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The ¢-J model is a standard model of strongly correlated electrons, often studied in the context of high-T,
superconductivity. However, most studies of this model neglect three-site terms, which appear at the same order
as the superexchange J. As these terms correspond to pair hopping, they are expected to play an important
role in the physics of superconductivity when doped sufficiently far from half filling. We present a density
matrix renormalization-group study of the one-dimensional ¢-J model with the pair hopping terms included.
We demonstrate that these additional terms radically change the one-dimensional ground-state phase diagram,
extending the superconducting region at low fillings, while at larger fillings, superconductivity is completely
suppressed. We explain this effect by introducing a simplified effective model of repulsive hardcore bosons.
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I. INTRODUCTION

The ¢-J model has long been a subject of intense interest as
aprototypical model of strongly correlated electrons because it
encapsulates the physics of constrained hopping and magnet-
ically induced real-space pairing. As such, the 7-J model has
been widely studied for its relevance to high-7, superconduc-
tivity [1,2], in particular with connection to resonating valence
bond (RVB) physics [3,4], and as a microscopic origin for
the S O (5) model of antiferromagnetism and superconductivity
[5]. Traditionally, the 7-J model emerges as an effective
low-energy description of the paradigmatic Hubbard model
in the limit # < U to second order in t/U, where U is the
on-site Coulomb repulsion, giving rise to a superexchange
J = 41>/ U [6,7]. The validity of the ¢-J model in this context
therefore necessitates J/¢ < 1. For high-T, superconductors,
the regime of interest is J ~ 0.3¢ for a two-dimensional (2D)
square lattice system close to half filling.

Despite its long history, there is increasing motivation
to reexamine the #-J model and explore its properties over
a wider parameter space. A prominent case for this comes
from the recent advances in generating strong THz fields in
pump-probe experiments on solids. This technique now makes
it possible to transiently manipulate materials by exciting them
into nonequilibrium states not accessible thermally [8—11].
Such strongly driven systems are often described by effective
Hamiltonians with significant differences from those in equi-
librium [12-16]. In particular, the 7-J model originating from
a periodically driven Hubbard model breaks the perturbative
connection between ¢ and J, allowing J /¢ to be controlled and
the physics with J /¢ > 1 to be probed [17]. Complementary to
solid-state systems, the direct implementation of the Hubbard
model and an experimental resolution of its low-temperature
phase diagram is a longstanding goal of experiments with
ultracold fermionic quantum gases in optical lattices [18,19].
In these synthetic solids, strong periodic driving, such as
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lattice shaking, is also routinely used to engineer the band
structure [20] and microscopic interactions of the system [14],
as demonstrated recently for the superexchange [21,22]. Thus,
mapping out the complete phase diagram of the 7-J model
provides a fuller picture of the strongly correlated states one
might engineer by driving the Hubbard model.

Motivated by these developments, in this paper we examine
the ground states of the #-J model in 1D over a wide range of
J/t and fillings. While much of the focus on the #-J model is
in 2D systems, the 1D system nonetheless possesses a rich
phase diagram. Indeed, it displays insulating, spin-gapped,
and superconducting phases similar to the phenomenology of
correlated materials in higher dimensions. Moreover, in 1D,
the density matrix renormalization group (DMRG) [24,25]
provides an unprecedented ability to diagnose these exotic
phases in an unbiased way for large systems, allowing for
accurate extrapolation to the thermodynamic limit.

To correctly capture all the physics arising from the ¢-J
model with varied fillings, we crucially retain the singlet-
pair-hopping term. Formally, this three-site term arises from
the Hubbard model to the same order as the superexchange
J. Close to half filling, it is often argued that pair hopping
processes are rare [7], and so most previous studies of the z-J
model have neglected this term [23,26-28]. However, previous
work on the large-U Hubbard model has demonstrated that
pair hopping is essential to understand its optical properties
when doped away from half filling [29,30]. Some earlier
works analyzing phases of the 7-J model have taken pair
hopping into account [31-35], but were restricted to mean-field
approximations or used exact diagonalizations on very small
systems. A key contribution of our work is that we address the
t-J model without these limitations. We find that the inclusion
of pair hopping leads to a dramatically different ground-
state phase diagram. In particular, it has a significant impact
on superconductivity by pushing the metal-superconducting
boundary to lower values of J/t at dilute fillings. Closer
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to half filling, the pair hopping simultaneously increases the
size of the spin-gapped region and leads to the suppression
of superconductivity, in line with mean-field calculations in
two dimensions [35]. We explain this effect by considering a
simplified model of constrained hardcore bosons.

