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Parton construction of a wave function in the anti-Pfaffian phase
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In this work we propose a parton state as a candidate state to describe the fractional quantum Hall effect in the
half-filled second Landau level. The wave function for this parton state is PLLL�3

1[�∗
2]2 ∼ �2

2/3/�1 and in the
spherical geometry it occurs at the same flux as the anti-Pfaffian state. This state has a good overlap with the anti-
Pfaffian state and with the ground state obtained by exact diagonalization, using the second Landau level Coulomb
interaction pseudopotentials for an ordinary semiconductor such as GaAs. By calculating the entanglement
spectrum we show that this state lies in the same phase as the anti-Pfaffian state. A major advantage of this
parton state is that its wave function can be evaluated for large systems, which makes it amenable to variational
calculations. In the Appendix of this work, we have numerically assessed the validity of another candidate state at
filling factor ν = 5

2 , namely, the particle-hole-symmetric Pfaffian (PH-Pfaffian) state. We find that the proposed
candidate wave function for the PH-Pfaffian state is particle-hole symmetric to a high degree but it does not appear
to arise as the ground state of any simple Hamiltonian with two-body interactions.

DOI: 10.1103/PhysRevB.98.035127

I. INTRODUCTION

Two-dimensional electronic systems can exhibit a wide
variety of interesting and exotic quantum phases of matter.
In particular, when a strong magnetic field is applied,
electron-electron interactions give rise to “fractionalized”
phases in which the fundamental excitations over the ground
state are characterized by quantum numbers that differ from
those of the constituent electrons. Notably, quasiparticles
and quasiholes in fractional quantum Hall (FQH) systems
have been shown to carry fractional values of the electron
charge [1–4], and are expected to obey “anyonic” exchange
or braiding statistics [5–8]. The excitations at certain filling
factors such as ν = 5

2 [9–11] and ν = 12
5 [12–16] have even

been predicted to feature non-Abelian braiding statistics;
such states have been proposed as potential platforms for
implementing topologically protected fault-tolerant quantum
computation [17,18], stimulating great interest in their
theoretical characterization and experimental realization.

From a theoretical point of view, the study of FQH phases
presents a number of challenges. While the problem can
be considerably simplified by projecting the single-particle
Hilbert space to the lowest Landau level (LLL), the mas-
sive many-body degeneracy at fractional filling renders the
problem essentially nonperturbative. Numerical “exact diag-
onalization” is useful, but even in the restricted space of
the LLL can only be carried out for rather small systems.
Considerable insight can often be obtained through the con-
struction of variational “trial” wave functions. Prominent early
examples include the Laughlin [1] and Halperin [19] states,
which incorporate electron-electron correlations via simple
pairwise Jastrow factors in their respective many-body wave
functions. The composite fermion paradigm [20] provides a

remarkably successful systematic framework for constructing
correlated ground- and excited-state trial wave functions at
fractional filling, built from integer quantum Hall (IQH) states
of electrons bound to an even number of vortices. The parton
construction first introduced by Jain [21], which we focus on
below, generalizes the composite fermion approach to describe
even more exotic states.

Importantly, whole new classes of states, at different filling
fractions from those found by the methods above, can be
obtained through the operation of particle-hole conjugation: by
taking a LLL many-body wave function at filling fraction ν, a
state at filling fraction 1 − ν (or 2 − ν for non-spin-polarized
states) is generated by replacing filled states with empty ones,
and vice versa, in the LLL Fock-space representation of the
state. In the limit of large magnetic field, this is a relevant
operation since with extremely high probability only the LLL
states are occupied. Even when a given variational ansatz is
easy to evaluate, it is generically hard to construct the state
related to it by particle-hole conjugation. This is so because
the operation of particle-hole conjugation requires knowing
the exact expansion of the state in the full Hilbert space. Thus,
we are motivated to seek simple-to-evaluate variational wave
functions for such “particle-hole conjugate states,” to facilitate
their further investigation.

In this paper, we focus primarily on filling factor ν = 5
2 . We

propose a parton wave function at this filling factor, and show
that it lies in the same phase as the so-called anti-Pfaffian state
[22,23], which is the particle-hole conjugate of the Pfaffian
state [10]. Our parton state has a good overlap with both
the anti-Pfaffian state and with the numerically exact ground
state obtained using the Coulomb interaction pseudopotentials
for the second LL of ordinary semiconductors such as GaAs.
Unlike the anti-Pfaffian state, the parton state can be easily
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evaluated for very large systems, thus making it amenable to
variational calculations.

