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In this work, we introduce a new type of topological order that is protected by subsystem symmetries that act on
lower-dimensional subsets of lattice many-body system, e.g., along lines or planes in a three-dimensional system.
The symmetry groups for such systems exhibit a macroscopic number of generators in the infinite-volume limit.
We construct a set of exactly solvable models in 2D and 3D, which exhibit such subsystem SPT (SSPT) phases
with one-dimensional subsystem symmetries. These phases exhibit analogs of phenomena seen in SPTs protected
by global symmetries: gapless edge modes, projective realizations of the symmetries at the edge, and nonlocal
order parameters. Such SSPT phases are proximate, in theory space, to previously studied phases that break the
subsystem symmetries and phases with fracton order, which result upon gauging them.
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I. INTRODUCTION

Symmetry plays a pivotal role in distinguishing phases of
matter. The great majority of the phases seen in nature are
distinguished by different patterns of spontaneous symmetry
breaking. Recently, it has been appreciated that multiple phases
with the same unbroken global symmetry can also exist.
The new class of phases, which realize the unbroken global
symmetry in distinct ways, are known as symmetry-protected
topological (SPT) phases of matter.

The existence of multiple phases with the same unbroken
symmetry was first recognized for integer spin chains [1,2] and
polyacetylene [3], and generalized to any symmetry group in
1D [4–7]; such phases are characterized by symmetry protected
gapless boundary modes under open boundary conditions.
A similar phenomenon occurs in higher dimensions in band
insulators [8–10], interacting systems of bosons [11–13] and
fermions [14–20]. The unifying features of such phases are
unusual boundary modes whose existence is guaranteed as long
as the symmetry is unbroken.

A second class of phases beyond the broken symmetry
paradigm are the “topologically ordered” [21] phases like
superconductors [22], spin liquids, and quantum Hall phases,
which exhibit fractionalization in the bulk. These exhibit an
unbroken local symmetry/gauge invariance which is either
present microscopically or is emergent in the region of pa-
rameter space where they are absolutely stable [23].

However, this seemingly comprehensive picture of how un-
broken symmetry—global or local—can lead to distinct phases
of matter misses an interesting intermediate possibility, known
as subsystem symmetry. A subsystem symmetry consists of
independent symmetry operations acting on an extensively
large set of d-dimensional subsystems, with 0 < d < D for
a fixed D. For example, a d = 2 subsystem symmetry acts
on a planar region in the D = 3 dimensional system, while
a d = 1 symmetry acts along a line. As such, they have
also referred to as intermediate or gaugelike symmetries, as

they interpolate between global (d = D) symmetries and local
(d = 0) gauge symmetries. Theories with such symmetries
may display dimensional reduction [24] and arise, for example,
in models of spin and orbital degrees of freedom, such as
the Kugel-Khomskii model [25,26]; from Jahn-Teller effects
[26]; and in orbital compass models [27]—the last of which
in two dimensions is dual to the Xu-Moore model of p ± ip

superconducting arrays [27,28] (which we will introduce in
more detail later).

Subsystem symmetries have recently become a subject of
interest from an orthogonal direction, when it was discovered
that, in 3D, applying a generalized gauging procedure [29,30]
to models with such symmetries resulted in theories with
fracton order [30–35]—novel phases of matter character-
ized by subextensive topological ground-state degeneracy and
quasiparticle excitations with restricted mobility which have
been the subject of much recent research [30,36–52].

What are the possible phases of a model exhibiting subsys-
tem symmetry? It is well understood through Elitzur’s theorem
[53] that zero-dimensional (local or gauge) symmetries cannot
be spontaneously broken and gauge noninvariant observables
have strictly zero expectation value. As noted above, such
d = 0 symmetries can, however, lead to topologically ordered
phases, which are stable to arbitrary small perturbations if the
spectrum is gapped [54]. For d > 0 dimensional symmetries,
symmetry breaking is possible and a generalized Elitzur’s
theorem [24] instead bounds the expectation value of sym-
metry noninvariant observables by those of a d-dimensional
model. Thus d > 0 dimensional discrete symmetries can be
spontaneously broken and a concrete example, where a d = 2
subsystem Ising symmetry can be spontaneously broken at low
temperatures, was given in Ref. [55].

In this paper, we ask whether systems with subsystem
symmetry likewise admit multiple distinct symmetric phases in
which the symmetry is not spontaneously broken—which we
call subsystem symmetry protected topological (SSPT) phases
and find that the answer is in the affirmative. Specifically, we
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focus on d = 1 subsystem symmetries; in a companion paper
we will treat the case of d = 2. For these, we construct models
in three distinct classes: (i) for bosons with unitary subsystem
symmetries, (ii) for bosons with subsystem symmetries and
a nonunitary time-reversal symmetry, and (iii) for fermions
with subsystem fermion parity conservation and a global
time-reversal symmetry. The SSPT phases in these models ex-
hibit various interesting properties including entangled ground
states, protected gapless boundary modes, and a nonlocal order
parameter. These properties are closely analogous to those of
SPT phases, where the unbroken symmetry is global [56–60].
We also demonstrate that our phases are distinct from “weak”
SSPT phases constructed by suitably stacking 1D SPT chains
each with their own global symmetry, and weakly coupling
them in a manner respecting the subsystem symmetry. Finally,
for systems in class (i), we analyze a particular perturbation
that takes us out of the SSPT phase via a duality transformation.

The paper is organized as follows. In Sec. II, we intro-
duce a topological plaquette paramagnet, previously discussed
in the context of cluster states [61,62], which has gapless
nondispersing boundary modes protected by 1d Zsub

2 subsys-
tem symmetry. We identify a nonlocal membranelike bulk
order parameter that detects the “decorated defect condensate”
[57,63,64] nature of the ground state, and thus distinguishes
the topological and trivial phases. In Sec. III, we show that
a similar situation exists for higher dimensional SSPTs with
1d subsystem symmetries. Specifically, we introduce a model
with a 3D SSPT phase protected by 1d Zsub

2 symmetry with
protected gapless surface modes and a nonzero volumelike
order parameter. Next, we construct two types of exactly
solvable models with SSPT order protected by an antiunitary
symmetry. In Sec. IV, we introduce a spin system with subsys-
tem time-reversal symmetry T sub in both 2D and 3D. Akin to
the valence-bond ground state of the T invariant AKLT chain,
the ground state of this SSPT can be regarded as a valence
plaquette solid (2D) or valence cube solid (3D) with maximal
entanglement in each plaquette (2D) or cube (3D). Finally, in
Sec. V, we turn to fermionic systems, constructing an exactly
solvable model in 2D with subsystem fermion parity symmetry
and time reversal via the Fidkowski-Kitaev interaction [59].
We show that in this model the combined fermion parity and
time-reversal symmetries guarantee the existence of a gapless,
nondispersing boundary mode.

II. Zsub
2 1d SYMMETRY IN 2D

A. Trivial paramagnet

We start by reviewing the Xu-Moore model [27,28], which
we will refer to as the “plaquette Ising model” (PIM). The
model consists of Ising spins on the sites of an L × L square
lattice, governed by the Hamiltonian

HPIM = −
∑

ijkl∈P

σ z
i σ z

j σ z
k σ z

l − �
∑

i

σ x
i , (1)

where σ
z,x
i are Pauli matrices for spins located at site i, P

refers to a square plaquette, and ijkl ∈ P to the four sites at
the corners of the plaquette. The first term is the four spin
plaquette interaction, while the second term is the external
transverse field. While the conventional Ising model contains

only a global Z2 symmetry, the PIM contains subextensively
many d = 1 subsystem Z2 symmetries. These symmetries
corresponding to flipping all spins σ z

i → −σ z
i along any row or

column, which leave the Hamiltonian invariant. We therefore
have Lx + Ly − 1 unique Zsub

2 symmetry operators, where
the superscript serves as a reminder that we are dealing with
subsystem symmetry, and the −1 comes from the fact that
flipping all columns is the same as flipping all rows.

For small � and zero temperature, this model enters a
spontaneous symmetry broken ordered phase where all spins
align such that every plaquette term in the Hamiltonian is
satisfied. The ground state is 2Lx+Ly−1-fold degenerate, and
consists of spin states related to the trivial z-polarized state by
applications of the subsystem symmetry.

In the opposite limit, � � 1, the ground state is the
unique paramagnetic phase with all spins polarized, σx

i = 1.
In the z basis, such a state is an equal superposition of all
possible configurations of σ z

i . The paramagnetic ground state
of the PIM contains no entanglement, and will sometimes be
referred to as the topologically trivial paramagnet. We now
describe two distinct paramagnetic phases protected by the
Zsub

2 symmetry—these are our first examples of SSPTs.

B. Weak SSPT

We first illustrate the construction of a “weak” SSPT
phase. Such phases may be adiabatically continued to a state
consisting of decoupled 1D SPT chains without closing the
gap or breaking any of the subsystem symmetries.

1. 1D Z2 × Z2 SPT

First, we review the 1D cluster Hamiltonian, whose ground
state describes an SPT phase protected by a global Z2 × Z2

symmetry [57]. We take a chain and label the two sublattices
A and B. For each site i on the A (B) sublattice, we have a
spin-1/2 degree of freedom on which the Pauli matrices σ

x,y,z

i

(τ x,y,z

i ) act. The Hamiltonian is given by

H1d = −
∑
i∈A

τ z
i−1σ

x
i τ z

i+1 −
∑
i∈B

σ z
i−1τ

x
i σ z

i+1. (2)

This system possesses a global Z2 × Z2 symmetry which
consists of flipping all σ z or all τ z spins and is generated by the
operators

∏
i∈A σx

i and
∏

i∈B τx
i . The ground state is Z2 × Z2

symmetric and in the {σ z
i ,τ x

i } basis, it is an equal superposition
of all possible {σ z

i }, but with domain walls σ z
i−1σ

z
i+1 = −1

decorated by a τ x
i = −1 (τ x = +1 otherwise). As there is one

term in the Hamiltonian that must be satisfied per site, this
ground state is unique for periodic boundary conditions.

One can see that this phase belongs to a nontrivial topologi-
cal phase by observing that introducing a boundary produces a
twofold degeneracy that cannot be broken (while preserving
the symmetry). Furthermore, the action of the symmetry
localized at one edge realizes a projective representation of
the symmetry group Z2 × Z2.

