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Eliashberg theory provides a theoretical framework for understanding the phenomenon of superconductivity
when pairing between two electrons is mediated by phonons and retardation effects are fully accounted for. BCS
theory is often viewed as the weak-coupling limit of Eliashberg theory, in spite of a handful of papers that have
pointed out that this is not so. Here, we present very accurate numerical solutions in the weak-coupling limit
to complement the existing analytical results and demonstrate more convincingly the validity of this limit by
extending the analytical results to first order in the coupling constant.
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I. INTRODUCTION

The Eliashberg theory of superconductivity [1] provides a
framework for superconductivity in which the pairing “glue,”
in this case phonons, is not so much a “glue” as a mediator
of the interaction between two electrons. In contrast, the
BCS theory of superconductivity [2] uses a pairing potential
to model the attractive interaction between two electrons.
Being a potential, the interaction is instantaneous, although
retardation effects are mimicked through a cutoff in the
potential, albeit in wave-vector space and not in frequency
space.

Eliashberg theory is sometimes referred to as the “strong-
coupling” extension of BCS theory. The reason no doubt is
that superconducting materials in which retardation effects
play a significant role (e.g., Pb and Hg) also tend to have a
stronger electron-phonon coupling than those in which their
role is minor (e.g., Al). Furthermore, in Eliashberg theory
the quasiparticles have a finite width, and their residue is no
longer unity; both of these factors contributed to this misnomer.
In fact, both Eliashberg and BCS theory are weak-coupling
theories in the sense that the starting point is a Fermi sea
of electrons, so what really delineates the two is that the
former explicitly includes retardation effects while the latter
does not. Formally, the strong-coupling limit in both these
theories can be investigated (and has been; see Refs. [3,4]
for BCS and Refs. [5,6] for Eliashberg theory). However,
particularly at finite temperature these calculations are beyond
the limit of validity of the formulation, as the condensation of
preformed pairs, whose constituents do not form a Fermi sea,
is the physically relevant process but is not described by these
theoretical frameworks [7].

There is a tacit understanding that the weak-coupling limits
of both theories converge to the same limits. This belief
has been reinforced, for example, in studies of universal
BCS constants like the gap ratio [8] and the normalized
specific-heat jump [9]. In these and other cases [10] the
universal BCS constant shows deviations within Eliashberg

theory that eventually achieve the BCS value as the coupling
becomes weaker.

That this is not universally the case was first noted by
Karakozov et al. [11]. In fact, they showed that a correction
to the BCS prefactor appears in the weak-coupling limit of
Eliashberg theory for the determination of Tc, the super-
conducting critical temperature itself. This is an important
observation and merits further investigation. In this paper we
will rederive this result for Tc (on the imaginary axis, following
Ref. [12]), and we will also derive an improved analytical
form for the order parameter. Remarkably, the order parameter
is not at all a constant over a frequency range of the typical
phonon frequency, as modeled both in BCS theory and even
in Eliashberg theory with the so-called square-well model for
the electron-phonon interaction introduced by McMillan [13].

Note that in this study we examine corrections to BCS that
arise entirely within Eliashberg theory; there are a number of
additional contributions that have an effect on the prefactor,
for example, that of Kohn and Luttinger [14,15], but we do not
address those here.

We proceed as follows. First, we provide a quick syn-
opsis of Eliashberg theory. We take some effort to review
the so-called standard approximations to arrive at the self-
consistent equations for the order parameter as a function
of only Matsubara frequency. As emphasized in Ref. [16],
these approximations are very controlled particularly in the
weak-coupling limit and have properly been avoided or mod-
ified for further more recent refinements in the theory [17].
Here, however, these approximations rest on solid ground.
We then present both numerical and analytical solutions to
the gap function, first following Wang and Chubukov [12]
in the case where renormalization effects are neglected and
then in the case where they are accounted for. While Tc is
unaffected (except for the usual mass renormalization term,
1 + λ), the high-frequency dependence of the gap function
to first order in λ is indeed changed, as described in more
detail below. We conclude with a summary in the final
section.
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II. ELIASHBERG THEORY FORMALISM