The structure of this paper is as follows. In Sec. Il we
introduce the 7-J model and discuss the pair hopping term. In
Sec. IIT we present a selection of phase diagrams and discuss
how we characterize the various phases. We then introduce in
Sec. IV a constrained hardcore boson model and compare its
properties to those of the #-J model. Finally, we conclude in
Sec. V.

II. THE ¢-J MODEL

In the limit + << U of the Hubbard model, double occu-
pancies are energetically suppressed. However, second-order
processes, where different singly occupied configurations are
connected by virtual excitations to and from these doubly
occupied states, give rise to the 7-J model describing the
effective low-energy dynamics. The ¢-J model Hamiltonian
may be written formally as [31]

Bipu=—tY (fl,f1o +He)

(ij)o

— 1Y blbiy—al Y (Blby+He), (1)
(i) (ijk)
where ¢ is the single-particle hopping amplitude, J = 4¢2/U is
the strength of the superexchange interaction, and « is a dimen-
sionless constant of order unity. The definition of this model is
built from projected fermionic annihilation operators for a spin-
o fermion on lattice site j, defined as f; , = &, P, where ¢; ,
is the corresponding canonical fermionic annihilation operator.
Here, P is a projector that implements the exclusion of double
occupations and is given by P = ]_[j(l —jsijy), where

jo = 62 ;Co,j 1s the number operator for spin-o fermions on
site j. The operator

A 1 . . A A
bij = E(fwfj,r = fiafid)
annihilates a spin singlet on lattice sites i and j.

The t-J model captures two significant pieces of physics.
First, it subjects the motion of electrons in a tight-binding
band with hopping amplitude 7 to a local constraint that
excludes double occupancies. Specifically, unlike ¢;,, the
projection means that fAj(, operators do not obey the canonical
fermionic anticommutation relations. This induces a non-
Fermi-liquid metallic state and accounts for density-dependent
band-narrowing effects [6]. Second, neighboring electrons
experience an antiferromagnetic Heisenberg superexchange
with amplitude J. This induces real-space singlet pairing of
electrons, which can subsequently hop with amplitude «J, and
accounts for the formation superconducting and magnetically
ordered insulating states.

The parameter « is equal to 1/2 for a 7-J model arising
from the equilibrium Hubbard model. To distinguish the
Hamiltonian in Eq. (1) from the typically studied 7-J model,
which takes o = 0, we refer to it as the 7-J-a model from
now on. Motivated by the effects of strong periodic driving on

the Hubbard model, we consider the regime 0 < J/t < 8 and
0 < o < 1/2 not accessible from equilibrium. Specifically, in
Appendix A we show how periodic driving can be used to
control both the single-particle hopping and the pair hopping
terms, while leaving the superexchange unchanged.

II1. PHASE DIAGRAM

To compute the ground-state phase diagram of the 7-J-«
model, we use the finite system DMRG algorithm [24,25]
as implemented in the open-source Tensor Network Theory
(TNT) library [36]. Further details of the DMRG calculation
are provided in Appendix B. We consider a 1D chain of L
sites containing a number of “up” and “down” fermions N
and N, respectively, where N, = () j fijs), and (-) denotes
the expectation value with respect to the ground state. Fixing
this filling results in a mean number of fermions per site,
n = (N3 + N,)/L.Note thatexcept when determining the spin
gap in Sec. Il B, we take Ny = N|.

The main correlation functions of interest are the density-
density correlations

Nij = (A ) — () (A;),
with ii; = 714 + 7, the spin-spin correlations
Sij = (87 5%),

with S’f = (2,4 —7;,)/2, and the nearest-neighbor singlet-
pairing correlations

AT ~
Pij = (b ;110 j+1)-
We also compute the corresponding structure factors, i.e., the
Fourier transforms of these quantities,

1 o
X(g)= 7 Xjue U™, @
Jjk

where X is any of N, S, or P.