Let us consider an open system of length L and suppose
that both edges are terminated by a σ spin (for demonstration
purposes). We also exclude any term in the Hamiltonian that is
not fully contained in the system, to ensure that no symmetry is
broken. Notice however, that there are now only L − 2 terms
in the Hamiltonian, while there are L spins, and so we now
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have a 22-fold degeneracy (2 from each edge). We may define
two sets of Pauli matrices located at the left and right edges,

πz
l = σ z

1 , π
x,y

l = σ
x,y

1 τ z
2 , (3)

πz
r = σ z

L, πx,y
r = τ z

L−1σ
x,y

L , (4)

which obey the Pauli algebra and commute with every term in
the Hamiltonian.

It is straightforward to show that

∏
i∈A

σx
i = πx

l πx
r , (5)

∏
i∈B

τx
i = πz

l π
z
r (6)

on the ground-state manifold, using the fact that the ground
states are eigenstates of every term in the Hamiltonian. Thus
the action of the symmetries can be factored into operations
acting on the left and right edges separately.

When the global symmetry factors in this way, it is possible
for the symmetry at one boundary (say the left one) to act
projectively, i.e., with phases that are not present in the action
of the global symmetry itself [6,7]. Such phases could arise
by simply redefining the symmetry action at the left boundary
by a phase (say πx

r → eiαπx
r ), and the symmetry action at the

right boundary by the conjugate phase πx
l → e−iαπx

l ). Such
arbitrary phase factors clearly do not tell us anything about the
underlying physics, and are not associated with true projective
representations. However, Eqs. (5) and (6) exhibit a different
type of phase, since at a given edge, the operators associated
with global σ spin flips and global τ spin flips anticommute.
The resulting phase cannot be eliminated by the phase choice
described above (which will only move it from one symmetry
process to another). Thus this anticommutation indicates that
the symmetry group Z2 × Z2 is realized projectively at each
edge.

To see how this projective nature protects the boundary
degeneracy, suppose we add arbitrary perturbations that do
not break any symmetry. We may always project on to the low
energy subspace of H1d to observe how the perturbation acts
on the low energy manifold. Any perturbation localized on the
left edge cannot break the degeneracy, as it must commute
with both πx

l and πz
l (and similarly for the right edge). In order

to break the degeneracy in the thermodynamic limit, one must
either break the symmetry or introduce a nonlocal perturbation
(or undergo a bulk phase transition).

2. Zsub
2 Weak SSPT

To construct a “weak” SSPT phase, let us align stacks of
1D Z2 × Z2 SPTs previously discussed along both the x and
y directions, such that each site of the resulting square lattice
contains two σ or two τ spins from two intersection 1D chains.
We then consider the whole 2D system, and call the Z2 × Z2

symmetry of each individual chain our subsystem symmetries,
such that our total symmetry group is now (Zsub

2 × Zsub
2 )Nchains ,

where Nchains is the total number of 1D chains in our system.
The chains may then be coupled weakly in a way that respects
all the subsystem symmetries.

FIG. 1. The terms in the TPIM Hamiltonian. The Pauli spins τ,σ

live on the red/blue sites. The interaction σ z
i σ z

j σ z
k σ z

l τ x involves the
four σz spins on the blue plaquette and the τx in the middle. The
interaction τ z

i τ z
j τ z

k τ z
l σ x involves the four τz spins on the red plaquette

and the σx in the middle.

Now suppose we have an open system with dimensions L

and boundaries along the x or y direction. Each SPT chain
that is cut produces a twofold degeneracy at its end. Thus our
system as a whole has a subextensive ground-state degeneracy,
growing as 2O(L), that cannot be broken with local symmetry-
respecting perturbations. Next, to consider the projective rep-
resentation of the symmetry at an edge, consider a boundary
along the x direction on which 2� subsystems terminate
(2 for each of � columns). As discussed in the previous section,
we have a projective representation of Zsub

2 × Zsub
2 for each

column.
We should note that the microscopic action of the symmetry

in this weak SSPT is fundamentally different from the 2D

strong SSPT to be described next. Although the subsystem
symmetry along the rows and columns overlap spatially, they
act on distinct physical spins. Thus, although each site is acted
on by two different subsystem symmetries, each spin is only
flipped by one. In the strong SSPT to be introduced, as well as
in the trivial plaquette paramagnet, each spin shall be flipped
by two distinct symmetries.

C. Zsub
2 Strong SSPT

Next, we study a 2D cluster Hamiltonian introduced by
Ref. [61], and show that it realizes a strong SSPT, which we
refer to as topological plaquette Ising model (TPIM). The
Hilbert space consists of Ising spins on sites of the square
lattice. For clarity, we will separate these into two spin flavors,
σ and τ , located at the sites of the A and B sublattices,
respectively. The Hamiltonian is given by

HTPIM = −
∑

ijklm∈PA

σ z
i σ z

j σ z
k σ z

l τ x
m −

∑
ijklm∈PB

τ z
i τ z

j τ z
k τ z

l σ x
m,

(7)

where the sum is over all PA (PB), which refer to five-site
clusters consisting of a site on the A (B) sublattice and its four
nearest neighbors, with each site labeled by ijklm as illustrated
in Fig. 1. The first term is a sum over products of a τ x and its
four surrounding σ z, and vice versa for the second. As all local
cluster-operators commute with each other, the Hamiltonian
contains extensively many conserved quantities and is exactly
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FIG. 2. Ground state of the TPIM. The blue lines denote domain
walls for σ spins, where σz = +1(−1) outside/inside a domain. The
corners of these domains are decorated by a τ x = −1 spin, indicated
by the red arrows. The ground state is an equal superposition of all
such configurations.

solvable. Indeed, the ground state of this Hamiltonian is the
well studied 2D cluster state on the square lattice [61]. In
addition, the model has Zsub

2 symmetry, as the Hamiltonian
commutes with the operators

∏
diag σx and

∏
diag τ x , which

flips σz → −σz or τz → −τz along a particular diagonal (see
Fig. 3).

To understand the ground state of this Hamiltonian, we work
in the σ z and τ x basis. The first term in the Hamiltonian means
that τ x

m = σ z
i σ z

j σ z
k σ z

l for ijklm ∈ Pa . That is, plaquettes where
the product σ z

i σ z
j σ z

k σ z
l = −1 are decorated with τ x = −1,

otherwise τ x = +1 (such plaquettes appear at the corner of
a domain wall, as illustrated in Fig. 2). The second term in the
Hamiltonian flips a single σ z, and the surrounding τ x appro-
priately, transitioning between two valid configurations. Thus
the ground state of HTPIM can be described as a superposition
of all possible {σ z} configurations, with the corners of each
domain wall decorated with τx = −1, as shown in Fig. 2. This
is similar to the decorated defect construction for 2D global
SPT phases [57,63,64].

Finally, we note that the TPIM Hamiltonian can be per-
turbed with a subsystem symmetry-preserving term, the sim-
plest of which is an on-site transverse field:

H = HTPIM − �
∑
i∈a

σ x
i − �

∑
i∈b

τ x
i . (8)

As we show in Appendix B, this Hamiltonian admits a duality
transformation to two copies of the PIM, whith the SSPT
phase being mapped to the phase with spontaneously broken
subsystem symmetry. The latter is known to have a 4Lx+Ly−1-
fold degeneracy due to the 4Lx+Ly−1 spontaneously broken
Ising symmetries. We will see presently that our SSPT phase
has the same degeneracy, resulting from gapless boundary
modes. As discussed in Appendix, the model is also self-dual,
with � ↔ �−1. From these mappings, we learn that when the

FIG. 3. The dark blue line gives an example of a subsystem: a
single row on sublattice A (where we call the spin operator σ ). The
green square indicates the boundary of the membrane order parameter,
which involves product of σz(blue) at the corner of the membrane and
product of τx(red) inside the membrane.

perturbation reaches � = 1, the model exhibits a first order
transition [65,66] to (two copies of) the trivial Zsub

2 paramagnet.
While there is no local order parameter for distinguishing

the TPIM and PIM ground states, there exists a string order
parameter [62], which can be straightforwardly generalized to
a fully two-dimensional membrane order parameter O,

O =
〈∏

i∈C
σ z

i

∏
i∈M

τ x
i

〉
. (9)

Here, C refers to the A sites on the corners of the membrane
and M contains all B sites inside the membrane, as depicted
in Fig. 3. Taking the membrane size to infinity, this order
parameter approaches a constant in the SSPT phase, and
zero in the trivial subsystem symmetric phase. This nonlocal
membrane operator captures the decoration of the domain wall
corners and can serve as a numerical signature to detect the
topological plaquette paramagnet.

Edge states

A distinctive feature of SPT states in one and two dimen-
sions is the existence of gapless symmetry-protected boundary
modes, which cannot be gapped unless the global symmetry
is broken [8,11,13]. Here we show that the SSPT paramagnet
similarly has nondispersing gapless boundary modes protected
by the subsystem symmetry, which leads to a subextensive
ground-state degeneracy in the presence of an edge.

Our argument will proceed as follows. We first consider
the system with an edge, and simply omit terms in HTPIM that
are not fully contained in the bulk of the system. Looking at
what lives on the edge, we find that this leaves a free spin-1/2
degree of freedom per unit length along the boundary. We then
ask whether other local terms commuting with the symmetries
(whether or not they commute with HTPIM) can be added to lift
this degeneracy along the edge, to which the answer is no. We
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FIG. 4. Red ovals show the physical spins that take part in the edge
operators πα

i , and form a spin-1/2 degree of freedom at the edge. The
action of the subsystem symmetries (green lines) on the ground-state
manifold may be expressed in terms of such πα

i operators. Near
a corner of the type shown here, the symmetry becomes a local
symmetry, and the corresponding boundary modes can be gapped
out.

therefore conclude that this system has a symmetry protected
twofold degeneracy per unit length along the edge.

First, let us consider a horizontal/vertical edge as shown in
Fig. 4. Along this edge, we may pick two-spin clusters (red
ovals in Fig. 4), which each contain a τ and a σ spin. These
spin clusters create a free spin 1/2 degree of freedom on each
site along the edge. To see this, observe that for each edge site
with a τ spin at the surface, we have the three edge operators

πx = σ zτ x, πy = σ zτ y, πz = τ z (10)

and likewise, for odd edge sites with σ spin at the surface, we
have

πx = τ zσ x, πy = τ zσ y, πz = σ z. (11)

As for the 1D Z2 × Z2 SPT [7,67], these operators satisfy
the Pauli algebra on the surface, and commute with the bulk
Hamiltonian HTPIM. By counting degrees of freedom, we can
see that there exists a 2L-fold degenerate ground-state manifold
arising due to the presence of the edge of length L, which these
L Pauli operators act on.