The Eliashberg equations are [18]

Z(k, iωm) = 1 + 1

Nβ

∑
k′,m′

λkk′ (iωm − iωm′ )

gεF

(ωm′/ωm)Z(k′, iωm′ )

ω2
m′Z2(k′, iωm′ ) + [εk′ − μ + χ (k′, iωm′ )]2 + φ2(k′, iωm′ )

, (1)

χ (k, iωm) = − 1

Nβ

∑
k′,m′

λkk′ (iωm − iωm′ )

gεF

εk′ − μ + χ (k′, iωm′ )

ω2
m′Z2(k′, iωm′ ) + [εk′ − μ + χ (k′, iωm′ )]2 + φ2(k′, iωm′ )

, (2)

along with the equation for the order parameter,

φ(k, iωm) = 1

Nβ

∑
k′,m′

λkk′ (iωm − iωm′ )

gεF

φ(k′, iωm′ )

ω2
m′Z2(k′, iωm′ ) + [εk′ − μ + χ (k′, iωm′ )]2 + φ2(k′, iωm′ )

. (3)

These are supplemented with the electron number equation, which determines the chemical potential, μ:

ρ = 1 − 2

Nβ

∑
k′,m′

εk′ − μ + χ (k′, iωm′ )

ω2
m′Z2(k′, iωm′ ) + [εk′ − μ + χ (k′, iωm′ )]2 + φ2(k′, iωm′ )

. (4)

Here, N is the number of lattice sites; β ≡ 1/(kBT ), where
kB is the Boltzmann constant and T is the temperature; μ is
the chemical potential; and gεF

is the electronic density of
states at the Fermi level in the band. The energy εk is the
electronic dispersion of this band (a single band is assumed
for simplicity). The equations are written on the imaginary
frequency axis and are functions of the Fermion Matsubara
frequencies, ωm ≡ πkBT (2m − 1), with m being an integer.
Similarly, the Boson Matsubara frequencies are given by νn ≡
2πkBT n, where n is an integer. The functions Z(k, iωm) and
χ (k, iωm) are related to the electron self-energy through [16]

iωm[1 − Z(k, iωm)] ≡ 1
2 [�(k, iωm) − �(k,−iωm)],

χ (k, iωm) ≡ 1
2 [�(k, iωm) + �(k,−iωm)], (5)

where Z and χ are both even functions of iωm (and, as we
have assumed from the beginning, k). The function φ(k, iωm)
is the so-called pairing function and is related to the electronic
anomalous Green’s function. These equations relate these
three functions to one another through the electron-phonon
propagator, contained in

λkk′ (z) ≡
∫ ∞

0

2να2
kk′F (ν)

ν2 − z2
dν, (6)

with α2
kk′F (ν) being the so-called Eliashberg function. In what

follows we will assume that the phonon spectrum is given
by an Einstein spectrum and that the coupling is wave vector
independent. Therefore,

α2
kk′F (ν) = (λωE/2)δ(ν − ωE ), (7)

and the kernel, Eq. (6), is written as

λ(iνn) = λω2
E

ω2
E + ν2

n

, (8)

where the constant λ is the dimensionless electron-phonon
coupling constant and ωE is the Einstein phonon frequency.
Normally, a direct Coulomb repulsion is also included in
the pairing equation; we omit that here since we want to
focus on the effects of retardation. Equation (4) is used to
determine the chemical potential given an electron density

ρ, but in this work we will assume particle-hole symmetry;
then μ = 0 always, and this equation is not used, with ρ

no longer being relevant. Similarly, χ (k, iωm) is identically
zero. We furthermore assume that the electronic density of
states is essentially a constant over the energy range of interest
and set it equal to the value of the density of states at the
Fermi level, g(μ) ≈ gεF

. With these assumptions the equations
simplify considerably, and none of the functions have any
wave vector dependence; that is, they are solely functions of
Matsubara frequency ωm. Focusing our attention on the onset
of superconductivity and the critical temperature, we linearize
the equations and obtain

Z(iωm) = 1 + πTc

ωm

∑
m′

λ(iωm − iωm′ )sgn(ωm′ ), (9)