Our main results, i.e., the phase diagrams for the 7-J-«
model in the n-J /¢ plane, are presented in Fig. 1. For o = 0,
we reproduce the results of Moreno et al. [23]. We also show
the phase diagrams for « = 0.15 and o = 1/2, respectively,
mapping the full range of phases induced by the pair hopping.

For all three values of o shown in Fig. 1, the ground state
for small J/t is a correlated metal. As the strength of the
superexchange interaction increases, antiferromagnetic pairs
begin to form and the system crosses into a superconducting
phase (SC), which exhibits a slow algebraic decay of singlet
correlations, as we discuss in Sec. III B. Further information
about the nature of pairs in the system is provided by the
presence or absence of a spin gap (SG). As we discuss in
Sec. IV, the presence of a finite spin gap indicates that all
fermions in the system are bound into nearest-neighbor singlet
pairs. Contrary to the small exact diagonalization results of
Ammon et al. [32], we find that superconductivity does not
survive at all filling fractions. We do, however, find that the spin
gap extends outside of the superconducting region, indicating
a gas of preformed pairs.

For ¢ =0 and « = 0.15, at sufficiently large J/t, the
superexchange interaction J wins over kinetic energy ¢ and
aJ, and the fermions and holes localize into separate clusters,
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FIG. 1. Constant « slices through the ¢-J-« phase diagram as a function of J/t and n. Metallic (M), superconducting (SC), spin-gapped
(SG), phase-separated (PS), and electron solid (ES) phases are marked. In the @ = 0.5 case, the phase-separated and electron solid phases have
vanished, which we have verified for up to J /¢ = 100. The phase diagram for o = 0 is consistent with Moreno et al. [23].

known as phase separation (PS). This is signaled by a diverging
compressibility, which we discuss in Sec. I[ITA. As J/t is
increased further, we reach a regime where the maximum local
density max; (7 ;) approaches unity, called the electron solid
(ES) phase.

A. Phase separation

The second term in Eq. (1) is commonly rewritten as the
antiferromagnetic Heisenberg coupling,

N J A v A Al nin;
Ao =3 2 (88488 + 55 - ). @
(ij)

where $1=(f!, fyr + Fly Frn 8 =i fi = Ly fi,
and § ; = (4 — A, ) are the spin-1/2 Pauli operators acting
on the spin degree of freedom at site j. When written in this
form, we anticipate that in the absence of pair hopping, the
t-J model will exhibit competition between the delocaliz-
ing effect of the single-particle hopping ¢ and the attractive
Heisenberg-like interaction J. When r < J, we expect this
attractive interaction to dominate and the fermions to sep-
arate into antiferromagnetic clusters and hole-rich regions.
This is known as phase separation [37]. To quantitatively
characterize the transition boundary, we compute the inverse

compressibility,

,02Eo(n)

on?
~ [Eo(n + An) + Eo(n — An) — 2Ey(n)]
(An)? ’

K_l(l’l) =n

“

where Ey(n) is the ground-state energy of the system at a filling
n. Atthe onset of phase separation, the compressibility diverges
and so k! crosses zero. The phase-separation boundary is
shown in Fig. 2(a) for selected values of «. We see clearly
that the phase separation is suppressed with increasing «. We
further find that phase separation disappears completely for
a=1/2[32].

Where phase separation does occur and if J /¢ is sufficiently
large, the system can become fully separated into an particle-
richregion with (71 ;) ~ 1 and a hole-rich region with (7 ;) ~ 0.
This is illustrated in Fig. 2(b) for &« = 0. In this plot, J/t = 2
is metallic, while the rest are phase separated, and J/t = 3.5
indicates an electron solid phase with regions of (7i;) = 1 and
(i) = 0.