This edge degeneracy in fact cannot be broken with local
interaction while preserving all subsystem symmetries, and
leads to a completely flat-band dispersion along the edge. To
see this, we may use the same argument as we used before
for the 1D SPT, and consider the action of the subsystem
symmetries on the ground-state manifold in terms of these πα

i

operators. Considering only the action on a single edge, for
each site i along the edge, there exist two symmetries which
act as S

(1)
i = πz

i π
x
i+1 and S

(2)
i = πx

i πz
i+1 along that edge.

Notice that in our description of the low-energy Hilbert
space at a single edge, there are neighboring symmetry opera-
tors [S(1)

i and S
(1)
i+1, for example] that do not commute. This is

an artefact of restricting our attention to a single edge at a time:
the full symmetry acts simultaneously on pairs of edges of the
system, such that the symmetry operators applied to the system
as a whole do commute. However, much as for the AKLT chain
[6] and our 1D SPT earlier, this apparent noncommutativity
reflects the fact that the symmetry group is realized projectively

FIG. 5. The spins in the blue rectangle are involved in the edge
operators πα

i , in the case of a 45◦ edge.

at the boundary. While the form of these edge operators will
depend on our definition of πα

i and the microscopic details of
the edge cut, their noncommutativity is independent of such
details (to see this, notice that one is free to make any type
of cut at the other edge, and that the symmetry as a whole is
realized linearly).

We may then ask whether terms may be added to the
Hamiltonian that can break the degeneracy of the ground-state
manifold (away from the corners). Any term which we add
to the Hamiltonian respecting all symmetries, projected to the
degenerate subspace perturbatively via the effective Hamilto-
nian, must still commute with all symmetries in the effective
Hamiltonian. It is easy to see that no local (nonidentity) term
can be written down along this edge which commutes with
all S

(1,2)
i , and therefore the effective Hamiltonian along this

edge must be trivially proportional to identity. Indeed, any
state that respects all of these symmetries must have a twofold
degeneracy per unit length along the edge.

Near 90◦ corners of this type, however, a gap may be opened.
This can be seen by noting that some subsystem symmetries
(which go diagonally) essentially become local symmetries
near the corners as Fig. 4. Thus the symmetries themselves and
products thereof (which commute with all other symmetries
and are local near the corners) may be included as terms in the
effective Hamiltonian, thus lifting the exact degeneracy.

A similar argument applies for an edge cut along the 45◦
direction. The edge π degrees of freedom are now composed
of three spin clusters, depicted in Fig. 5, given by

πx = τ zσ xτ z, πy = τ zσ yτ z, πz = σ z (12)

for the cluster with a σ at the edge (and similarly for the clusters
with τ on the edge, with σ ↔ τ ). Similar to the earlier cut, there
are two symmetries per site along the edge which act in the
effective edge Hamiltonian as S

(1)
i = πx

i and S
(2)
i = πz

i π
z
i+1,

along with the symmetry that acts globally along the edge as∏
i π

x
i . As before, there are no local terms that can be added

to the Hamiltonian respecting all symmetries, and thus there
is a degeneracy along this edge protected by the subsystem
symmetries.

D. Distinctions between weak and strong SSPTs

At this stage, we would like to comment on the differences
between the weak SSPT phase obtained from stacking 1D

SPTs, and the strong 2D SSPT. We note that in the two
explicit models discussed above, the subsystem symmetries
are different; in the weak SSPT, each spin is flipped either by a
horizontal or by a vertical subsystem symmetry. In the strong
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SSPT, in contrast, each spin is flipped by both a horizontal and
a vertical subsystem symmetry. Since the symmetries in these
two models differ, prima facie there can be no path between
the two ground states that preserves all symmetries. A more
subtle question is whether the TPIM is intrinsically distinct
from the weak SSPT phase, or whether the difference noted
above is an artefact of our particular construction.

In 1D, it is known [5,7,68] that two distinct phases with the
same unbroken symmetry realize different projective represen-
tations of this symmetry at their boundaries. Briefly reviewing
the 1D SPT with global Z2 × Z2 symmetry from Sec. II B 1, we
found that the symmetry action on the ground-state manifold,
may be decomposed into operators acting on the left and
right edges separately, which inevitably anticommuted among
themselves. These two sets of operators therefore generate a
projective representation of Z2 × Z2, which can be charac-
terized by these anticommuting operators. Returning to our
prior discussion, we may ask what projective representation
of Zsub

2 is realized along the edge of our 2D system of weakly
coupled 1d SPT chains. Here we find that the edge action of the
generators of our total symmetry group (Z2)Nsub , where Nsub

is the total number of subsystems terminating along the edge,
can be decomposed into Nsub/2 pairs, which each locally form
the projective representation of Z2 × Z2 described above.

For the strong SSPT however, we find that the edge action
of the symmetries is quite different. In Sec. II C 1, we found
that the symmetries acting on the edge, in terms of edge
degrees of freedom πα

i , behaved as πx
i π

y

i+1 and π
y

i πx
i+1 for

a vertical/horizontal cut, or as πx
i and πz

i π
z
i+1 for a diagonal

cut. In either case, we notice that each symmetry operator
anticommutes with two neighboring operators. This is in
contrast with the boundary of the weak SSPT, where each
operator anticommuted with only one other. In other words,
the boundary of the strong SSPT phase cannot be obtained
from decoupled 1D SPTs. In Appendix A, we present a more
general calculation indicating for which subsystem symmetry
groups such projective representations exist, guaranteeing that
the weak and strong SSPT phases have different symmetry
realizations at their boundaries. Notably, we find that such
representations do not exist for familiar continuous symmetry
groups such as U(1), SU(2), or SO(3).

The projective representation realized along the edge is
therefore obviously distinct from that of the decoupled chains.
Thus our strong Zsub

2 SSPT must exist as a distinct phase from
any weak SSPT with the same symmetries.

Response to flux insertion

We now turn to a different approach to distinguish the weak
and strong SSPT phases—via their response to flux insertion.
For the 1D Z2 × Z2 SPT chain in Eq. (2), one can gauge one of
the Z2 symmetries by coupling the Ising spin with a Z2 gauge
connection �z = eiAx living on the link between two nearest
σ spins,

σ z
i σ z

i+1τ
x
i+1/2 → σ z

i �z
i,i+1σ

z
i+1τ

x
i+1/2. (13)

We now place the SPT chain on a ring and make a large gauge
transformation by inserting a π gauge flux through the ring

FIG. 6. The SPT chain with antiperiodic boundary conditions in
σ z (and periodic boundary conditions in τ z). τ z is identified on the
two sites connected by the green line, while σ z changes sign as the
green line is crossed.

[69] by requiring

ei
∫

dxAx =
∏

i

�z
i,i+1 = −1 . (14)

The flux insertion imposes an antiperiodic boundary condition
σ z

1 = −σ z
n , as shown in Fig. 6.

Periodic boundary conditions enforce an even number of
domain walls for σ z along the chain, so that the total Z2 charge
due to the τ x spins decorating the domain walls along the chain
is also even. Once we impose antiperiodic boundary conditions
in σ z, there are an odd number of domain walls along the chain.
In this case the decorating charge, which we can measure via
the charge parity operator,

L = eiπ[
∑

i (1−τ x
i )/2] (15)

is also odd.
For the weak SSPT built from aligned 1D SPT chains,

we can gauge the “subsystem Z2 symmetry” by imposing
antiperiodic boundary conditions for a specific chain. (Since
each chain has its own Z2 × Z2 symmetry, here it makes sense
to consider changing the boundary conditions of the chains
individually.) This would change the τ x-charge parity of only
the affected chain.

Now we turn to the case of the strong Zsub
2 SSPT state. To

gauge the part of Zsub
2 associated with σ , we are led to introduce

a rank-2 gauge connection �z = eiAxy in the center of each
plaquette [30,35,49,50,53], and couple the gauge connection
with the four spins on the plaquette via

σ z
i,j σ

z
i,j+1σ

z
i+1,j σ

z
i+1,j+1τ

x

i+ 1
2 ,j+ 1

2

→ σ z
i,j σ

z
i,j+1σ

z
i+1,j σ

z
i+1,j+1τ

x

i+ 1
2 ,j+ 1

2
�z

i+ 1
2 ,j+ 1

2
. (16)

Consider placing the SSPT state on a cylinder with periodic
boundary conditions in x and open boundary conditions along
y. The analog of flux insertion for our rank-2 gauge connection
is to insert π flux between the j − 1/2-th and j + 1/2-th rows,

By(j ± 1/2) = ei
∫

dxAxy =
∏

i

�z

i+ 1
2 ,j± 1

2
= −1. (17)

This imposes antiperiodic boundary conditions for the j -th
row, σ z

1,j = −σ z
n,j , as in Fig. 7. Meanwhile, other rows still

have periodic boundary conditions. This effectively changes
the sign of the two plaquette terms containing sites 1,j and
n,j (indicated by the green dashed squares in Fig. 7):

σ z
1,j σ

z
1,j+1σ

z
n,j σ

z
n,j+1τ

x
1
2 ,j+ 1

2

→ −σ z
1,j σ

z
1,j+1σ

z
n,j σ

z
n,j+1τ

x
1
2 ,j+ 1

2

σ z
1,j σ

z
1,j−1σ

z
n,j σ

z
n,j−1τ

x
1
2 ,j− 1

2

→ −σ z
1,j σ

z
1,j−1σ

z
n,j σ

z
n,j−1τ

x
1
2 ,j− 1

2
. (18)
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FIG. 7. (Left) Imposing antiperiodic boundary conditions for
σ z

1,j = −σ z
n,j (green sites) by inserting higher rank gauge flux. This

switches the charge parity L (red dashed lines) on the rows at
y = j ± 1/2, and effectively switches the sign of two plaquette terms
in the Hamiltonian (indicated by the green dashed squares). (Right)
Imposing antiperiodic boundary conditions inside the blue shaded
membrane region. This switches the charge parity L (red dashed lines)
on the rows at the boundary of the membrane.

With periodic boundary conditions, the system has an even
number of domain wall corners along each row/column, and
the total τ charge along each row/column is even as well.
Imposing the antiperiodic boundary condition at a specific row
σ z

1,j = −σ z
n,j changes the number of domain wall corners in

rows j ± 1/2 (see Fig. 7) from even to odd, which also switches
the parity of the τ charge, defined by

L(y = j ± 1/2) = eiπ[
∑

i (1−τ x
i,j±1/2)/2]. (19)

Thus for the weak SSPT, we find that twisting the boundary
condition in a single row leads to a response in that row,
while for the strong SSPT, we see a response in a pair of
adjacent rows. This difference in response of the weak and
strong SSPT phases can be seen more clearly if we apply
antiperiodic boundary conditions to all rows in a finite-width
strip, as shown in Fig. 7. For the strong SSPT, this alters the
gauge field configuration only on the border of the membrane,
and switches the charge parity only in the corresponding two
rows (red dashed lines in Fig. 7). For the weak SSPT state,
however, this operation changes the tau-charge parity on every
row inside the membrane. This charge parity response under
twisted boundary conditions could be used as a computational
identification of the SSPT phase.