φ(iωm) = πTc

∑
m′

λ(iωm − iωm′ )
φ(iωm′ )

|ωm′ |Z(iωm′ )
. (10)

The case of a constant density of states but with a finite
bandwidth was examined in Ref. [19]; it is apparent from
that work that in the weak-coupling limit this bandwidth is
irrelevant for Tc [20]. Equations (9) and (10) are the “standard”
linearized Eliashberg equations, valid for infinite electronic
bandwidth. The function Z(iωm) can be determined in closed
form; we obtain, for ωm > 0 (since both Z and φ are even real
functions of ωm),

Z(iωm) = 1 + πkBTc

ωm

{
λ + 2

m−1∑
n=1

λ(iνn)

}
. (11)

It is also standard practice to define a “gap function,”�(iωm) ≡
φ(iωm)/Z(iωm), so that the remaining equation to determine
Tc is

Z(iωm)�(iωm) = πTc

+∞∑
m′=−∞

λ(iωm − iωm′ )
�(iωm′ )

|ωm′ | .

(12)

Equations (11) and (12) were first solved in this form in
Refs. [21–23] and have been solved many times since.
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As mentioned in the Introduction, one can examine
Eliashberg theory in limiting cases of weak coupling (λ → 0)
and strong coupling λ → ∞. Interestingly, Eq. (12) is readily
solved numerically in the latter limit (see, e.g., Refs. [5,6,24])
but not so easily in the former limit. Approximate forms like
the square-well model were first used by McMillan [13] and
adopted in subsequent reviews [16,18]. In the end, however,
McMillan and others adopted phenomenological prefactors,
whose justification is now more readily understood after
Karakozov et al. [25] solved the gap equation on the real axis
with an iterative method and obtained the result that Tc attains
a prefactor significantly different than that obtained with BCS
theory [26]. We will first rederive this result on the imaginary
axis [12] and determine an analytical approximation for the
gap function.

The equation for Tc within BCS theory is (we now set kB =
1 and h̄ = 1)

Tc = 1.13ωE exp (−1/λ), (13)

where λ ≡ gεF
|V |, with |V | being some attractive and instan-

taneous potential between two electrons. The inclusion of the
renormalization Z modifies this equation to read

Tc = 1.13ωE exp [−(1 + λ)/λ]. (14)

One can immediately write this like Eq. (13) but with the
reduced prefactor 1.13e−1. This is not what is meant when
we stated that the prefactor in Eliashberg theory is actually
modified from the BCS result, but rather an additional change
occurs.

III. UNRENORMALIZED ELIASHBERG THEORY

A. Improved Tc in the λ → 0 limit

To emphasize the latter point we first examine the
Eliashberg Tc equation, Eq. (12) with Z(iωm) ≡ 1, i.e.,

�(iωm) = πTc

+∞∑
m′=−∞

λ(iωm − iωm′ )
�(iωm′ )

|ωm′ | . (15)

We immediately caution that this is a dangerous step to make,
as emphasized by Cappelluti and Ummarino [27]. In fact, this
choice results in unstable equations for λ > 1. Since we are
interested only in the weak-coupling limit λ � 1, Eq. (15)
remains stable. In what follows we make use of the fact that
even within Eliashberg theory the structure of Eq. (13) remains
intact, so that Tc/ωE ≈ e−1/λ � 1 for the weak-coupling case.
The impact on �(ωm) is, however, a little more subtle, and a
discussion of this case will be deferred to the next section.

For now, with Z(ωm) = 1, we begin by writing Eq. (15) as

�(iωm)

= λπT̄c

+∞∑
m′=−∞

1

1 + (ω̄m − ω̄m′ )2

�(iωm′ )

|ω̄m′ | (16)

= 1

1 + ω̄2
m

λπT̄c

+∞∑
m′=−∞

{
1 + 2ω̄mω̄m′ − ω̄2

m′

1 + (ω̄m − ω̄m′ )2

}
�(iωm′ )

|ω̄m′ | ,

(17)

where Q̄ ≡ Q/ωE , and in the second line we have added and
subtracted the factor 1/(1 + ω̄2

m). Equation (17) makes it clear
that one can write

�(iωm) = 1

1 + ω̄2
m

[1 + λf (ωm)]. (18)