Asnoted in Ref. [23], we find that the phase-separated phase
presents a number of issues for the DMRG calculation. First,
the antiferromagnetic island is off-center for larger J/¢. This is
because the phase-separated ground state is highly degenerate,
i.e., ignoring boundary effects, the cluster of fermions has very
nearly the same energy regardless of where it is located in the
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FIG. 2. (a) Phase diagram plot of J vs n indicating the phase-
separation boundary at various values of «. (b) Examples of the
ground-state real-space fermion density (7;) for « =0, n = 0.5 on
L = 128 sites, at various values of J/t.

lattice [38] Relatedly, we find that for large systems, DMRG
encounters metastability issues deep in the phase-separated
phase. The results for J/¢ = 3.5 in Fig. 2(b) are therefore not
expected to be quantitatively representative of the true ground
state (as can be seen by the lack of reflection symmetry in the
antiferromagnetic cluster). Because of this, a full extrapolation
of the electron solid phase boundary to the thermodynamic
limitis not possible. Rather, in Fig. 1, we show the approximate
boundary as the contour where max ; (i1;) > 0.999 for L = 128
as a dotted line.

B. Superconducting region and spin gap

To identify the superconducting phase boundary, we appeal
to the Luttinger liquid formalism. When the 7-J-o model
is not phase separated, it can be mapped onto either a
Tomonaga-Luttinger liquid (TLL) with gapless spin and charge
excitations, or Luther-Emery liquid (LEL) with a spin gap
[23,39,40]. The central quantity in both of these models is
the Luttinger parameter K ,. For K, < 1, the TLL/LEL has re-
pulsive interactions, whereas for K, > 1, the TLL/LEL has
attractive interactions, and thus superconducting correlations
dominate.

We extract K, by computing the ground-state density
structure factor and exploiting the linear dependence at small-g
values, which we show in Fig. 3(a). The linear dependence is
given by [23,39]

K,lql
T

N(g) ~

asg — 0, (5)

for both the TLL and LEL. By performing a linear fit for small
values of g, we obtain a value of K, at a given system size
L. By computing this as a function of L, extrapolating to the
L — oo limit, and finding where K, = 1, we determine the
superconducting phase boundary, which we show in Fig. 3(b)
for a few values of «. We clearly see that the effect of the pair
hopping is to shift the metal-superconducting phase boundary
to lower values of J/¢ at small fillings and suppress SC at
large fillings. We expect this observation to persist in higher di-
mensions, and indeed this is corroborated by two-dimensional
renormalized mean-field theory studies [35]. In Fig. 3(c), we
show some examples of the real-space singlet correlations Py ,
at low fermion densities. Between J/t = 0.8 and J/t = 0.5,
as the system enters the spin-gapped region, we see a clear
change in behavior as Py . goes from oscillatory and rapid (but
still algebraic) decay to a much slower decaying behavior with
suppressed oscillations. The changes are indicative of a gapless
metal to spin-gapped metal to spin-gapped superconductor
transition.

The spin gap is defined as the energy gap between the
“singlet” ground state and the lowest-lying triplet excitation,

Esg = Eo(S* =1) — Eo(S* = 0), (6

where §* = (Ny — N;)/2. In any finite system, Esg will be
finite, vanishing only in the thermodynamic limit. It also closes
rather slowly as a function of system size, and so it is again
important to extrapolate to L — oo [23]. The contours drawn
in Fig. 1 are for Esg(L — o0) < 0.005.

As we shall discuss in more detail in Sec. IV, the presence of
afinite spin gap alters the nature of the superconducting ground
state and it becomes possible to think of the superconductor
as a Bose condensate of locally bound singlet pairs. Luttinger
liquid theory predicts that the long-range behavior of the singlet
correlations will be

Py, ~ FU+H/KD)  and Py, ~ rfl/Kﬂ’ 7)

in the TLL and LEL, respectively [40]. For reference, we
indicate two algebraic decays in Fig. 3(c). The lower line is
given by 0.16r~'2%, while the upper line, given by 0.19r 71,
indicates superconducting correlations. The real-space singlet
correlations for J/t = 2.2and J /¢t = 3.5 are therefore consis-
tent with a superconducting LEL with K, 2 1.

C. Magnetic correlations

From the Heisenberg term given by Eq. (3), it is clear that
the superexchange interaction will induce antiferromagnetic
correlations in the ground state. At precisely half filling, i.e.,
n = 1, the fermions become completely immobile and we are
left only with the spin degree of freedom, which is governed by
the Heisenberg Hamiltonian with an antiferromagnetic ground
state [7].

