . A schematic phase diagram for densities N1/L =
3/4,N2/L = 1/4 is shown in Fig. 11. For weak U ′ the system
behaves as two independent decoupled chains. It is possible
that the system is inherently unstable to exciton formation for
any finite U ′, corresponding to a an exciton binding energy that
grows exponentially with U ′, something difficult to resolve
even with a careful finite-size analysis. Nevertheless, as U ′ is
increased, we find an instability toward exciton formation such
that excitons form a quasicondensate with finite center-of-mass
momentum, corresponding to an excitonic density wave. This
can be understood through our analysis of the three-body
problem of an electron-hole pair and a spinon: At quarter
filling the system behaves basically as a single doped t-J chain
where the excitons act as holes hopping with both nearest
and next-nearest hoppings. These holes are heavier and can
condense since, in reality, they are electron-hole bound states.

In general, the period of the EDW will be determined by the
excitonic fraction N2/L (or �). It is important to point out that
this state does not correspond to a CDW (or excitonic CDW)
since there is no charge order. Notice that the condensate wave
function, or natural orbital, alternates signs as (+ + −−) like
a square wave that has no nodes. Therefore, the probability
density, which is the square of of the wave-function amplitude,

035128-7



CHUN YANG AND ADRIAN E. FEIGUIN PHYSICAL REVIEW B 98, 035128 (2018)

also has no nodes, and moreover, it is not commensurate with
the density, hindering the possibility of an FFLO-like phase.

As the interactions U ′ are increased, the excitons become
heavier and more localized, enabling the exchange interaction
to bind them into bound pairs. At the same time we observe
signatures of an instability toward a charge density wave of
biexcitons, reminiscent of the idea of an excitonic crystal
[48,79]. However, biexcitons are not localized, and the period
of the CDW is different from the period of the condensate.
Since the charge gap vanishes, we conclude that this is not a
CDW but a condensate of biexcitons. For large values of the
parameters, the system phase separates. This separation can
occur in two different ways: (i) For large U ′ the system splits
into electron-rich and hole-rich domains; within each domain,
each orbital forms a Mott-insulating Heisenberg chain. (ii) For
small U ′ and large J we find the physics of two t-J chains that
phase segregate independently, as encountered in the phase
diagram of the single-orbital problem [62]. Before this occurs,
however, we find a regime around J ∼ 2t in which one orbital
is metallic while the other one is a spin-gapped superconductor,
an actual orbital-selective paired state.

The observed excitonic density wave can be directly related
to pair density waves [33–35] in a very simple way: A particle-
hole transformation in the high-energy orbital λ = 2 leads
to a one-to-one correspondence between excitons (neutral
particle hole pairs) and Cooper pairs (with charge 2e), with
the excitonic condensate translating into a pair density wave.

The parent Hamiltonian of this state would have negative
U ′ and would pair electrons with momentum kF1 and −kF2,
identical to what takes place in the FFLO phase of the
negative U Hubbard chain [80–83]. Moreover, the biexcitonic
regime would correspond to a pair density wave (PDW) of
composite objects of charge 4e similar to predictions for stripe
superconductors in Ref. [84]. In the language of hard-core
bosons this state would correspond to a condensate of bosonic
pairs with finite center-of-mass momentum.

This behavior also occurs at densities below quarter filling.
The center-of-mass momentum for the EDW is given by
Q = kF1 + kF2 and can acquire a long wavelength when this
difference is small.

The model displays rich physics with a number of phases
that resemble the phenomenology of both cuprates and iron
pnictides, encouraging us to believe that there is much to
learn from multiorbital model Hamiltonians that can guide our
intuition toward a comprehensive picture of these materials.
Needless to say, one can expect yet richer physics once the
Hund interaction is taken into account [44].
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