This equation looks like a perturbative expansion in λ; if we
neglect f (ωm) and further neglect the second complicated-
looking term in Eq. (17), we obtain simply

1 ≈ λπT̄c

+∞∑
m′=−∞

1

|ω̄m′ |
1

1 + ω̄2
m′

≡ λI0, (19)

where I0 can be evaluated in terms of the asymptotic expansion
of digamma functions [28,29] as

I0 ≈ ln

(
1.13ωE

Tc

)
− π2

6

(
Tc

ωE

)2

. (20)

Upon neglecting the last term, the result is that we obtain
the usual BCS Tc equation given by Eq. (13). In fact, it
is inconsistent to neglect the complicated-looking second
term in Eq. (17). Thus, while still neglecting the corrections
proportional to f (ωm), a more accurate version of Eq. (19)
more correctly contains an additional term, so this equation
reads

1 ≈ λI0 + λπT̄c

+∞∑
m′=−∞

1

1 + ω̄2
m′

2ω̄msgn(ω̄m′ ) − |ω̄m′ |
1 + (ω̄m − ω̄m′ )2

.

(21)

This equation is clearly an approximation since the second
term has a dependence on ωm; this reflects the approximation
inherent in Eq. (18) when f (ωm) is neglected. Nonetheless, we
multiply both sides of Eq. (21) by πT̄c{1/|ω̄m|}{1/(1 + ω̄2

m)}
and sum over all values of m to obtain

I0 = λI 2
0 − λ(πT̄c )2

+∞∑
m,m′=−∞

1

1 + ω̄2
m′

1

|ω̄m|
1

1 + ω̄2
m

×
{ |ω̄m′ | − 2ω̄msgn(ω̄m′ )

1 + (ω̄m − ω̄m′ )2

}
. (22)

We use [12]

1

1 + (ω̄m − ω̄m′ )2

= 1

1 + ω̄2
m′

+
{

1

1 + (ω̄m − ω̄m′ )2
− 1

1 + ω̄2
m′

}
(23)

to replace the term in braces in Eq. (22). The first term
(proportional to |ω̄m′ | in the numerator of the sum) in this
equation is seen to contain a singular part as Tc → 0 (since
a denominator proportional to |ω̄m| remains), which in effect
offsets the diminution of λ in the prefactor. The singular part is
extracted by adding and subtracting {1/(1 + ω̄2

m′ )} as indicated
in Eq. (23). Then the first term contains the singular part, while
the remainder is of order unity and therefore remains small due
to the λ prefactor. Equation (22) then becomes

I0 = λI 2
0 − I0/2, (24)
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With Z(ωm) = 1

FIG. 1. A plot of [ln(ωE/Tc )]−1 vs λ. Numerical results are shown
in red; the usual BCS approximation, Eq. (13), is given by the green
curve, while the improved estimate given by Eq. (26) is shown in blue.
This latter result becomes essentially exact for λ <≈ 0.2.

where we have used the fact that

I4 ≡ (πT̄c )
+∞∑

m=−∞

|ω̄m|(
1 + ω̄2

m

)2 ≈ 1

2
. (25)

Following Refs. [11,12] we solve Eq. (24) to obtain

Tc = 1.13√
e

ωE exp (−1/λ), (26)

in contrast to Eq. (13).
Figure 1 shows results from unrenormalized Eliashberg

theory (solved numerically), along with the BCS result from
Eq. (13) and the improved result from Eq. (26). In particular we
plot [ln(ωE/Tc )]−1 vs λ. The numerical results are given as a
red curve as indicated, while the BCS approximation (13) and
the improved result from Eq. (26) are given by green and blue
curves, respectively, as indicated. It is clear that the improved
result is essentially exact for the weakest electron-phonon
couplings shown.