Away from half filling, the presence of holes obscures
the underlying magnetic order as the single particle and pair
hopping delocalize the spins. Rather than antiferromagnetic
correlations (i.e., a spin wave with quasimomentum g = ),
the ground state contains a spin wave with longer wavelength
q = nm. This is identified by the location of the peak in
the spin structure factor, which is shown in Fig. 4(a) for
various fillings. In Fig. 4(b), we show the spin structure
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FIG. 3. (a) The density structure factor N(g) for o = 0.5, L = 128 sites. The dotted lines show the linear fit as ¢ — 0, from which K, is
extracted. (b) K, = 1 contours for « = 0, 0.15, and 0.5, extrapolated to the thermodynamic limit. (c) The real-space singlet correlations P ,
are marked with crosses, with a solid line as a guide for the eye. Computed for L = 128, « = 0.5, n = 0.5, at various values of J/¢. The upper

and lower black dotted lines indicate the power-law decays 0.19r~!

factor at various J/t. Upon entering the spin gap, the sharp
peaks, which suggest quasi-long-range magnetic order, are
suppressed and are instead replaced by a broad peak atg = 7.
This is readily understood by considering the spin-gapped
phase as a gas of bound singlet pairs, which we will discuss
in more detail in Sec. IV. Each singlet pair’s spin degree of
freedom is maximally entangled and so, due to the monogamy
of entanglement, the constituent fermions cannot have any spin
correlations beyond their adjacent partner. Hence this peak has
the approximate form S(g) ~ 1 — cos(g), which is the form
given by a free gas of antiferromagnetically bound pairs [32]
and which we indicate as a black dotted line in Fig. 4(b).

0.8 ‘
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FIG. 4. Spin structure factor S(g) for L = 128 sites withar = 0.5.
(a) S(g) at J/t = 0.1 at various fillings n; (b) S(g) for @ = 1/2 and
n = 0.5 at various values of J/t. For reference, the black dashed line
indicates (1/8)[1 — cos(g)], which is the structure factor for a free
gas of bound pairs.

and 0.16r 712, respectively.

IV. EFFECTIVE BOSONIC MODEL

‘We have so far demonstrated that, counterintuitively, a finite
pair hopping o > 0 leads to suppressed superconductivity at
large fillings, coinciding with an increased spin-gap region.
To better understand this observation, we now look at the
spin-gapped region in more detail. Inside this region, we expect
all fermions to be bound into singlet pairs. Given this, we define
a new Hilbert space for the system consisting of L — 1 “sites,”
which represent the bonds of the original lattice, as illustrated
in Fig. 5. These sites may (or may not) be occupied by a boson
representing a singlet pair in the spin-gapped #-J-o¢ model
and thus we have nL /2 bosons in the system. The operators

&; and a; create and annihilate hardcore bosons on site j,

respectively, while i1; = a
number operator.

However, not all configurations of this effective lattice
model represent valid configurations in the ¢-J-o model. Since
the #-J-a model does not allow double occupations, two
nearest-neighbor singlet pairs cannot overlap. This manifests
itself in the effective bosonic model as the constraint that
we cannot have two adjacent sites occupied by hardcore
bosons. This constraint is implemented via the projection
operator Py, =[] j(I =), which kills any state con-
taining bosons on adjacent sites. This constraint fortuitously
prevents inconsistencies which would arise due to the singlet

creation operators bm j+1 hot obeying bosonic commutation
relations when the smglets overlap. Rather, states which

\@\e/\@/\e/\_/\@\@/\_/

Ta - . .
;a; 1s the corresponding bosonic

i—-1 j j+1
@ — @
k—=1 k k41

FIG. 5. Schematic showing how a singlet pair of fermions is
represented in our effective model by a single hardcore boson. Due
to the “no-double-occupancy” constraint in the 7-J-o model, singlets
cannot overlap, and so the hardcore bosons cannot occupy adjacent
sites.
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FIG. 6. A comparison between the 7-J-o model and the projected boson model. The 7-J-o model is with J /¢ = 5, and ¢ = 1/2 computed
with L = 192 lattice sties. (a) The singlet structure factor P(g) is shown as the solid line, with the boson structure factor B(g) shown with
crosses. (b) A comparison of the real-space densities of singlets and bosons, with the singlets shown with the solid line and the bosons marked
with the dotted line. (c) A slice of the single boson density matrix as a function of separation r is marked with crosses, with solid lines as a
guide to the eye. For reference, a black dashed line indicates the line 0.117~". (d) A duplication of the ¢-J-a model phase diagram at o = 0.5
from Fig. 1, but now including the superfluid phase boundary of the effective boson model marked as a black dotted line.