Below, in Sec. II, we first give some background on parton
states and then describe the ansatz of our candidate parton
state at ν = 5

2 . Then, in Sec. III we describe some of the
properties of this state; in particular we show that it lies in the
anti-Pfaffian phase. In Sec. IV we demonstrate the utility of
our construction by calculating the pair-correlation function
and static structure factor of this state for a large number of
particles. We further extend the parton construction to a larger
family of states. In Sec. V we discuss our results and provide
an outlook for the future.

II. PARTON ANSATZ

We now briefly introduce the parton construction of FQH
wave functions, and then present our candidate wave function
for the FQH state at ν = 5

2 . In the section that follows, we will
analyze its properties.

A. Background

In the presence of a large magnetic field, interaction-
induced mixing between Landau levels can be ignored. Rele-
vant for this regime, the problem of interacting electrons re-
stricted to any given Landau level is mathematically equivalent
to the problem of electrons confined to the LLL, interacting via
an effective “pseudopotential” [24]. Throughout this work we
shall therefore write wave functions of electrons confined to
the LLL, and assume the filled Landau levels below to be inert.
Unless otherwise stated, we shall assume the electrons to be
fully spin polarized, and will ignore the effects of disorder and
finite quantum well width.

The parton construction [21] provides a recipe for gener-
ating wave functions describing strongly correlated electrons
in the LLL. Consider a system of N electrons, with two-
dimensional coordinates described by the complex numbers
zj = xj − i yj , where j = 1 . . . N . The correlated N -particle
wave function �ν({zi}) is built out of a product of k (uncorre-
lated) N -particle Slater determinant wave functions �nα

({zi}),
with α = 1 . . . k:

�ν = PLLL

k∏
α=1

�nα
({zi}). (1)

Here, PLLL projects the state to the LLL, and �n({zi}) is the
wave function of N electrons exactly filling n Landau levels.
We allow n to take both positive and negative integer values;
for n < 0, we define �n<0 = [�|n|]∗. Note that k must be odd
in order for �ν({zi}) to be a valid fermionic wave function,
antisymmetric under exchange of any two coordinates.

The filling factor of the k-parton state �ν in Eq. (1) depends
on both k and {nα} and is given by [25]

ν−1 =
k∑

α=1

n−1
α . (2)

To produce the correct filling, each part �nα
must be con-

structed at a magnetic field Bnα
= Bνn−1

α , where B is the
external magnetic field corresponding to filling factor ν.

To connect with familiar examples, we first note that the
Laughlin wave function at ν = 1/m [1] is an m-parton state,

involving m copies of �1({zi}) = ∏
i<j (zi − zj )e−∑

k

|zk |2
4m�2 :

�L
1/m = e

− ∑
k

|zk |2
4�2

∏
i<j

(zi − zj )m =
m∏

α=1

�1({zi}), (3)

where � = √
h̄c/(eB) is the magnetic length. Below, we

will follow the standard convention of omitting the ubiqui-

tous Gaussian factors e
− 1

4�2

∑
k |zk |2 . Composite fermion states

[20,25] are also parton states: the composite fermion wave
function at ν = n/(2pn ± 1) (where n and p are positive
integers), �CF

n/(2pn±1), is given by

�CF
n/(2pn±1) = PLLL�

2p

1 �±n. (4)

This is a (2p + 1)-parton state in which 2p partons are placed
in ν = 1 IQH states, and a single parton forms an IQH state at
ν = n [26].

The Laughlin and composite fermion states describe frac-
tionalized phases in which the elementary excitations exhibit
Abelian braiding statistics. Intriguingly, more general parton
wave functions may describe non-Abelian phases. In particular,
a parton wave function of the form

�ν = �a
1[�±n]b, (5)

with n > 1, a � 0, and b > 1, describes a non-Abelian state
[27–29]. (Note that k = a + b must be odd to ensure antisym-
metry of the wave function, see above.) An example of such a
state is the Jain 221 state [7,21,30,31]

�221
1/2 = PLLL�2�2�1. (6)

Recently, it has been proposed that this non-Abelian state
may be realized in multilayer graphene for a suitable set of
parameters [31].