B. Improved gap function in the λ → 0 limit

One of the physical features of the square-well model
referred to in the previous section is that the gap function is a
constant for a range of energies equal to the phonon frequency
(here, ωE) on either side of the Fermi energy. This is already
not true with the approximation provided by Eq. (18), even
with neglecting f (ωm). In Fig. 2 we show with thick curves
the numerical result for the gap function for several weak
values of the coupling parameter λ, along with the result from
Eq. (18) with f (ωm) ≡ 0. This latter result, with f (ωm) = 0,
is independent of λ and will presumably be correct in the
strict λ → 0 limit. Figure 2 clearly confirms that the numerical
results are indeed trending towards this result.

In an effort to further improve this result and refine our
understanding of the weak-coupling limit, we proceed to
determine f (ωm) at least as a correction to zeroth order in λ

(and thus an overall correction to the gap function to first order
in λ). For this purpose we substitute Eq. (18) into Eq. (17);

0.0
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0.4
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0.8

1.0

0.0 1.0 2.0 3.0 4.0 5.0

Δ(
ω

m
)

ωm/ωE

λ = 0.3

λ = 0.2

λ = 0.1

λ = 0

With Z(ωm) = 1

FIG. 2. A plot of�(ωm) vs ω̄m ≡ ωm/ωE forλ = 0.3, 0.2, and 0.1
as indicated, obtained numerically. Also shown is the approximation
given by Eq. (18) with f (ωm) = 0. It is clear that deviations from
this limiting result certainly exist, but the numerical results are
trending towards this weak-coupling result. Note that all curves shown
are actually a discrete set of points, determined at the Matsubara
frequencies, but curves have been drawn for better presentation.
In reality only the results for λ = 0.3 are readily discerned as
a discrete set. For reference, the two-square-well model would
be a step function with a value of unity for 0 < ω̄m < 1 and a
value of zero beyond. The numerical values of Tc/ωE for each of
these cases is Tc/ωE = 0.026744(λ = 0.3), 0.004900(λ = 0.2), and
0.000032(λ = 0.1). Note that an improved approximation to first
order in λ, given by Eq. (33) with g1(ωm) provided by Eq. (32), is
shown with a thin curve of the same color for each value of λ. The
result is discernible from the numerical result only in the case of
λ = 0.3.

upon isolating f (ωm) we obtain

f (ωm) = c − g1(ωm) − λg2(ωm), (27)

where c is a constant given by

c = −1

λ
+ I0 + λπT̄c

+∞∑
m′=−∞

f (ωm′ )

|ω̄m′ |
1

1 + ω̄2
m′

, (28)

and

g1(ωm) = πT̄c

+∞∑
m′=−∞

1

1 + ω̄2
m′

{ |ω̄m′ | − 2ω̄msgn(ω̄m′ )

1 + (ω̄m − ω̄m′ )2

}

(29)

and

g2(ωm) = πT̄c

+∞∑
m′=−∞

f (ωm′ )

1 + ω̄2
m′

{ |ω̄m′ | − 2ω̄msgn(ω̄m′ )

1 + (ω̄m − ω̄m′ )2

}

(30)

are two functions of ωm. Both g1(ωm) and g2(ωm) are non-
singular as λ → 0. By this we mean that a 1/|ω̄m′ | term is
absent [as opposed to I0, for example, the sum multiplying λ in
Eq. (19)]; this means both of these functions are of order unity.
Since λ premultiplies g2(ωm), g2 can be ignored, bearing in
mind we wish to retain terms in f (ωm) of order unity or better.
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FIG. 3. A plot of the deviation from �0(ωm) [see Eq. (34)] given
by the numerical results (shown with squares) and by the analytical
results (shown with asterisks) for the three different values of λ

indicated and through the color scheme. In all cases the first-order
correction to the gap function obtained analytically through Eq. (32)
very accurately accounts for the discrepancy from �0(ωm), which
was not discernible in Fig. 2. Note that for the two lowest values of λ

only a subset of the Matsubara frequencies was used; otherwise, the
results would have appeared as a continuous curve.