would reveal the composite nature of the bosons are pro-
jected out. This effective boson model is closely related to
quantum lattice dimer models [41] thought to have rele-
vance to high-7, superconductivity in two dimensions. In
the limit J/¢ — oo, the Hamiltonian for the effective model
is

A

Aer = Pon| =7 > ity — ol Y (@laj1 +He) | P
i J

®

This can be seen as a Hamiltonian for hardcore bosons hopping
on a lattice with an infinite nearest-neighbor repulsion. Since
the total number of bosons is conserved and we are working
at a fixed filling fraction n, the first term is a constant nL J /2,
and thus can be ignored. The parameter «J then just rescales
the energies and does not modify the ground state. This leaves
the filling fraction n as the only free parameter in the model.
Despite the restriction P,, on the hopping, we still expect the
bosons to be able to quasicondense into a superfluid state when
the filling is sufficiently small, n < ng;. This superfluid of
bosons then corresponds to spin-gapped superconductivity in
the #-J-o model.

The boson structure factor B(g) is Eq. (2) applied to

the single-particle density matrix (SPDM) pj; = (&;&k), and

is essentially the momentum distribution of bosons. This is
shown as crosses in Fig. 6(a), where we see that when the
filling is small, the bosons do not see the extremely strong local
repulsive interaction and so they macroscopically occupy the
g = 0 quasimomentum state. However, as the filling increases,
the repulsive interaction plays a stronger role and the peak
broadens as the bosons are forced, by the interactions, to
occupy higher momentum states (quantum depletion of the
quasicondensate). In the same figure, we compare this with
the singlet structure factor of the 7-J-o model with J/t =5
(solid lines), finding a very close agreement between the two.

Similarly, the real-space boson density is shown in Fig. 6(b).
At smaller fillings, small oscillations at a frequency mn can
clearly be seen. This is because in one dimension, hardcore
bosons inherit the Friedel oscillations from the corresponding
Jordan-Wigner fermions [42]. Once again, these closely match
the oscillations in the real-space singlet density in the 7-J-«
model ground state.

Whether a bosonic lattice system is superfluid or not is
determined by the decay of off-diagonal elements in the SPDM.
To determine the critical filling of the superfluid transition, we
now look at the Luttinger parameter for bosons K [43]. One
can show that for r > 1, the long-range behavior of the SPDM
is

~ }’_Kb/z,

£o,r (9)
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which we show in Fig. 6(c). As in the fermionic case, we extract
K, from the bosonic density structure factor,

g
27 K,

M(g) =~ asq — 0, (10)

where M (q) is Eq. (2) applied to the correlation function,
M = (jrivg) — (i) ().

Computing K, as a function of n, we find that the critical
filling n¢H &~ 0.59, which we mark on a copy of the o =
0.5 ¢t-J -« phase diagram, showing a qualitative agreement for
the superconductor-preformed pair transition at large J/¢.

In the vicinity of the ¢-J-o phase diagram where the
effective boson model is valid (i.e., the region with a significant
spin gap), this number provides an estimate of the largest
filling at which one can have superconductivity. We expect
the single-particle hopping ¢, which we have neglected in the
effective boson model, to increase the propensity of the system
to superconduct, and so n¢q is expected to provide a lower
bound on this maximum filling. We find that this number is
in approximate agreement with the ¢-J-o model at J /¢ > 1,
as we indicate in Fig. 6(d). Eventually, at maximum filling
n = 1, the ground state is a (pair) density wave with every other
bond being occupied by a hardcore boson. The close agreement
between these two models indicates that the effective model
provides a quantitative description of pair condensation in the
t-J-a model. The effective bosonic model makes it clear that
the loss of superconductivity close to half filling is due to the
kinetic constraints imposed by the nonoverlap of singlet pairs.