E. Zsub
n × Zsub

m SSPT phases

Besides Zsub
2 , there are also other subsystem symmetry

groups for which a strong SSPT phase exists and we get
projective representations for a boundary which cannot be
generated from copies of projective representations for smaller
systems. In Appendix A, we show that this is possible in general
for discrete Abelian groups others, such as Zn or Zn × Zm,
because a certain torsion term in their group cohomology
is nonvanishing. [The relevant torsion vanishes for familiar
continuous groups, such as SO(2), SO(3), or U(1), and we do
not know of a model realizing d = 1 SSPT phases for these.]
Here, we provide an explicit construction for one such strong
SSPT phase, which is protected by Zsub

n × Zsub
m symmetry.

We replace τ and σ spins by n and m dimensional degrees
of freedom, on which we introduce local Zn operators Z and
X satisfying

Xn = Zn = 1, (20)

XZ = ωZX (21)

with ω = e2πi/n, and similarly Zm operators Z̃ and X̃ with
ω̃ = e2πi/m.

Then, assuming n and m have a nontrivial greatest common
divisor q = gcd(a,b) �= 1, one can write the Hamiltonian

H = −
∑

ijklm∈Pa

(Z̃i Z̃
†
j Z̃kZ̃†

l )
mz
q Xm + H.c.

−
∑

ijklm∈Pb

(ZiZ
†
j ZkZ†

l )
nz
q X̃m + H.c. (22)

for any integer z, which consists of mutually commuting terms
and is therefore exactly solvable. One may verify that each
choice of z = 1, . . . ,q corresponds to a different projective
representation of the subsystem symmetries along the edges.

III. 3D TOPOLOGICAL CUBIC PARAMAGNETIC PHASE

In this section, we show how a d = 1 subsystem symmetry
can lead to new SSPT phases in three dimensions. We illustrate
this by constructing an exactly solvable Hamiltonian with
Zsub

2 subsystem symmetry. As for our two-dimensional model
above, this model has symmetry-protected nondispersing gap-
less boundary modes, an entangled ground state, and can be
detected via a nonlocal order parameter.

As before, we start with the trivial cubic paramagnet, given
by the Hamiltonian

HCIM = −
∑
C

∏
i∈C

σ z
i − h

∑
i

σ x
i , (23)

which we refer to as the Cubic Ising model (CIM). The σ

spins lie on the sites of a simple cubic lattice. The sum over C

sums over cubes, and i ∈ C refers to the 8 spins on the same
cube. The first term involves an eight-site interaction on a cube
and the second term is the transverse field. This Hamiltonian
contains d = 1 subsystem Zsub

2 symmetries, which involve
flipping σz → −σz along a line in either the x, y, or z direction.
There are

D = LxLy + LyLz + LzLx − Lx − Ly − Lz − 2 (24)

independent operators on an LxLyLz torus. For h � 1, the
ground state spontaneously breaks these symmetries and is
2D-fold degenerate, and for h � 1, the system is in its trivial
paramagnetic phase with σx

i = 1.
We can now create the topological cubic paramagnetic

state by condensing appropriately decorated domain surfaces,
similar to our construction in 2d. The resulting model can
be regarded as the cluster Hamiltonian on the body centered
cubic (BCC) lattice. The BCC lattice can be regarded as two
displaced simple cubic lattices, labeled by the blue/red sites
in Fig. 8, which we call the A and B sublattices, respectively.
Each lattice site contains a spin-1/2 degree of freedom, and for
convenience we label the spins on the blue sites σ , and those
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FIG. 8. The BCC lattice on which the TCIM is defined. Spin-
1/2 degrees of freedom σ (τ ) live on the blue (red) sublattice, each
of which form their own simple cubic lattice. The spin interactions
involve the eight spins on a cube of one sublattice and one from the
other.

on the red sites τ . The Hamiltonian is given by

HTCIM = −
∑

ijklmnopq∈CA

σ z
i σ z

j σ z
k σ z

l σ z
mσ z

nσ z
o σ z

pτ x
q

−
∑

ijklmnopq∈CB

τ z
i τ z

j τ z
k τ z

l τ z
mτ z

nτ z
o τ z

pσ x
q . (25)

Here, CA (CB) refers to a site on the A (B) sublattice and
its eight nearest neighbors, labeled by ijklmnopq as depicted
in Fig. 8. This Hamiltonian is again composed of commuting
terms and is therefore exactly solvable. The subsystem sym-
metry in this case corresponds to flipping all σ z or τ z spins
along a line in the x, y, or z direction, which we implement as∏

i∈line σx
i or

∏
i∈line τ x

i .
The ground-state wave function is illustrated in Fig. 9. It can

be regarded as an equal amplitude superposition of all possible
{σ z

i } configurations on the A sublattice, with τ x
q = −1 at the

center of cubes for which
∏

σ z
i = −1, and τ x = +1 elsewhere.

Pictured in terms of domain wall surfaces separating regions

FIG. 9. Ground state of the TCIM as a superposition of all domain
wall configurations for σ spins. The blue blocks represent domain
walls; σz changes from +1 to −1 across the domain wall. Each corner
of the domain wall is decorated with τx = −1.

FIG. 10. Geometry of the surface spin operators πα
i for the TCIM.

on the A sublattice with σ z = +1 from those where σ z = −1,
this gives a τ x

i = −1 at each site on the B sublattice with an
odd number of domain wall corners. These sites are indicated
by red spins in Fig. 9.

We may perturb this model with transverse σx and τ x fields;
when dominant these drive the system into a trivial Z2 × Z2

paramagnet. As for the 2D model, a duality transformation
maps this transition to the SSPT-breaking transition in a 3D

version of the PIM (see Appendix B). We may distinguish
the SSPT and trivial paramagnetic phases via a volume order
parameter,

V =
〈∏

i∈C
σ z

i

∏
i∈V

τ x
i

〉
, (26)

which is nonvanishing in the SSPT phase, but vanishes rapidly
with the volume in the trivial paramagnetic phase. Here, C
refers to A sites on the corners of a cubic volume and V refers
to the B sites in the enclosed volume. This nonlocal volume
order parameter captures the decoration of the domain wall
corners and serves as a numerical signature of the SSPT phase.

For much the same reason as in 2D, the surface of this SSPT
phase has dispersionless gapless modes. For example, consider
the surface depicted in Fig. 10. We first take the Hamiltonian
[25] and simply exclude terms for which the cube is not fully
included in our system, as these break the subsystem symmetry.
Omitting these leaves a spin-1/2 degree of freedom per site on
the surface, described by the π Pauli matrices

πx = τ z
i τ z

j τ z
k τ z

l σ x
m,πy = τ z

i τ z
j τ z

k τ z
l σ y

m,πz = σ z
m (27)

with i, j, k, l, and m as depicted in Fig. 10. These surface spin
operators commute with all terms in the bulk Hamiltonian,
so each site on the surface has a twofold degeneracy. As was
the case in 2D, though the subsystem symmetry operators on
the system as a whole commute, their action on the degenerate
Hilbert space at a single surface is effectively noncommutative.
Thus, by the same argument that applies in the 2D case, there
is no operator that can be added to the effective Hamiltonian
at the surface to lift the degeneracy without breaking the Zsub

2
symmetry.
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IV. SUBSYSTEM SPT WITH T sub SYMMETRY

In the previous sections, we discussed SSPT models with a
discrete Z2 × Z2 (or more generally, Zm × Zn) symmetry, for
which the ground state can be viewed as a “decorated domain
corner” phase, analogous to the decorated domain wall con-
struction of global SPT phases [57]. However, this construction
cannot be applied to the case of a single-component discrete
symmetry. To show that such symmetries can also lead to d = 1
SSPTs, in this section, we will present models in D = 2 and 3
that realizes a form of subsystem time-reversal (T ) symmetry.

Time reversal is a natural symmetry choice for d = 1
SSPTs, since it is arguably the simplest symmetry for which
a 1D SPT phase exists [1,70]. Thus an array of decoupled
AKLT [70] chains (each of which realizes the 1D time-reversal
protected SPT [5]) has a subsystem symmetry in which T acts
on each chain individually, leading to a T protected Kramers
doublet at the end of each chain.

However, a subtlety arises in defining antiunitary subsystem
symmetry once we weakly couple these chains—as we must
even for weak 2D SSPT phases. For a spin 1/2 system,
the T = Kiσy operator is a combination of the spin rotation
operator Ry = iσy and complex conjugation K (which acts on
any numerical factors). Thus, in the weakly coupled model, the
action of K cannot be factored into a product of terms acting
on separate subsystems, as the coupling introduces numerical
factors that cannot be assigned to a single subsystem. We
therefore define “subsystem time-reversal symmetry” (T sub)
to mean symmetry under a subsystem spin rotation R

y

sub =∏
j∈sub (iσ y

j ) acting on all spins in the subsystem “sub,” and
global complex conjugationK. As a result, the T sub we defined
is more like a subsystem Z2 together with global time reversal.

As we will see, this definition does allow both weak and
strong SSPT phases, but with a very different type of protected
boundary state than in the case of decoupled chains. Further,
unlike in the models discussed above, here weak and strong
SSPTs do not harbor different projective representations at
their boundaries, but instead must be distinguished by their
different bulk symmetry responses.

A. 2D valence plaquette solid with T sub symmetry

Our 2D model lives on a checkerboard lattice with two 1/2
spins on each site, as shown in Fig. 11. Each spin interacts with
one of the two red plaquette clusters Pi adjacent to the site. This
guarantees that, in the limit that there is no on-site interaction
between the spins, the Hamiltonian is a sum of nonoverlapping
(and therefore commuting) plaquette clusters:

H =
∑
Pi

LPi
,

LP = |α〉〈α|. (28)

Here, LPi
is the plaquette cluster interaction for each

individual red plaquette, which is chosen as follows. First, it
must have a unique ground state to ensure that the bulk is
gapped. Second, it must be real, and invariant under acting
with iσ y on neighboring pairs of spins. Here, we choose the

FIG. 11. Our T sub SSPT model lives on the checkerboard lattice
with two 1/2 spins per site. Each red plaquette hosts a four-spin cluster
interaction. A given spin participates only in one of the two cluster
interactions on neighboring plaquettes.

pairs to be along the edges of the square, giving

|α〉 = 1√
2

(|0〉12|1〉34 − |1〉12|0〉34)

= 1√
2

(|0〉13|1〉24 − |1〉13|0〉24), (29)

where we have defined

|0〉ij ≡ 1√
2

[|↑〉i |↓〉j − |↓〉i |↑〉j ],

|1〉ij ≡ 1√
2

[|↑〉i |↑〉j + |↓〉i |↓〉j ]. (30)

Note that the expression for |α〉 is the same whether we pair
sites as (1,3),(2,4) or as (1,2),(3,4).