The resulting expression for the constant c is

c = −1

λ
+ I0 + λcI0 − λ

(
1

2
I0 + c′

)
, (31)

where c′ is a constant obtained numerically from the sum in
Eq. (28) with g1(ωm) substituted as part of f (ωm). In any event
c′ is irrelevant as it is multiplied by λ and enters only at higher
order in λ. The result is c = 1/2, obtained already through the
eigenvalue equation, Eq. (24). This results in an improved Tc

result given by Eq. (26).
This leaves the explicit expression for g1(ωm) in Eq. (29);

this can be evaluated to order (Tc/ωE )2 through the properties
of digamma functions [28,29],

g1(ωm) = 1

4 + ω̄2
m

{
2 − ω̄2

m

ω̄m

tan−1ω̄m − 3

2
ln

(
1 + ω̄2

m

)}
,

(32)

and we now have a more accurate explicit expression for the
gap function,

�(ωm) = 1

1 + ω̄2
m

{
1 + λ

[
1

2
− g1(ωm)

]}
, (33)

valid to order λ. Three thin curves showing this result for
λ = 0.1, 0.2, and 0.3 on the scale of Fig. 2 are essentially
indistinguishable from the numerical results and show that up
to λ ≈ 0.3 at least, Eq. (33), with g1(ωm) from Eq. (32), is very
accurate for small but nonzero values of λ.

To better appreciate the remaining discrepancies, we show
in Fig. 3 results for the deviation from the universal result,

�0(ωm) = 1

1 + ω̄2
m

, (34)

defined as δ�num(ωm) ≡ �num(ωm) − �0(ωm), where
�num(ωm) refers to the numerical solution [30] and

δ�ana(ωm) ≡ �ana(ωm) − �0(ωm), where �ana(ωm) refers
to the analytical solution given by Eq. (33). The remaining
discrepancies for the gap function are of order λ2. At this
point we return to the theory with Z(ωm) 	= 1 and indicate
the places where the description differs from the one just
provided.

IV. ELIASHBERG THEORY WITH RENORMALIZATION

In this section we provide solutions for Eq. (12), while
accounting for Eq. (11). The numerical procedure is fairly
straightforward and follows what we did earlier. A noteworthy
nuance is that the m = m′ term on the right side of Eq. (12)
no longer contributes; it is precisely canceled by a term on
the left that arises upon substituting Eq. (11) into Eq. (12),
and this is a manifestation of the lack of effect of impurities
on superconducting Tc, a fact pointed out by Anderson in
Ref. [31]. In any event this is properly accounted for in both
the numerical and analytical results and manifests itself not
just in Tc but also in the actual functional dependence of the
gap function, as we shall see below.

The difference from the previous section is that Z(ωm) is
now included. The sum in Eq. (9) is readily evaluated in terms
of digamma functions [28,29]. Omitting terms of order Tc/ωE ,
we readily obtain

Z(ωm) ≈ 1 + λ
1

ω̄m

tan−1ω̄m, (35)

which interpolates smoothly from (1 + λ) at low frequencies
to unity at high frequencies. Including this in the steps leading
to Eq. (18), we obtain here instead

�(ωm) = 1

1 + ω̄2
m

{
1 + λ

[
fZ (ωm) − 1

|ω̄m| tan−1|ω̄m|
]}

.

(36)

Following the same type of analysis as that leading to Eq. (26)
and to Eq. (33), we find here that

Tc = 1.13√
e

ωE exp [−(1 + λ)/λ] (37)

and

fZ (ωm) = 3
2 − g1(ωm), (38)

where g1(ωm) is the same function as that given in Eq. (32). As
previously mentioned, Eq. (37) can, of course, be written with
−1/λ in the exponential, along with a prefactor denominator of
e3/2 instead of

√
e. However, the present form more explicitly

shows the role of the “normal-state” renormalization that gives
rise to the usual 1 + λ factor, along with the not-so-usual

√
e

denominator in the prefactor.
Written out explicitly, Eq. (36) reads

�(ωm) = 1

1 + ω̄2
m

(
1 + λ

[
3

2
− 1

4 + ω̄2
m

{
2 − ω̄2

m

ω̄m

tan−1ω̄m

− 3

2
ln(1 + ω̄2

m)

}
− 1

|ω̄m| tan−1|ω̄m|
])

. (39)