In addition, we find that DMRG calculations for the pro-
jected boson model converge much more rapidly than the ¢- J -
model, while accurately describing many of its properties. In
t-J-a models where DMRG is slow to converge, it may be
possible to accelerate these calculations in the spin-gapped
regime by “coarse graining” to an effective bosonic model for
the pairs, before interpolating to the full fermionic model [44].

V. CONCLUSIONS

We have shown that the effect of the pair hopping «J in
the 7-J-a model is to enhance the mobility of pairs, which
manifests itself in the ground-state phase diagram in a number
of ways. First, this pushes the metal-superconducting boundary
to lower values of J/¢ in dilute systems and destabilizes the
phase-separated region. This has significant implications for
periodically driven Hubbard systems, as it means that driving-
induced singlet pairing may be induced at significantly lower
strengths than might be expected. Second, at larger fillings,
superconductivity is suppressed despite the increased pair hop-
ping. We now understand this in the following way: by lowering
the energy of bound singlets, the pair hopping increases the
size of the spin-gap region up to much larger values of n.
Inside the spin-gap region, the physics may be described by
a simple model of hardcore bosons with a kinetic constraint
whose origins lie in the no-double-occupation projection of
the #-J model. Due to these restrictions, the bosons may not
condense above a critical filling n, and so superconductivity
in the 7-J-o model cannot occur inside the spin gap above
this filling. This is consistent with the @ = 0.5 phase diagram,

which shows a larger spin-gapped region than superconducting
region.

It is known that including next-nearest-neighbor hopping
terms in one-dimensional chains (equivalent to a two-leg ladder
system) can enhance the size of the spin-gap region [45].
This raises the intriguing possibility that kinetic constraints
in the spin-gapped phase might play an important role in
fully two-dimensional systems, and in particular of high-T7,
superconductors. It is likely that this behavior may be clearly
observed in cold-atom experiments, where superexchange
physics can be more directly probed [21,22]. In short, studying
the - J-o model in higher dimensions could provide significant
insights into the behavior of high-7, superconductors and
periodically driven strongly correlated systems.
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APPENDIX A: FLOQUET ENGINEERING
THE ¢-J-o MODEL

Here we outline how one can engineer the 7-J-« model
out of equilibrium by periodically driving a Hubbard model.
Possible experimental implementations include, for instance,
shaking an optical lattice [21,22] or driving vibrations in an
organic solid [8,9,17]. We begin with a one-dimensional single-
band Hubbard model,

I:Il-lub =U Zﬁjﬁﬁj& —1t Z(éj,aéfrlﬁ +H.c.). (Al
J Jj.o

We then add a periodic driving term,

Hyive(7) = V sin(Qr) Y jit;. (A2)
J

This particular driving term models a cloud of ultracold atoms
trapped in an optical lattice, where the lattice itself is shaken
with an angular frequency €2, or an ac “electric field” is applied
across the system. However, similar physics is shown to occur
with other driving terms, such as those induced by a traveling
wave [13], or where odd and even sites experience different
driving strengths [17].

As the Hamiltonian I:IHub + I:Idrive(f) is periodic in time, we
are able to use Floquet theory [46—48] to compute an effective
static Hamiltonian for the stroboscopic evolution of the system.
In this instance, we focus on the far off-resonant, in-gap
regime t < Q2 <« U. We seek an effective Hamiltonian which
describes the low-energy physics of the Hamiltonian, which
we obtain via a generalized Schrieffer-Wolff transformation
(SWT) [15]. The dynamics generated by the Hamiltonian will
contain oscillations at frequencies 2 and U, both of which
are large compared to . The SWT amounts to a sequence
of rotating wave approximations where we systematically
eliminate frequencies from highest to lowest.
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FIG. 7. Examples of the finite-size extrapolation; the system parameters are (a)—(c) « = 0.5, n = 7/32, and (d)—(f) « = 0.15, n = 1/2,
with J/t marked on the plots. (a),(d) The extrapolation of the spin gap; (b),(e) the Luttinger Parameter extrapolation. The crosses (which
overlap) are computed for bond dimensions x = 100-500. (c) The singlet correlations at selected interaction strengths with increasing system

size computed for x = 300.