Since the Hamiltonian is real, T sub symmetry acts by
rotating all spins along the line by iσ y :(

iσ
y

i

)
: |0〉ij → |1〉ij ,|1〉ij → −|0〉ij ,(

iσ
y

j

)
: |0〉ij → −|1〉ij ,|1〉ij → |0〉ij ,(

iσ
y

i

)(
iσ

y

j

)
: |0〉ij → |0〉ij ,|1〉ij → |1〉ij . (31)

Thus T sub along the line covering sites 1,2 takes |α〉 → |α〉,
and both the Hamiltonian and its ground state are both invariant
under T sub symmetry.

1. Protected gapless boundary modes

When only plaquette projectors are included, each edge
contains a spin-1/2 per site which is completely decoupled
from the bulk. From Eq. (31), we see that the spin at site
i behaves like a Kramers doublet under the antiunitary T sub

symmetry, where the subsystem is a line that intersects the
edge at site i. Since this line will also intersect another
boundary, globally (T sub)2 = +1—but on a single edge it acts
projectively, via (T sub)2 = −1.

In a system of decoupled AKLT chains, where the full
time-reversal symmetry may act on each chain individually,
this Kramers degeneracy per site on the boundary is protected
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by the individual time-reversal symmetries [70]. However, in
the coupled system (whether the weak SSPT phase, or the
Hamiltonian given above), where the complex conjugation
must be taken to be global, these symmetries are no longer
independent: if i and j denote subsystems that intersect the
same edge at sites i and j , respectively,

T sub
j = T sub

i Uij , (32)

whereUij = R
y

sub,iR
y

sub,j is a unitary symmetry transformation,
meaning that it is a product of an even number of antiunitary
subsystem symmetries. Thus our T sub symmetry contains a
single antiunitary symmetry (which we many take to be T sub

1 ),
together with a collection of unitary subsystem symmetries.
Unless the unitary symmetries are realized projectively—
which is not the case for the model considered here—T sub

1
can ensure only that a single Kramers pair is protected on each
edge. (A more general discussion of the possible projective
representations may be found in Appendix A.)

To see this, let us consider what terms can appear at the
boundary of our system without breaking T sub symmetry.
These terms should be real, Hermitian, and invariant under
conjugation by iσ

y

i at a single site i on the edge. Any product
of an odd number of Pauli matrices is odd under global
time-reversal symmetry, and hence ruled out. In addition, any
product containing Pauli matrices other than σy is odd under
subsystem spin rotation, and hence prohibited by T sub. Thus
the operators that may be added to the edge are products of an
even number of σ

y

i .
The lowest-order term that can be added is therefore

P
edge
i,i+1 = 1

2

(
1 + σ

y

i σ
y

i+1

)
. (33)

This operator is not invariant under the full action of time-
reversal symmetry on an individual subsystem, but is allowed
in our case since complex conjugation acts globally. It projects
the pair of spins (i,i + 1) into the twofold degenerate subspace
spanned by the states |0〉i,i+1,|1〉i,i+1, giving a new effective
bond-type spin 1/2 degree of freedom. From Eq. (31), this
bond spin 1/2 also transforms as a Kramers doublet under the
antiunitary symmetry T sub when the subsystem is a line that
intersects the edge at site i or i + 1.

The obvious choice for our boundary Hamiltonian is there-
fore the classical Ising interaction H = −∑

i σ
y

i σ
y

i+1. On any
finite edge, this retains a twofold ground-state degeneracy; on
an infinite-length boundary it spontaneously breaks the global
T symmetry. In neither case can it give a symmetric, gapped
boundary.

Alternatively, we could begin by adding a term P
edge
i,i+1 on ev-

ery other bond along the edge to the Hamiltonian. This reduces
the ground-state degeneracy from 2Nedge to 2Nedge/2 , where Nedge

is the number of sites along the edge. We could then construct
an analogous projector acting between nonoverlapping pairs
of the bond spins |0〉i,i+1,|1〉i,i+1 to further lift the edge
degeneracy to 2Nedge/4 , and so on. At each state, a pair of Kramers
doublets is combined in such a way as to leave a single Kramers
doublet under T sub. However, adding any finite number of such
terms leaves a residual ground-state degeneracy that grows
exponentially with the boundary’s length.

We emphasize that the above couplings are quite differ-
ent from those allowed in phases (such as 2D fermionic

topological insulators) protected by 2D global time-reversal
symmetry, in which an even number of Kramers pairs on the
same boundary can be gapped. Here we find that irrespective
of the initial number of Kramers pairs on the boundary, the
degeneracy cannot be fully lifted. We also find that in order
to reduce the degeneracy to that of a single Kramers pair, we
must create an effective spin-1/2 that involves all sites on the
boundary, since it transforms as a Kramers doublet under T sub

acting on any line perpendicular to the boundary.

2. Weak versus strong T sub SSPT phases

Since there is only a single antiunitary symmetry for
each family of subsystems, the weak and strong T sub SSPT
phases cannot harbor distinct projective representations at their
boundaries (unless the unitary subsystem symmetries also act
projectively, as discussed in Appendix A). This is perhaps
not surprising: since complex conjugation acts globally it is
not clear that these projective representations are the correct
quantity to characterize these boundaries. It is also clear that
the third group cohomology, which classifies D = 2 global
SPTs, also cannot be the correct quantity, since time-reversal
symmetry alone does not lead to a nontrivial bosonic SPT
in 2D.

The T sub SSPT introduced here is distinct from a model
with the same symmetry comprised of coupled AKLT chains,
because the symmetry’s action on the spins at each site is
different: for crossed AKLT chains, the Z2 component of the
subsystem symmetry is spin rotation in an individual chain.
Thus spins that are part of a horizontal chain are not affected
by the vertical subsystem symmetries, and vice versa. If we
gauge the subsystem π roation symmetry (Ry = iσ y), the spin
system only couples with a rank-2 symmetric gauge field and
any rank-1 gauge field is absent in the theory. (In coupled chain
construction, the theory always contains rank-1 gauge field
upon gauging.)

Finally, we note that our model can equally be written (albeit
not via commuting projectors) as an interaction for a single
spin-1 degrees of freedom on each site. A brief discussion of
this construction is given in Appendix C.

B. 3D valence cube solid with T sub symmetry

The construction of the T sub invariant valence plaquette
solid given in the previous section can be generalized to higher
dimensions, to yield a d = 1 T sub SSPT with a protected
Kramers degeneracy on each boundary in any dimension. To
illustrate how the general construction works, here we present
the construction for a T sub invariant topological paramagnet
on the 3D checkerboard lattice. As in the D = 2 case, the T sub

symmetry acts as a combination of a subsystem spin rotation
iσy on a specific line in x̂, ŷ, or ẑ direction, and global complex
conjugation.

The 3D checkerboard lattice contains eight cubes in each
unit cell (Fig. 12). As in the D = 2 construction, we put two
spin-1/2 degrees of freedom on each site, with each spin
interact with only one of the two red cubes adjacent to the
site. The Hamiltonian is a sum of eight-spin interactions on
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FIG. 12. (Left) The hierarchical construction of the ground-state
projector for eight spins on a cube. First, each pair of spins on a
x̂ bond is project to a two-level subspace |0〉,|1〉. Next, a four-spin
interaction is introduced on the top and bottom faces of the cube,
projecting each to the two-level subspace |α〉,|β〉. Finally, the eight
spins on the cube are projected to a singlet in the effective spins
|α〉,|β〉. (Upper right) Labeling used in the main text for the eight
spins in the cluster interaction. (Lower right) Each unit cell of the
3D checkerboard lattice contains eight cubes. The two spins each
participate in only one of the two cluster interactions associated with
the two neighboring red cubes.

each red cube ci :

H =
∑
ci

Pci
. (34)

Because each Pci
involves different spins, they are mutually

commuting and the model is exactly solvable.
The operator Pci

can be constructed hierarchically, by
applying successive projectors to pairs of 2-state systems, as
shown in Fig. 12. We begin exactly as for our D = 2 model: For
each cluster, we pick a pairing of spins (here we use pairs 1-2,
3-4, 5-6, 7-8, as shown in Fig. 12) and add to the Hamiltonian
a projector

Pij = |0〉ij 〈0|ij + |1〉ij 〈1|ij (35)

with |0〉ij ,|1〉ij defined as in Eq. (30). As in the 2D case, acting
with T sub along the line containing both sites i and j leaves
|0〉ij ,|1〉ij invariant. Acting with T sub along the line which
only crosses site i, the (|0〉ij ,|1〉ij ) states transform as Kramers
doublet pair:

T sub = Kiσy,(
iσ i

y

)
: |0〉ij → |1〉ij ,|1〉ij → −|0〉ij . (36)

Next, we add a projector that picks out half of the remaining
states on each of two plaquettes, which we will take to be the
top and bottom plaquettes of each cube [containing sites (1234)
and (5678), respectively, in Fig. 12]. For the plaquette touching

sites ijkl, the projector is

Pijkl = |α〉ijkl〈α|ijkl + |β〉ijkl〈β|ijkl (37)

with

|α〉ijkl = 1√
2

[|0〉ij |1〉kl − |1〉ij |0〉kl],

|β〉ijkl = 1√
2

[|0〉ij |0〉kl + |1〉ij |1〉kl] . (38)

Once again, the interaction is chosen such that acting with
T sub along a line that includes two of the sites ijkl leaves
the states (|α〉ijkl,|β〉ijkl) invariant, while under T sub along the
line perpendicular to the plaquette in question (which acts on
only one of the sites {ijkl}), |α〉ijkl and |β〉ijkl transform as a
Kramers pair:

T sub = Kiσy,(
iσ i

y

)
: |α〉ijkl → |β〉ijkl,|β〉ijkl → −|α〉ijkl . (39)

In dimension D, this process can be continued until an
interaction between spins on a D − 1 hypersurface is obtained.
At each step, the interaction is a projector onto a twofold
degenerate Hilbert space. At the last step, the projection
operator picks out the unique “singlet” ground state:

P12345678 = |χ〉12345678〈χ |12345678,

|χ〉12345678 = 1√
2

(|α〉1234|β〉5678 − |β〉1234|α〉5678). (40)

The state |χ〉 (or its analog in higher dimensions) is invariant
under T sub symmetry, as now any subsystem line touches
exactly two spins in any cube. If both spins are in the same
plaquette, then |α〉ijkl and |β〉ijkl are already invariant. If the
two spins are in different plaquettes, then |α〉ijkl and |β〉ijkl are
a Kramers pair, but the singlet combination |χ〉 is time-reversal
invariant.