B. 2̄2̄111 ansatz

With the background in place, we now propose the fol-
lowing “2̄2̄111” parton state as a candidate ground state wave
function at ν = 5

2 :

� 2̄2̄111
1/2 = PLLL[�2]∗[�2]∗�1�1�1. (7)

Comparing to the general form given in Eq. (5), the 2̄2̄111 state
has a = 3, n = 2 (with the − sign), and b = 2, and therefore
characterizes a non-Abelian phase. Using Eq. (2) it is easy to
check that the state corresponds to a half-filled Landau level,
ν = 1

2 .
The 2̄2̄111 wave function in Eq. (7) can be written in an

alternative form, which is convenient for further manipulation.
Returning to Eq. (4), note that the composite fermion wave
function describing the state at ν = 2

3 takes the form �CF
2/3 =

PLLL[�2]∗�1�1 [32]. Using this form, we write

� 2̄2̄111
1/2 ∼

[
�CF

2/3

]2

�1
. (8)

In Eq. (8) we use ∼ because the right-hand side of Eq. (8)
differs slightly from the definition in Eq. (7) in the details of
its projection to the LLL. We expect the details of projection
to have only a minor effect on the properties of the state
(see, e.g., Ref. [33]). Note that it is possible to evaluate the
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wave function given in Eq. (8) for large systems using the
Jain-Kamilla projection [34–36] for the 2

3 state. Therefore,
throughout this work we shall take � 2̄2̄111

1/2 = [�CF
2/3]2/�1. The

state written in this form manifestly resides in the LLL and
satisfies fermionic antisymmetry since �CF

2/3 contains a factor of
�1 in it. In the next paragraph, we take a slight detour to discuss
the spherical geometry, which will enable us to calculate many
of the properties of our parton state.

C. Spherical geometry

In the spherical geometry, N electrons move on the surface
of a sphere of radius R = √

Q�, in the presence of a radial
magnetic field generated by a monopole of strength 2Qhc/e

located at the center of the sphere [24]. Due to the rotational
symmetry of the system, the total orbital angular momentum
L and its z component Lz are good quantum numbers in this
geometry. Uniform incompressible FQH states on the sphere
haveL = 0 and occur at 2Q = ν−1N − S , whereν is the filling
factor and S is a topological number called the shift [37]. The
state with n-filled Landau levels occurs at 2Q = (N − n2)/n

and thus has a shift of S = n. Throughout this work we
consider only uniform states, i.e., states with L = Lz = 0.
States with L > 0 (with L scaling as N ) are gapless in the
thermodynamic limit. Hence, we use L = 0 as a diagnostic
to test if a state is compatible with remaining gapped in the
thermodynamic limit (see Appendix A).

The wave functions defined on the two-dimensional plane
can be translated into the spherical geometry by stereo-
graphic projection. For all the wave functions considered in
this work, this can be accomplished via the transformation
zi − zj → uivj − ujvi , where ui = cos(θi/2)eiφi/2 and vi =
sin(θi/2)e−iφi/2 are the spinor coordinates on the sphere. Here,
θi and φi are the polar and azimuthal angles locating particle
i, respectively.

In order to calculate overlaps of the parton state � 2̄2̄111
1/2 with

other candidate states, as well as its entanglement spectrum,
it is useful to find its decomposition in the full Hilbert space
of LLL Slater determinant states with Lz = 0. To do so, we
express the wave function as a linear combination of L = 0
eigenstates as |�2̄2̄111〉 = ∑

i ci |ψL=0
i 〉, where each |ψL=0

i 〉
has a known expansion in the full Hilbert space of Slater
determinant states {|ψLz=0

i 〉}. (Such a basis can be obtained
by diagonalizing the L2 operator or any spherically symmetric
interaction in the full Hilbert space.) To obtain the coefficients
ci we evaluate the wave function for many N -particle con-
figurations on the sphere, and obtain a set of linear equations
which we then invert to obtain ci . This method works when the
number of L = 0 states is not very large since for very large
systems it is hard to find a set of well-conditioned linearly
independent equations. Alternately, one can use the method
of Ref. [33] to obtain ci using the Monte Carlo method by
calculating overlaps with all LLL states. In this work, we shall
use the former method to evaluate the decomposition of �2̄2̄111
in the full Hilbert space for up to N = 10 electrons, which
suffices for our purposes.

III. PROPERTIES OF � 2̄2̄111
1/2

We now analyze the properties of the 2̄2̄111 state, and
compare with other known candidates for the ground state at

ν = 5
2 . We begin by briefly summarizing the properties of the

Pfaffian and anti-Pfaffian reference states, and then show that
the 2̄2̄111 state is in the same phase as the anti-Pfaffian.

The Moore-Read Pfaffian (Pf) state is described by the wave
function [10]

�Pf
1/2 = Pf

(
1

zi − zj

)∏
i<j

(zi − zj )2, (9)

where Pf is the Pfaffian of a skew-symmetric matrix [41].
The state �Pf

1/2 represents a topologically nontrivial p-wave
paired condensate of fully spin-polarized composite fermions
[8]. Important characteristics of the Pfaffian state are that in
the spherical geometry it occurs at a shift of S = 3, it carries
a thermal Hall conductance of κxy = 3/2 (π2k2

BT/(3h)), and
has a sixfold topological degeneracy when realized on a torus
[8,40,42].