We begin by performing the standard SWT to order ¢/ U to
obtain the 7-J-o model,

Hq = 13|: — 1 Z(C;’UC]'-H,G + H.c.)

Jo

t& NI P tg At A
N7 ;bm‘“bﬁf“ + g Ciinliviiv2+He)

+ Vcos(Qr)Zjﬁj:|I3, (A3)

J

where P is a projector onto the state which contain no double
occupations. From here, we transform into the rotating frame
with respect to the driving term and perform a high-frequency
Magnus expansion [13] to obtain the effective Hamiltonian,

X~ A Vv n
Hijo = P|: — jo<§>t0 Z(C}YUC’]‘+1,0 +H.c)
j.o
Bt g
=5 2B nbiin
J

2V 8§~ o 5
—% 6 E(bj,j+1bj+l‘j+2+H'c') pP. (A4)

We now identify this as the Hamiltonian in Eq. (1), with
t =T/, J = tg/U, and o = Jp(2V/2). In an optical
lattice context, where one has a fine degree of control over
all parameters 7y, U, €2, and V, one can semi-independently
vary ¢, J, and o, and explore experimentally the effect of pair
hopping on superconductivity in higher dimensions.

We note that this procedure is valid only when there is
no “beating” between the oscillations at frequencies 2 and
U. In other words, we require |U — 2| > t. The method can
be generalized to the near-resonant case by simultaneously
eliminating the driving term along with an amount Q of
the interaction term, leaving a Hamiltonian with an effective
on-site repulsion U — €2, as discussed in [15,21].

APPENDIX B: DETAILS OF THE DMRG CALCULATION

In this section, we summarize some technical details of
the DMRG calculation. The advantage of using a finite-size
algorithm rather than infinitt DMRG is that we may use
symmetries to exactly fix the number of fermions in the
system N; and N, which allows the precise determination
of quantities such as the spin gap and compressibility.

The drawback of studying such a finite system with open
boundaries is that it requires us to consider the interplay
between finite-size and finite-entanglement scaling [49]. As we
detail in the following, we find that our results are dominated
by finite-size effects rather than finite-entanglement artifacts,
and so we extrapolate only to L — oo for the largest value of
x used.

We show some typical finite-size extrapolations in Figs. 7(a)
and 7(b). In Fig. 7(a), we show the spin gap at o = 0.5,
n = 7/32 as a function of inverse system size 1/L for various
values of J/¢. The solid lines are quadratic fits for different
interaction strengths. The crosses are data points for different
system sizes and values of y = 100-500 (increasing x makes
almost no difference in the results and thus the multiple crosses
appear as a single cross). Similarly, we show the extrapolation
of the Luttinger parameter in Fig. 7(b), where the lines and
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crosses have the same meaning as in Fig. 7(a). In Figs. 7(d) and
7(e), we repeat these plots for the system parameters ¢ = 0.15,
n=1/2.

In Fig. 7(c), we show the nearest-neighbor singlet correla-
tion function at various system sizes for the same parameters
as in plots 7(a) and 7(b), while Fig. 7(f) shows the singlet
correlations for the same parameters as in plots 7(d) and 7(e),
with y = 300. We see a polynomial decay over a significant
range of distances r, after which an exponential tail develops.
Such exponential tails always appear due to finite size and
finite entanglement in some combination. The value of r at
which this exponential tail sets in increases as we increase

the system size. Furthermore, at these bond dimensions, the
typical truncation error is small (~10~*). We conclude that
at these bond dimensions, finite-size effects dominate over
finite-entanglement effects, and thus we extrapolate only in
L and not yx [49].

In all phase diagrams in this paper, we compute the ground
state at intervals of AJ = 0.1, and An = 1/16. For each quan-
tity which determines a phase boundary, a linear interpolation
is performed at the boundary of these grid squares to obtain
a set of approximate grid points for the phase boundary. We
then interpolate these points with a smoothed cubic spline to
produce the plotted contour lines.
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