It is worthwhile to point out that though the construction
appears to break the lattice symmetry, in fact |χ〉 can be written
equally as a singlet between top and bottom plaquettes, or
between two parallel side surfaces,

|χ〉12345678 = 1√
2

(|α〉1234|β〉5678 − |β〉1234|α〉5678),

= 1√
2

(|α〉1357|β〉2468 − |β〉1357|α〉2468),

= 1√
2

(|α〉1256|β〉3478 − |β〉1256|α〉3478). (41)

Hence the eight-spin state |χ〉 can be regarded as the “all-way
plaquette singlet,” which projects every two parallel surfaces
into the same singlet.

With Pci
= P12345678 as given in Eq. (40), the Hamiltonian

is clearly gapped in the bulk. However, as in our 2D model,
each plaquette on the system’s boundary that belongs to a red
cube contains four dangling spins, and hence a Kramers pair
along any subsystem that ends on this surface. As for D = 2,
since there is only one independent antiunitary symmetry,
T sub protects only a single Kramers degeneracy across the
entire surface. For example, we may define projectors into the
subspace |α〉ijkl,|β〉ijkl for each surface plaquette, reducing
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FIG. 13. Our fermionic SSPT lives on the checkerboard lattice,
with two complex fermions per site. Red squares indicate plaquettes
hosting four-fermion cluster interactions. Each fermion participates in
the cluster interaction of only one of the two neighboring plaquettes.

the surface degeneracy to a two-level system per plaquette,
which transforms as a Kramers doublet under T sub on any line
perpendicular to the surface.

V. A FERMIONIC SSPT

Thus far, we have explored the zoology of subsystem SPT
phases in interacting bosonic (spin) systems. We have shown
that for on-site unitary symmetries, these phases realize physics
very similar to that of crossed arrays of decoupled 1d SPT’s,
while for antiunitary time-reversal symmetry, which is not
strictly on-site, the symmetry-protected boundary degeneracy
is much reduced, though nonetheless distinct from the global
symmetry case. We now turn to the question of whether, and
how, these ideas apply to fermionic subsystem SPT phases.

Because our main tool is to study exactly solvable model
Hamiltonians, fermions introduce a new technical challenge: a
fermion parity subsystem symmetry requires interactions that
are at least quartic in the fermion operators. The resulting
Hamiltonians are generally not solvable unless the interaction
terms treat nonoverlapping sets of fermions—and necessarily
not in the same symmetry class as any noninteracting topo-
logical phases of fermions. Thus in the fermionic context,
we will be more limited in our ability to construct models
whose physics can be easily understood, as we have done in
bosonic systems. Here we will give one example, building a
2D Majorana model with subsystem fermion parity symmetry
and global T symmetry, which we show is a fermion parity
protected SSPT. Our Hamiltonian contains only four-body
Majorana interactions, and the resulting ground state can
be interpreted as charge 4e superconductivity, with order
parameter �4e = 〈ψ†

kψ
†
k′ψ−kψ−k′ 〉.

We begin with two fermions on each site of the checkerboard
lattice. On each checkerboard square (red squares in Fig. 13),
there is a four-body interaction between the fermions at the
plaquette corners. Of the two fermions on each site, each

FIG. 14. The nonlocal duality transformation dresses each σ z(τ z)
operator with a cone of τ x(σ x) indicated by the shaded region inside
the red(green) triangle.

participates in the interaction term for only one red plaquette,
so that all interactions commute.

To describe the interaction terms, we label the four fermions
involved in the interaction for plaquette P as ψ1,ψ2,ψ3,ψ4 (see
Fig. 13) and decompose each fermion into two Majoranas via
ψi = ηi + iχi . Each plaquette cluster thus contains eight Ma-
jorana fermions, which we couple via Fidkowski-Kitaev [59]
type interactions. Specifically, we first add a four-Majorana
interaction

H1 = χ1χ2χ3χ4 + η1η2η3η4 . (42)

Ground states of H1 can be described via the bond fermions

�↑ = χ1 + iχ2, �↓ = χ3 + iχ4,

� ′
↑ = η1 + iη2, � ′

↓ = η3 + iη4. (43)

In these variables, the Hamiltonian H1 becomes

H1 = (n� − 1)2 + (n� ′ − 1)2. (44)

Thus H1 favors the odd fermion parity state for both � and � ′.
This allow us to map the ground-state subspace of H1 into two
spin-1/2 degrees of freedom per plaquette:

�ni = �† �σi�, �mi = � ′† �σi�
′, (45)

In terms of these spin degrees of freedom, the second
interaction on the plaquette cluster is

H2 = − �m · �n
= (χ1χ2 − χ3χ4)(η1η2 − η3η4)

+ (χ1χ4 − χ2χ3)(η1η4 − η2η3)

+ (χ1χ3 + χ2χ4)(η1η3 + η2η4). (46)

This antiferromagnetic interaction projects the two spins in
each plaquette cluster into a singlet, yielding a unique ground
state. With this cluster interaction on each red plaquette in
Fig. 13, the many-body Hamiltonian is fully gapped with a
unique ground state in the bulk.

What are the symmetries of this model? First, it has an
antiunitary symmetry T = K, which acts by global complex
conjugation, taking

T : χ → χ,η → η,i → −i . (47)
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On the physical fermions ψi at each site (or the bond fermions
�i,σ ) this gives a particle-hole transformation; it takes the spin
vectors �mi → − �mi,�ni → −�ni (see Appendix D for details).
Thus on both sets of operators, T 2 = +1. However, the
transformation of the operators �mi,�ni (which play the role of
the Pauli matrices for our spin-1/2) implies that a spin-1/2
state transforms projectively, with T 2 = −1. The plaquette
interaction, and its resulting spin-singlet ground state, are
clearly T invariant.

In addition, our Hamiltonian conserves the fermion parity of
each row/column separately. The corresponding fermion parity
symmetry operator is

Z
fp,sub
2 = eiπ

∑
i nψi ,

Z
fp,sub
2 : χ,η → −χ,−η, (48)

which clearly leaves H1 invariant. Acting on the vertical line
crossing sites 1,3, this subsystem Z

fp,sub
2 symmetry acts on the

spins via

Z
fp,sub
2 :

(
nx

1,n
y

2,n
z
3

) → (−nx
1,−n

y

2,n
z
3

)
,(

mx
1,m

y

2,m
z
3

) → (−mx
1,−m

y

2,m
z
3

)
. (49)

Likewise, Z
fp,sub
2 symmetry acting on the horizontal line

crossing sites 1,2 takes

Z
fp,sub
2 :

(
nx

1,n
y

2,n
z
3

) → (
nx

1,−n
y

2,−nz
3

)
,(

mx
1,m

y

2,m
z
3

) → (
mx

1,−m
y

2,−nz
3

)
. (50)

The antiferromagnetic interaction between the two effective
spins in the plaquette cluster thus respects the Z

fp,sub
2 symme-

try.
With only the plaquette interaction, in the presence of an

edge each boundary site contains a free complex fermion (or
two free Majoranas). In 1 dimension, a boundary mode of
this type is protected by time-reversal symmetry [59], which
prohibits quadratic interactions between Majoranas (or more
generally, interactions between 4n + 2 Majoranas, which must
have an imaginary pre-factor in order to be hermitian).

Since we cannot gap the system without breaking T by
coupling the pair of Majoranas at a single site on the boundary,
we must consider what can be done by coupling multiple sites
at the boundary. Four body interactions of the form

χi−1χiηi−1ηi (51)

are allowed by symmetry. Since these operators square to 1,
each individual term lifts the fourfold degeneracy of a quartet of
free Majoranas to a twofold degeneracy, which can be viewed
as a spin-1/2 degree of freedom.

Unlike for the bulk, however, we cannot gap these boundary
spin-1/2 degrees of freedom by coupling pairs of them into
singlets, as one can for a single 1D chain [59,71]. This is
because the remaining four-fermion interactions required to
couple the spin-1/2’s to form singlets in the ground state violate
Z

fp,sub
2 .

Indeed, as discussed following Eq. (47), the effective spin-
1/2 per unit cell that is left after introducing the interaction
(51) transforms as a Kramers doublet under time reversal.
(For details, see Appendix D.) Here time reversal is a global
symmetry, so this alone does not guarantee a gapless boundary.

Instead, consider a product of time-reversal symmetry and a
subsystem fermion parity operation along all subsystems that
intersect the boundary except one:

T̃ = T
∏
j �=i

Zfp,j . (52)

SinceT anticommutes with the fermion parity symmetry when
acting on a single row that intersects the boundary, this operator
can be viewed as a product of subsystem symmetries that
square to 1 with a single antiunitary subsystem symmetry
that squares to −1. Thus we find ourselves in essentially
the same situation as in the previous section, with a single
symmetry-protected Kramers degeneracy on each boundary.

The previous discussion suggests a close connection be-
tween this fermion SSPT and our previous boson SSPT
models with T sub. Though some phases of matter are uniquely
fermionic, some phases of interacting fermions can also be
realized in bosonic systems. In this sense the fermionic model
discussed here realizes a phase very similar to the T sub

bosonic SSPT, albeit with an extra Z2 spin-rotation subsystem
symmetry. The nature of the boundary degeneracy, and of the
action of the symmetries both on the bulk and at the boundary, is
the same in both models. (For details, see Appendix D.) This is
not entirely surprising, since the interactions effectively couple
plaquette fermions in such a way that the low-energy Hilbert
space can be described by two 1/2 spins per plaquette. This
leaves open the interesting question of how to realize an SSPT,
which is fundamentally fermionic, in the sense that it does not
have any bosonic equivalent.

VI. CONCLUDING REMARKS

In this work, we propose a new type of symmetry protected
topological matter: SSPT phases, whose gapless boundary
modes are protected by subsystem symmetries. We have
established the existence of this class of phases by constructing
explicit examples in three classes: two bosonic and one
fermionic. In doing so, we have expanded the understanding
of phase structure in the presence of subsystem symmetries
which was previously restricted to broken symmetry phases.
We remind the reader that subsystem symmetries have come
to the fore recently in the study of fracton phases, which
exhibit subdimensional particle motion and emergent higher-
rank gauge fields [49,50].