Because �Pf
1/2 describes a half-filled Landau level, its

particle-hole conjugate �aPf
1/2, dubbed the anti-Pfaffian (aPf),

also occurs at ν = 1
2 [22,23]. The anti-Pfaffian is topologically

distinct from the Pfaffian: it has a shift of S = −1 on the
sphere, and carries a thermal Hall conductance of κxy =
−1/2 (π2k2

BT/(3h)). Following recent measurements of the
thermal Hall conductance on the ν = 5

2 FQH plateau [43], there
has been considerable interest in a particle-hole-symmetric
variant of the Pfaffian state. However, the proposed candidate
wave function for this state [44] does not appear to have a
good overlap with the numerically exact ground state for any
reasonable two-body interaction (see Appendix A).

To compare, the 2̄2̄111 parton state occurs at a shift of S =
−1, which is the same as the anti-Pfaffian shift [see Eq. (14)
below]. Furthermore, for small system sizes where it can be
checked, � 2̄2̄111

1/2 has a good overlap with the anti-Pfaffian state
as well as with the numerically exact ground state obtained us-
ing the second Landau level Coulomb pseudopotentials, �1LL

1/2
(see Table I). These features indicate that in the thermodynamic
limit, � 2̄2̄11

1/2 will be in the same phase as the anti-Pfaffian.

We obtain further strong evidence linking � 2̄2̄111
1/2 to the

anti-Pfaffian phase by comparing the entanglement spectra of
the two states. The entanglement spectrum has been useful in
characterizing many FQH states, as the counting of low-lying
entanglement levels provides a fingerprint of the topological
order of the state [45]. In Fig. 1 we show the orbital entangle-
ment spectrum [46] of the � 2̄2̄111

1/2 state for a system of N = 10
electrons on a sphere with flux 2Q = 21. The multiplicities
of the low-lying entanglement levels of � 2̄2̄111

1/2 are identical to

TABLE I. Overlaps of the ground state at the anti-Pfaffian flux
in the n = 1 Landau level (obtained by exact diagonalization), �1LL

1/2 ,

with the anti-Pfaffian, �aPf
1/2 , and � 2̄2̄111

1/2 parton states. The numbers
for |〈�1LL

1/2 |�aPf
1/2〉| were previously given in Refs. [38–40].

N 2Q
∣∣〈�1LL

1/2

∣∣�aPf
1/2

〉∣∣ ∣∣〈� 2̄2̄111
1/2

∣∣�aPf
1/2

〉∣∣ ∣∣〈�1LL
1/2

∣∣� 2̄2̄111
1/2

〉∣∣
4 9 0.8162 0.9639 0.9406
6 13 0.8674 0.9686 0.9385
8 17 0.8376 0.9523 0.9327
10 21 0.8194 0.9397 0.8975
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FIG. 1. Orbital entanglement spectrum of the � 2̄2̄111
1/2 state for N = 10 electrons at a flux 2Q = 21 on the sphere. The two subsystems A and

B with respect to which the entanglement spectrum is calculated each have NA = NB = 5 electrons and lA = lB = 11 orbitals (top panels) and
lA = 12 and lB = 10 orbitals (bottom panels). The entanglement levels are labeled by the z component of the total orbital angular momentum
of the A subsystem, LA

z . For comparison, we also show the corresponding entanglement spectra for the anti-Pfaffian state, �aPf
1/2 (right panels).

The counting of low-lying levels (blue dashes) in the top panels, from LA
z = 24 (going from left to right) goes as 1,1,3,5, . . . , while in the

bottom panels, from LA
z = 25.5 (going from left to right) goes as 1,2,4, . . . , and is identical for the states within each row.

those of the anti-Pfaffian. Thus, we conclude that � 2̄2̄111
1/2 lies

in the anti-Pfaffian phase.
We now give an analytical argument to explicitly show that

� 2̄2̄111
1/2 lies in the anti-Pfaffian phase. The wave function in

Eq. (7) (ignoring the projection to the LLL) can be rewritten
as

� 2̄2̄111
1/2 = �1/3

[
�2

2

]∗
. (10)

Viewed in this way, we may express the state in Eq. (10) in
terms of partons ℘ = f b, comprised of a fermion f = f1f2f3

that forms a ν = 1
3 Laughlin state (with each fi forming a

ν = 1 state), and a boson b that forms the state described by
the symmetric wave function [�2

2]∗.
Let us then first understand the properties of the symmetric

wave function �2
2. This state itself can be understood in terms

of a parton construction with b = f4f5, where f4 and f5 each
form a ν = 2 IQH state. A lattice version of this state was
studied explicitly in Ref. [47]. The state’s topological order
can be read off using techniques discussed in Refs. [29,48] (see
Appendix B); [�2

2]∗ describes a non-Abelian FQH state with
central charge c = − 5

2 , whose fusion rules coincide with the
fusion rules of quasiparticles in the Ising topological quantum
field theory. There is precisely one such topological quantum
field theory [49,50].

An alternative way to realize the unique topological order
with c = − 5

2 and Ising fusion rules is in terms of the composite
fermion construction. Consider the state where we attach
one unit of flux to b, and the resulting composite fermion
forms a paired state with odd angular momentum l = −3.

In other words, we consider a parton construction where
b = ψ−1ψl=−3, where ψ−1 is a fermion in a ν = −1 state and
ψl=−3 is a fermion in a l = −3 paired state. This theory has
a central charge c = −1 − 3

2 = − 5
2 . It is straightforward to

verify that all such composite fermion states with odd angular
momentum pairing have the same Ising fusion rules, due to the
Majorana zero mode localized at vortex cores of odd angular
momentum paired states.

Comparing the forms above, the topological order of the
original state ℘ = f b can be understood by rewriting the
parton construction as

℘ = f b = f1f2f3ψ−1ψl=−3 = af1f2ψl=−3. (11)

Here, a = f3ψ−1 is a boson, and it forms a superfluid state
(the product of two fermionic states with ν = 1 and −1 is a
bosonic superfluid state [51,52]). Since the boson a is trivially
condensed, it does not contribute to the topological order of ℘.
This allows us to ignore a, simplifying our parton construction
to

℘ = f1f2ψl=−3, (12)

where f1 and f2 are in ν = 1 state, and ψl=−3 describes an
angular momentum l = −3 paired state [53]. Such a state is
known to describe the anti-Pfaffian state [54]. One can easily
check that the central charge of this state is c = 1 − 3

2 = − 1
2 ,

which matches the anti-Pfaffian value [22,23]. We remark
here that a similar construction shows that the Jain 221 state
[21,30,31] can be thought of as an l = +3 paired state of
composite fermions.
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FIG. 2. Pair-correlation function g(r), where r is the chord dis-
tance between electrons on the sphere, and its Fourier transform, the
structure factor S(q) (inset), in the state � 2̄2̄111

1/2 . The calculation is
performed for N = 100 electrons on the sphere, with flux 2Q =
201. The pair-correlation function shows a “shoulder”-like feature
at intermediate distances, which is typical of non-Abelian states.

IV. APPLICATIONS AND EXTENSIONS

The utility of the parton wave function that we have
presented in Eq. (8) is that it can be constructed for systems
much larger than those accessible via brute force particle-hole
conjugation of the Pfaffian or by exact diagonalization. As
a proof of principle, in Fig. 2 we show the pair-correlation
function and static structure factor for a system of N = 100
electrons on the sphere obtained using the Monte Carlo method
described in detail in Ref. [55]. We see a “shoulder”-like bump
at short distances in the pair-correlation function which is
considered to be a characteristic of non-Abelian states that
involve clustering [10,12,14,56,57].

Generalizing the parton ansatz in Eq. (7), we may construct
a family of wave functions of the form

� n
pn±k

= PLLL�
p

1 [�±n]k. (13)

In the spherical geometry, the wave function in Eq. (13) occurs
at flux [25]

2Q = p(N − 1) ± k
(N − n2)

n
= pn ± k

n
N ∓ kn − p, (14)

corresponding to the filling factor ν = n/(pn ± k) and a shift
S = p ± kn. We have the following four cases to consider for
the symmetry of the wave function:

(i) p odd and k odd: wave function is symmetric and
represents a state of bosons;

(ii) p odd and k even: wave function is antisymmetric and
represents a state of fermions;

(iii) p even and k odd: wave function is antisymmetric and
represents a state of fermions;

(iv) p even and k even: wave function is symmetric and
represents a state of bosons.

For even p and k = 1 these wave functions form the series
of composite fermion states [20,25], at ν = n/(pn ± 1). The
symmetry (bosonic or fermionic) of any of these wave func-
tions can be changed by adding a Pfaffian or an anti-Pfaffian
factor, and the anti-Pfaffian in turn could appropriately be
represented by a parton wave function using our construction.

With the Pfaffian factor, the k = 1 and p = 3 series gives
Bonderson-Slingerland states [58]. The properties of other
members of this family, including extensions to multicompo-
nent systems (involving spin, valley, or orbital indices), remain
to be explored.