Our work raises three immediate interesting questions.
First, we have focused exclusively on SSPT phases protected
by d = 1 subsystem symmetries. In three dimensions, one
may also consider d = 2 subsystem symmetries, which are
of particular interest due to their close connection to fracton
topological order [30]. In a companion paper, we will explore
d = 2 SSPT phases in 3D. Second, we have not systematically
analyzed the dependence of SSPT phases on lattice structure
in a given physical and subsystem dimension. Third, what
is the classification of SSPT phases? We have shown that
for some unitary symmetries, the SSPT phase is associated
with projective representations of the boundary spins that are
distinct from what can be realized by any array of D = 1
global SPTs. As shown in Appendix A, this cannot happen
for familiar continuous symmetries such as SO(3), U(1), and
SU(2). However, it is not clear whether this is a defining
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characteristic of any SSPT, or merely an interesting feature
of our models. For antiunitary and fermionic symmetries the
classification is even less clear, since the full symmetry is
effectively a mixture of unitary subsystem symmetry and
global complex conjugation, which appears to be naturally
classified neither by projective representations (i.e., H2) or
invariants associated with 2D global SPTs. We look forward
to progress on these inter-related issues.
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APPENDIX A: GROUP COHOMOLOGY CALCULATION
OF STRONG SSPT BOUNDARIES

As discussed in the main text, one situation in which there
are certainly distinct weak and strong SSPT phases is when the
boundary of the strong SSPT realizes the symmetry in a way
that cannot be obtained from decoupled (or weakly coupled)
1D SPT’s. Here we give group cohomological calculations
for some familiar symmetry groups to illustrate when such
representations exist. The upshot of our calculation is that
they do exist for symmetry groups, such as Z2 or more
generally Zn, where certain torsions associated to their group
cohomology are nonvanishing. They do not exist for many
familiar symmetry groups, such as U(1) and SO(3).

Consider a unitary symmetry group G, which can be either a
finite group or a compact Lie group. The number of projective
representations is given by [72]

H2(G,U(1)) = H3(G,Z). (A1)

Thus what we need to evaluate in general is the third group
cohomology with integer coefficients, H3(G,Z). To do this,
we use the Kunneth formula:

Hd (G1 × G2,Z) =
d∏

p=0

[Hp(G1,Z) ⊗Z Hd−p(G2,Z)]

×
d+1∏
p=0

[
TorZ1 (Hp(G1,Z),Hd+1−p(G2,Z)

]
.

(A2)

Detailed information about the meaning of this notation can
be found in Ref. [72]; for our purposes the relevant facts are
that for any M ,

Z ⊗Z M = M ⊗Z Z = M,
(A3)

Z1 ⊗Z M = M ⊗Z Z1 = Z1,

and

TorZ1 (Z,M) = TorZ1 (Z1,M) = Z1 (A4)

with TorZ1 (A,B) = TorZ1 (B,A).

In the examples that we tabulate here, we will begin from
groups for which

H0(G,Z) = Z , H1(G,Z) = Z1. (A5)

It follows that for any n,

H0(Gn,Z) = Z , H1(Gn,Z) = Z1,

H2(Gn,Z) = (H2(G,Z))n. (A6)

This is easily seen using the Kunneth formula; we have

H0(G1 × G2,Z) = H0(G1,Z) ⊗Z H0(G2,Z)

×
1∏

p=0

[
TorZ1 (Hp(G1,Z),H1−p(G2,Z)

]
.

(A7)

Thus, if H0(G1,Z) = H0(G2,Z) = Z, then H0(G1 ×
G2,Z) = Z. Thus, if H0(G,Z) = Z, then H0(Gn,Z) = Z.
Further,

H1(G1 × G2,Z)

=
1∏

p=0

[Hp(G1,Z) ⊗Z H1−p(G2,Z)]

×
2∏

p=0

[
TorZ1 (Hp(G1,Z),Hd+1−p(G2,Z)

]
, (A8)

which is clearly the trivial group Z1 if H1(G1,Z) =
H1(G2,Z) = Z1. Thus if H1(G,Z) = Z1, then also
H1(Gn,Z) = Z1.

Under these assumptions, we have

H2(G1 × G2,Z) = H2(G1,Z) × H2(G2,Z) (A9)

since all relevant torsions involve either an H0 or H1, and
therefore vanish.

Next, we use the Kunneth formula to evaluate
H3(G1 × G2,Z), where H1(G1,Z) = H1(G2,Z) = Z1

and H0(G1,Z) = H0(G2,Z) = Z. In this case, the Kunneth
formula reduces to

H3(G1 × G2,Z) = H3(G2,Z) × H3(G1,Z)

×[
TorZ1 (H2(G1,Z),H2(G2,Z))

]
.

(A10)

To understand this formula, let us first consider the case that
TorZ1 (H2(G,Z),H2(G,Z)) = Z1. We must now apply a second
fact about torsion:

TorZ1 (A × B,M) = TorZ1 (A,M) × TorZ1 (B,M). (A11)

Thus, if A = H2(G,Z), and TorZ1 (A,A) = Z1, then

TorZ1 (A × A,A) = Z1. (A12)

By induction it follows that TorZ1 (An,A) = Z1, so that the
torsion term is always trivial. In this case

H3(Gn,Z) = [H3(G,Z)]n. (A13)

This means that any projective representation on a boundary
that intersects n subsystems can be obtained by taking n
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decoupled 1d G-SPTs, and the only possibility is a weak SPT
phase. This is the case, for example, for G = SU(2), SO(3), or
U(1).

To understand what happens when the torsion is nonvanish-
ing, we will consider the concrete example of G = Zp. In this
case,

H2(Zp,Z) = Zp (A14)

and we can use (yet another) fact about torsion:

TorZ1 (Zp,Zq) = Z(p,q), (A15)

where (p,q) is the greatest common divisor of p and q. It
follows that

TorZ1 (Zp × Zp,Zp) = (Zp)2 , (A16)

TorZ1 (Zp × (Zp)2,Zp) = (Zp)3,
(A17)

TorZ1 (Zp × (Zp)n−1,Zp) = (Zp)n,

where the last line follows by induction.
Then we have

H3
(
Zn−1

p × Zp,Z
) = H3

(
Zn−1

p ,Z
) × (Zp)n−1 (A18)

from which we find that

H3(Zp,Z) = Z1,

H3
(
Z2

p,Z
) = Zp,

H3(Z3
p,Z

) = (Zp)3

H3
(
Z4

p,Z
) = (Zp)6,

H3
(
Zn

p,Z
) = (Zp)

n2−n
2 . (A19)

In particular, for every n, there are projective representations,
which cannot be equated to taking copies of q = n/m pro-
jective representations of (Zp)m (for any m), since 1

2 ((mq)2 −
mq) >

q

2 (m2 − m). These must be projective representations
in which the boundary spins do not transform as independent
clusters under the symmetries. In this case, SSPT phases may
exist.

To establish the existence of these phases, we must under-
stand in more detail the projective representation in question,
and how it acts on all spins in an interdependent manner. We
do not undertake to enumerate the possibilities here, except to
note that the construction in the main text gives one example.

Projective representations of Gn × ZT
2

The other class of example that we discuss in our paper
involves, effectively, two types of symmetries: global complex
conjugation and a unitary symmetry G. (In the examples of
the main text, G = Z2.) The group cohomology of pure time-
reversal symmetry (realized as complex conjugation, with no
spin rotation) is

H0(ZT
2 ,ZT

) = H2(ZT
2 ,ZT

) = Z1,

H1(ZT
2 ,ZT

) = H3(ZT
2 ,ZT

) = Z2. (A20)

In this case, one can use the Kunneth formula and our
previous calculation of Hd (Gn,Z) to obtain the result in (what

should be) a relatively straightforward manner,

Hd
(
Gn × ZT

2 ,ZT
)

=
d∏

p=1,3,...

[
Hd−p(Gn,Z) ⊗Z Hp

(
ZT

2 ,ZT
)]

×
d+1∏

p=1,3,...

[
TorZ1 (Hd+1−p(Gn,Z),Hp

(
ZT

2 ,ZT
)]

, (A21)

where the contributions involving H2p(ZT
2 ,ZT ) = Z1 are triv-

ial. Thus

H0
(
Gn × ZT

2 ,ZT
) = [

TorZ1 (H0(Gn,Z),H1
(
ZT

2 ,ZT
)]

= TorZ1 (Z,Z2) = Z1, (A22)

H1
(
Gn × ZT

2 ,ZT
) = [

H0(Gn,Z) ⊗Z H1
(
ZT

2 ,ZT
)]

× [
TorZ1 (H1(Gn,Z),H1

(
ZT

2 ,ZT
)]

= Z2, (A23)

where as above we have assumed that H0(G,Z) =
Z,H1(G,Z) = Z1.

Finally,

H3
(
Gn × ZT

2 ,ZT
) = [H2(Gn,Z) ⊗Z Z2] × Z2

× [
TorZ1 (H3(Gn,Z),Z2)

]
× [

TorZ1 (H1(Gn,Z),Z2)
]

= [(H2(G,Z))n ⊗Z Z2] × (Z2)

× [
TorZ1 (H3(Gn,Z),Z2)

]
. (A24)

Here the factor of Z2 arises from the assumption that
H1(G,Z) = Z. The remaining factors depend on the specifics.

For G = Z2 (the example discussed in the text),

H2(G,Z) = Z2, while H3(Gn,Z) = Z
n2−n

2
2 . This gives a total

of Z
n2+n+2

2
2 possible projective representations. Because the

difference between this number and the number allowed for
Zn

2 alone is a power of n, we conclude that any new projective
representations associated with time-reversal symmetry (rather
than with Z2) can be realized as boundary states of weak
SSPTs. This is consistent with our finding that the strong and
weakT -SSPTs cannot be distinguished by the symmetry action
on their boundaries.

APPENDIX B: DUALITY BETWEEN SPT AND SYMMETRY
BREAKING STATE

An interesting feature of many models with Ising-like sym-
metry is the existence of duality mappings, such as Kramers-
Wannier duality [73], relating different parameter regimes or
models. Such duality mappings are useful in understanding the
structure of each model’s phase diagram, and in understanding
its phase transitions.

In this section, we outline a duality that maps our SSPT
models perturbed with a transverse field to two copies of the
trivial plaquette Ising model. Since the latter is known to be
self-dual, this also implies a self-duality transformation for our

035112-15



YOU, DEVAKUL, BURNELL, AND SONDHI PHYSICAL REVIEW B 98, 035112 (2018)

SSPT. Like with the Kramers-Wannier duality for the Ising
model [73], this self-duality allows us to pinpoint the critical
point exactly.