V. DISCUSSION

In this work we have introduced a parton wave function,
denoted by � 2̄2̄111

1/2 , describing a FQH state in a half-filled
Landau level that lies in the same phase as the anti-Pfaffian
state. For the system sizes we could study, the overlap of
� 2̄2̄111

1/2 with the numerically exact ground state is slightly better
than the corresponding overlap of �aPf

1/2 with the exact ground
state. In contrast to the anti-Pfaffian wave function, for which
no simple expression is known in first quantized form, the
� 2̄2̄111

1/2 wave function is straightforward to evaluate. Thus, the
parton ansatz enables numerical studies of the anti-Pfaffian
phase on much bigger systems than were possible previously.
Furthermore, the large system sizes accessible may make it
possible to do a Berry phase calculation to demonstrate non-
Abelian braiding statistics of the exotic quasiparticles hosted
by this state.

As a proof of concept, we demonstrated the utility of the
parton ansatz by computing the pair-correlation function and
the static structure factor for a relatively large system, contain-
ing 100 electrons on the sphere. Looking ahead, the � 2̄2̄111

1/2
ansatz could be used, for example, to obtain the real-space
entanglement spectrum [59,60] of the anti-Pfaffian phase for a
large system. Another application is to use the parton state to
fix the phase of the anti-Pfaffian state in a fixed-phase diffusion
Monte Carlo (DMC) calculation [61–63]. Such a calculation
would allow one to determine whether the Pfaffian or anti-
Pfaffian state is preferred in the presence of LL mixing [40,64–
72], in the thermodynamic limit. It will be interesting to explore
whether other unexplained, experimentally observed FQH
states can be described by the general family of parton states.
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APPENDIX A: PARTICLE-HOLE-SYMMETRIC PFAFFIAN

A half-filled state which is particle-hole symmetric must
occur at flux 2Q = 2N − 1 (on the sphere), and carry a thermal
Hall conductance of κxy = 1/2 (π2k2

BT/(3h)). Recent exper-
iments measuring the thermal Hall conductance at ν = 5

2 are
consistent with this value [43]. The following candidate wave
function for such a state, dubbed the particle-hole-symmetric
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TABLE II. Overlaps of the PH-Pfaffian trial state �PH-Pf
1/2

[Eq. (A1)] with its particle-hole conjugate (Cph�
PH-Pf
1/2 ), as well as

the lowest-energy L = 0 states found by exact diagonalization using
the Coulomb pseudopotentials for the second Landau level (�1LL

1/2 )
and the lowest Landau level (�0LL

1/2 ). Daggers indicate cases where
the ground state does not have L = 0. The projection to the lowest
Landau level is carried out by calculating the overlap of the state
[Pf([zi − zj ]−1)]∗

∏
i<j (zi − zj )2 with each basis function in the

lowest Landau level using the Monte Carlo method of Ref. [33].
Statistical errors are reported in parentheses.

N 2Q
∣∣〈Cph�

PH-Pf
1/2

∣∣�PH-Pf
1/2

〉∣∣ ∣∣〈�1LL
1/2

∣∣�PH-Pf
1/2

〉∣∣ ∣∣〈�0LL
1/2

∣∣�PH-Pf
1/2

〉∣∣
6 11 0.999(1) 0.001(1) 0.990(1)
8 15 0.999(1) 0.002(1) 0.975(1)†

10 19 0.998(5) 0.002(1)† 0.938(6)†

Pfaffian (PH-Pf), has been proposed [44,73]:

�PH-Pf
1/2 = PLLL

[
Pf

(
1

zi − zj

)]∗ ∏
i<j

(zi − zj )2. (A1)

This state has a high overlap with its particle-hole conjugate,
but a low overlap with the lowest-energy L = 0 state obtained
by exact diagonalization using the second LL Coulomb pseu-
dopotential (see Table II). For the ideal second LL Coulomb
pseudopotentials the ground state at 2Q = 2N − 1 does not
always have L = 0 for different numbers of particles N (see
entries indicated by daggers in Table II). Hence, it is unlikely

that the state will remain gapped in the thermodynamic limit
(see main text). However, it is possible that effects such as
Landau level mixing, disorder [74–76], and finite width correc-
tions may stabilize a gap at this flux value [44]. Recently, Simon
[77] has proposed that the thermal Hall measurements would
be consistent with the anti-Pfaffian if its Majorana edge mode
does not thermally equilibrate with the bosonic edge modes.

We observe that the overlap of �PH-Pf
1/2 with the lowest-

energy L = 0 state of the lowest LL Coulomb interaction is
fairly good (see Table II); we speculate that this could possibly
describe a particle-hole-symmetric pairing instability of the
composite fermion Fermi sea.

We mention here that Jolicoeur [78] constructed a wave
function which differs from the state shown in Eq. (A1) by a
factor of

∏
i<j |zi − zj |2 before projection. We have checked

using the Monte Carlo method that after projection, for small
values of N � 10, these two states have high overlap with
each other, indicating that they are similar in nature [79]. For
N = 12 electrons, the overlap between these two states was
found to be 0.993 by Mishmash et al. [80]. A state consisting
of alternating stripes of Pfaffian and anti-Pfaffian has also been
put forth as a viable candidate state for ν = 5

2 [81].

1. Model interactions to search for the particle-hole-symmetric
Pfaffian state at ν = 1

2

As mentioned above, for the second Landau level Coulomb
pseudopotentials, our results indicate that it is likely that

L=0

L>0
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FIG. 3. Ground-state orbital angular momentum, L, obtained in the spherical geometry using exact diagonalization at the particle-hole-
symmetric Pfaffian flux for a model interaction (see Appendix A 1 a for a description of the interaction). Regions of parameter space where
the ground state is uniform (i.e., has L = 0), and therefore compatible with maintaining a finite-energy gap in the thermodynamic limit, are
indicated in dark blue shade. In the right panels of the top two rows we show the overlaps of the particle-hole-symmetric Pfaffian trial state
PLLL[Pf]∗J 2 = PLLL[Pf({(zi − zj )−1})]∗ ∏

i<j (zi − zj )2 with the ground state of the model interaction, for N = 8 and N = 10 particles.
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the ground state at the particle-hole-symmetric flux 2Q =
2N − 1 will become gapless in the thermodynamic limit. We
investigate a wider set of two-body pseudopotentials, and ask
if any of them give rise to a uniform ground state at this flux.
Since the wave function of Eq. (A1) is particle-hole symmetric
to a very high degree, it is at least feasible that it may be realized
as the ground state of a simple two-body interaction potential.
For this purpose we have considered two kinds of interactions
which will be described below.

a. Generic pairwise interactions with non-negative, nonvanishing
values only for V1, V3, and V5

We consider a set of model Hamiltonians with pairwise
interactions of the form

H =
∑
i<j

∑
m

P i,j
m Vm, (A2)

where P i,j
m projects onto the subspace of two electrons i and j ,

with relative angular momentum m, and Vm is the interaction
energy in the relative angular momentum m channel. We limit
our search to Hamiltonians with Vm = 0 for m > 5.

The overall scale of the pseudopotentials is irrelevant for
determining the nature of the ground-state wave function. (The
energies and gaps do, of course, depend on the scale.) We
therefore choose the normalization V1 + V3 + V5 = 1. This
choice then leaves only two independent parameters for the
model interaction, and allows us to show results in a convenient

form using a set of triangular maps. A given point on or inside
the triangle corresponds to a particular ratio between V1, V3,
and V5. It is easiest to visualize the triangle as made up of the
following three regions:

(i) Each vertex of the triangle corresponds to a single
positive pseudopotential: V1 = 1 (bottom left vertex), V3 = 1
(bottom right vertex), and V5 = 1 (top vertex).

(ii) Each edge of the triangle corresponds to two positive
pseudopotentials Vm1 = V , Vm2 = 1 − V with 0 � V � 1.

(iii) Each point inside the triangle corresponds to all three
pseudopotentials being nonzero, with the size of a particular
pseudopotential proportional to the distance from its respective
vertex, in particular the centroid of the triangle has the values
(V1,V3,V5) = (1/3,1/3,1/3).

The region outside of the triangle is not of our interest since
it has at least one negative pseudopotential.

In Fig. 3 we show plots of the ground-state total orbital
angular momentum L (we only distinguish if the state has
L = 0 or L > 0, where the latter is a heuristic indicator of
gaplessness in the thermodynamic limit), and the overlap with
the candidate PH-Pf state at the particle-hole-symmetric flux
for different numbers of electrons. We do not find any region
of parameter space where the ground state consistently occurs
at L = 0 for all system sizes. Furthermore, in the region where
the ground state is uniform for a particular N (and hence could
be compatible with maintaining a gap in the thermodynamic
limit), we do not find a high overlap between the PH-Pf state
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FIG. 4. Ground-state orbital angular momentum, L, obtained in the spherical geometry using exact diagonalization at the particle-hole-
symmetric Pfaffian flux for a model interaction (see Appendix A 1 b for a description of the interaction). Regions of parameter space where
the ground state is uniform (i.e., has L = 0), and is therefore compatible with maintaining a finite-energy gap in the thermodynamic limit,
are indicated in dark blue shade. By perturbing V1 and V3 around the second Landau level Coulomb point (white dot in the center), we seek
conditions where the PH-Pf state is stabilized. In the right panel of the top two rows we show the overlap of the particle-hole-symmetric Pfaffian
trial state PLLL[Pf]∗J 2 = PLLL[Pf({(zi − zj )−1})]∗ ∏