1. Duality between 2D SSPT and plaquette Ising model

According to our previous construction, the subsystem SPT
phase protected by 1d symmetry can always be reached by cou-
pled SPT chains. Suggestively, the 1d ZXZ [57] chain can be
mapped to a transverse Ising model via a nonlocal duality trans-
formation [27]. Here, we show that our 2d(3d) subsystem SPT
with transverse field is also dual to the plaquette (cube) Ising
model with a transverse field. Under this duality, the subsystem
SPT phase is mapped to the subsystem symmetry breaking
phase, and the edge modes in subsystem SPT become the global
degeneracy associated with spontaneous symmetry breaking.

For convenience, we repeat the Hamiltonian for our topo-
logical plaquette Ising paramgnet protected by Zsub

2 × Zsub
2 in

Eq. [7] with a transverse field:

H = −
∑

ijklm∈Pa

σ z
i σ z

j σ z
k σ z

l τ x
m −

∑
ijklm∈Pb

τ z
i τ z

j τ z
k τ z

l σ x
m

+�τx + �σx. (B1)

For small �, the system is in the topological plaquette paramag-
netic phase; at large �, the spins polarize and drive the system
into the trivial paramagnetic phase. We now define a nonlocal
transformation to map the model into a plaquette Ising model
with transverse field (see Fig. 14),

σx → σx,τ x → τ x ;

σ z → σ z
∏
i∈red

τ x
i ,τ z → τ z

∏
i∈green

σx
i . (B2)

The duality transformation dresses each σ z(τ z) operator with
a cone of τ x(σx) operators inside the shaded region in the
red (green) triangle. After the transformation, the Hamiltonian
becomes

H = −
∑

ijklm∈Pa

σ z
i σ z

j σ z
k σ z

l −
∑

ijklm∈Pb

τ z
i τ z

j τ z
k τ z

l

+�τx + �σx, (B3)

which is exactly a pair of plaquette Ising models in trans-
verse fields. The SSPT state in our original model becomes
the subsystem symmetry breaking phase after duality. The
nonlocal membrane order parameter in Eq. [9] characterizing
the decorated corner nature of the SSPT becomes the four
point correlator of plaquette Ising model which measures the
subsystem symmetry breaking order,

O =
〈 ∏

ijkl∈C
σ z

i σ z
j σ z

k σ z
l

∏
abc∈M

τ x
a τ x

b τ x
c . . .

〉

→ O = 〈
σ z

i σ z
j σ z

k σ z
l

〉
. (B4)

The degeneracy of the subsystem-symmetry broken phase
is represented, in the dual SSPT model, by the degeneracy of
the protected gapless boundary modes. To see this, consider
gapping one of these boundary modes by adding a term σzτxσz

to the Hamiltonian at the boundary, as shown in Fig. 4. Duality
maps this term to σzσz on an edge, which breaks the subsystem

FIG. 15. (Left) The 3D cubic paramagnet on the ion lattice with
two type of sites. The unit cell of each type forms an octahedron. The
large site τ stays in the center of the octahedron while the small site σ

lives on the corner of octahedron. (Right) During the nonlocal duality,
each σz(red circle) operator is dressed with a set of τx operators inside
the pyramid below (grey starred sites). Meanwhile, each τz operator
is dressed with a set of σx operators in the pyramid above.

symmetry and reduces the ground-state degeneracy. After
some simple counting, we can conclude that the 4Lx 4Ly−1 edge
modes becomes the 4Lx 4Ly−1-fold degeneracy of the plaquette
Ising model (two copies) with subsystem symmetry breaking.

As the plaquette Ising model with transverse field is self-
dual, with a single first-order transition at � = 1 [27,28,65,66],
it follows that the SSPT phase and trivial phase in Eq. [(B1)]
is also self-dual with a topological transition happening at
� = 1. Indeed, a self-duality transformation for our model can
be constructed as follows. We define the controlled-Z (CZ)
operator acting on a two-spin Hilbert space in the z basis to be
the diagonal matrix CZ = diag(1,1,1, − 1). Letting U denote
the unitary obtained by performing CZ on all the bonds, one
can show that

UH (�)U † = hH (�−1), (B5)

where

H (�) = HTPIM(TCIM) − �
∑
i∈A

σx
i − �

∑
i∈B

τx
i (B6)

for the 2D (TPIM) or 3D (TCIM) models.

2. Duality between 3D SSPT and cube Ising model

A similar approach yields a duality between 3D topological
cubic paramagnet and a subsystem-symmetry broken phase in
a trivial Zsub

2 × Zsub
2 -symmetric model. To simplify the map-

ping, we consider the Hamiltonian for the cubic paramagnetic
phase on the ion lattice with two type of sites on a simple cubic
lattice, as in Fig. 15. The large/small sites refer to two type of
Pauli spins τ and σ . The unit cell forms an octahedron with
six corner sites.

On this lattice, the Hamiltonian of the topological cubic
paramagnet with a transverse field is

H = −
∑

ijklmnq∈OA

σ z
i σ z

j σ z
k σ z

l σ z
mσ z

nτ x
q + �τx

−
∑

ijklmnq∈OB

τ z
i τ z

j τ z
k τ z

l τ z
mτ z

nσ x
q + �σx. (B7)
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Here, OA,OB are the octahedra for A and B sublattices,
respectively. The cluster interaction contains six σz spins on
the corners of the octahedron and one τx in the center of
octahedron. Such a cluster interaction decorates the domain
wall corner with transverse spin τx . When� is small, the system
is in the topological cubic paramagnetic phase.

The duality mapping is

σx → σx,τx → τx ;

σz → σz

∏
i∈Pa

τ i
x,τz → τz

∏
i∈Pb

σ i
x . (B8)

This transformation dress each σz(τz) operator with a set of
τx(σx) operators inside the Pyramid region, as shown in Fig. 15.
After the transformation, the Hamiltonian becomes the cubic
Ising model with a transverse field:

H = −
∑

ijklmn∈Oa

σ z
i σ z

j σ z
k σ z

l σ z
mσ z

n + �τx

−
∑

ijklmn∈Ob

τ z
i τ z

j τ z
k τ z

l τ z
mτ z

n + �σx. (B9)

As for the 2D model, the duality maps the subsystem
SPT ground state to the subsystem symmetry breaking ground
state. The protected edge modes and volume order become the
ground-state degeneracy and six point order parameter, which
characterizes the symmetry breaking, respectively.

APPENDIX C: SPIN 1 T sub SSPT
ON CHECKERBOARD LATTICE

In Sec. IV, we construct an exactly solvable model for T sub

SSPT on checkerboard lattice with two independent spin 1/2
per site. If we project the two onsite spins into S = 1 subspace,
the system is still in the same SSPT state with T sub symmetry
although the Hamiltonian is no longer solvable.

After enforcing S = 1 per site, we introduce the Schwinger
boson representation for the spin system:

a
†
i ai + b

†
i bi = 2,a

†
i ai − b

†
i bi = 2Sz

i ,

S+
i = a

†
i bi,S

−
i = b

†
i ai . (C1)

The |α〉 state projection in each plaquette becomes

|α〉 = [(a†
1b

†
2 − b

†
1a

†
2)(a†

3a
†
4 + b

†
3b

†
4)

− (a†
3b

†
4 − b

†
3a

†
4)(a†

1a
†
2 + b

†
1b

†
2)]|0〉, (C2)

The ground-state wave function is the product of each
plaquette cluster entangled as |α〉. The edge state contains
an effective spin 1/2 each site which cannot be fully gapped
without breaking T sub.

APPENDIX D: MAJORANA FERMION
CLUSTER INTERACTION

In this appendix, we provide details of the Majorana fermion
cluster interaction in the fermion SSPT model in Sec. V.

Using the definitions

�↑ = χ1 + iχ2,�↓ = χ3 + iχ4,

� ′
↑ = η1 + iη2,�

′
↓ = η3 + iη4,

ni = �†σi�,mi = � ′†σi�
′ (D1)

from the main text, the explicit expressions for the O(3) rotor
degrees of freedom n and m are

n1 = −iχ1χ2 + iχ3χ4,

n2 = −iχ1χ4 + iχ2χ3,

n3 = iχ1χ3 + iχ2χ4,

m1 = −iη1η2 + iη3η4,

m2 = −iη1η4 + iη2η3,

m3 = iη1η3 + iη2η4. (D2)

From these expressions it is straightforward to derive the action
of symmetry operations on these spin degrees of freedom. First,
clearly global T symmetry acts on the rotor via

T : �n, �m → −�n, − �m . (D3)

The subsystem Z
fp,sub
2 symmetry acting on a vertical line

crossing sites 1,3 takes Z
fp,sub
2 : χ1,η3 → −χ1,−η3, whence

we derive

Z
fp,sub
2 : (n1,n2,n3) → (−n1,−n2,n3),

(m1,m2,m3) → (−m1, − m2,n3), (D4)

as claimed in the main text. A similar argument shows that
Z

fp,sub
2 symmetry acting on a horizontal line crossing sites 1,2

acts via Eq. (50).
Let us now turn to the action of our symmetries at the

system’s edge. In the fermion model, before adding boundary
terms each site on the edge contains a single fermion zero mode
ψ = η + iχ . The interaction η2iχ2iη2i+1χ2i+1 is allowed by
symmetry, and reduces the fermion zero modes on two edge
sites to a spin 1/2 degree of freedom:

n′z
i = −iχ2iη2i + iχ2i+1η2i+1,

n
′y
i = −iχ2iη2i+1 + iχ2i+1η2i ,

n′x
i = iχ2iχ2i+1 + iη2i+1η2i . (D5)

The global T symmetry acts on the rotor as

T : �n → −�n. (D6)

The subsystem Z
fp,sub
2 symmetry, when acting on the verti-

cal line crossing the edge becomes an onsite fermion-parity
symmetry. Such onsite fermion-parity symmetry becomes the
onsite Z2 symmetry acting on the site spin as

Z
fp,sub
2 :

(
nx

i ,n
y

i ,n
z
i

) → (−nx
i ,−n

y

i ,n
z
i

)
. (D7)

Such Z
fp,sub
2 symmetry prohibits any local edge spin interac-

tion in the Sx-Sy plane. The only allowed interaction, without
breaking T and Z

fp,sub
2 symmetry, is the classical Ising spin

interaction σz(i)σz(i + 1) . . . whose ground state would break
the T symmetry.
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