i<j (zi − zj )2 with the ground state of the model interaction. In all cases, the PH-Pf does
not appear to describe the ground state well.
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FIG. 5. Ground-state orbital angular momentum, L, obtained in the spherical geometry using exact diagonalization at the particle-hole-
symmetric Pfaffian flux for a model interaction (see Appendix A 1 b for a description of the interaction). Regions of parameter space where
the ground state is uniform (i.e., has L = 0), and is therefore compatible with maintaining a finite-energy gap in the thermodynamic limit,
are indicated in dark blue shade. By perturbing V1 and V3 around the lowest Landau level Coulomb point (white dot in the center), we seek
conditions where the PH-Pf state is stabilized. In the right panel of the top two rows we show the overlap of the particle-hole-symmetric Pfaffian
trial state PLLL[Pf]∗J 2 = PLLL[Pf({(zi − zj )−1})]∗ ∏

i<j (zi − zj )2 with the ground state of the model interaction. In all cases, the PH-Pf does
not appear to describe the ground state well.

and the ground state of the model interaction, for all system
sizes.

b. Interactions perturbed around the lowest and second
Landau level Coulomb points

We now consider interactions that are perturbed around
the lowest and second Landau level Coulomb points. These
interactions are more realistic than the ones considered in
the previous section. We perturb the short-range part of the
Coulomb interaction by changing the values of V1 and V3 to
V Coulomb

1 + δV1 and V Coulomb
3 + δV3, respectively.

In Fig. 4 (Fig. 5) we show plots of the ground-state
total orbital angular momentum L, and the overlap with
the candidate PH-Pf state at the particle-hole-symmetric flux
for different numbers of electrons for an interaction that is
perturbed around the second (lowest) Landau level Coulomb
point. Similar to our observations above, we do not find any
region of parameter space where the ground state consistently
occurs at L = 0 for all system sizes. Furthermore, in the region
where the ground state is uniform for a particular N (and hence

could be compatible with maintaining an energy gap in the
thermodynamic limit), we do not find a high overlap between
the PH-Pf state and the ground state of the model interaction,
consistently across all system sizes. These results suggest that
even though the particle-hole-symmetric Pfaffian trial state has
a high overlap with its hole conjugate partner, it may not be
realized as the ground state of a simple two-body interaction.

APPENDIX B: ADDITIONAL DETAILS FOR
TOPOLOGICAL ORDER OF �2

2

Here, we briefly provide some additional details for reading
off the topological order of the state �2

2. As discussed in
the main text, this state arises from a parton construction
b = f4f5, where f4 and f5 each form a ν = 2 IQH state. This
parton mean-field ansatz has an SU(2) gauge symmetry, as
any transformation (f4,f5)T → W (f4,f5)T, with W ∈ SU(2),
keeps b invariant. The bulk effective theory can therefore
be written in terms of an SU(2) gauge field A, coupled to
fermions f4 and f5. Integrating out f4 and f5 gives an SU(2)2
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Chern-Simons (CS) theory. The quasiparticles in this theory
correspond to the particle/hole excitations in the mean-field
IQH states, which are dressed by an SU(2)2 CS gauge field. The
flux attachment due to the CS term converts these excitations
to anyons, whose non-Abelian fusion rules can be read off
from the known properties of the SU(2)2 CS theory. These are
known to coincide with fusion rules of the Ising topological
quantum field theory.

Reading off the central charge is more delicate and is
most clearly done by considering the boundary theory. The
boundary theory for the mean-field state contains four chiral
complex fermions, coming from the two ν = 2 IQH states.
These four fermions can be bosonized using non-Abelian

bosonization, to give a U(4)1 Wess-Zumino-Witten theory
[82]. However, not all of these degrees of freedom are physical;
the physical degrees of freedom correspond to projecting
out any fluctuations that are not invariant under the SU(2)
transformations. This can formally be performed using the
coset construction [82]. It follows that the boundary theory is
a U(4)1/SU(2)2 coset theory. The central charge of this theory
is c = cU(4)1 − cSU(2)2 = 4 − 3

2 = 5
2 .

In summary, the state �2
2 describes a topological phase

of bosons with central charge c = 5
2 and Ising fusion rules.

The complex conjugate [�2
2]∗ has reversed chirality and

therefore describes a topological phase with central charge
c = − 5

2 .
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