While Eq. (39) looks very much like Eq. (33) with 3/2 vs
1/2 to account for the 1 + λ renormalization, there is one
important difference: the large ωm dependence of the first-order
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FIG. 4. A plot of [ln(ωE/Tc )]−1 vs λ for the case where the
normal-state renormalization provided by Z(ωm) is accounted for.
Numerical results are shown in red; the usual BCS approximation,
Eq. (14), is given by the green curve, while the improved estimate
given by Eq. (37) is shown in blue. This latter result becomes
essentially exact for λ <≈ 0.2, and the improvement is similar to that

obtained in Fig. 1.

term in λ is now ≈ (1/ω2
m) rather than ≈ (1/|ωm|), as was

the case with Z(ωm) = 1. Figures 4, 5, and 6 essentially
repeat the results of Figs. 1, 2 and 3, respectively, now with
Z(ωm) 	= 1. Figure 4 shows at these small values of λ the
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FIG. 5. Similar to Fig. 2, a plot of �(ωm) vs ω̄m ≡ ωm/ωE

for λ = 0.3, 0.2, and 0.1 as indicated, obtained numerically (thick
curves), now with the full expression for Z(ωm) included. Also shown
is the λ → 0 approximation given by 1/(1 + ω̄2

m) as in Fig. 2. As in
that case, deviations from this limiting result are apparent, but the
numerical results are certainly trending towards this weak-coupling
result. Note that all curves shown are actually a discrete set of points,
determined at the Matsubara frequencies, but continuous curves have
been drawn for better presentation. In reality only the results for
λ = 0.3 are readily discerned as a discrete set. In this case also, the
two-square-well model would be a step function with a value of unity
for 0 < ω̄m < 1 and a value of zero beyond. The numerical values
of Tc/ωE for each of these cases is Tc/ωE = 0.009923(λ = 0.3),
0.001821(λ = 0.2), and 0.000012(λ = 0.1). Note that an improved
approximation to first order inλ, given by Eq. (39), is shown with a thin
curve of the same color for each value of λ. The result is again barely
discernible from the numerical result only in the case of λ = 0.3.
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FIG. 6. Similar to Fig. 3, a plot of the deviation from �0(ωm) [see
Eq. (34)] given by the numerical results (shown with squares) and by
the analytical results (shown with asterisks) for the three different
values of λ indicated and through the color scheme. In all cases the
first-order correction to the gap function obtained analytically through
Eq. (32) very accurately accounts for the discrepancy from �0(ωm);
this discrepancy was not so discernible in Fig. 5. Note that for the
two lowest values of λ only a subset of the Matsubara frequencies
was used; otherwise, the results would have appeared as a continuous
curve.

detrimental effect of increased electron-phonon coupling that
arises through the normal scattering processes included in the
normal part of the self-energy [included when Z(ωm) is not
equal to unity]; this is apparent in the negative curvature of
Tc as a function of λ. In Fig. 5, where the gap function is
plotted as a function of Matsubara frequency, the results look
qualitatively very similar to those in Fig. 2. Similarly, in Fig. 6
the deviations from a decaying Lorentzian function look very
similar to those in Fig. 3. The analytical results look equally
impressive, although in Fig. 6 the extra corrections from the
renormalization function Z(ωm) are included, and the decay at
large frequency (not shown) is the inverse of the square of the
Matsubara frequency.

It is worth noting that with the explicit function of the
Matsubara frequency given by Eq. (39), an analytical continu-
ation to the real frequency is straightforward. The Lorentzian
on the imaginary axis now becomes a square-root singularity
on the real axis, with the singularity occurring at the phonon
frequency, once again highlighting that the gap function is
definitely not constant for frequencies up to the Einstein
frequency, as in BCS theory. An additional gap structure as
a function of frequency will arise in the term proportional to
λ, but this structure will, of course, be weak in this limit.

V. SUMMARY

By now extensive solutions have been shown in innumer-
able papers for the gap function solution to the Eliashberg equa-
tions, as indicated in the various reviews cited. In this paper we
filled a hole in this tabulation by presenting numerical solutions
and analysis in the weak-coupling limit. The difficulty until
now has been the number of Matsubara frequencies required
for demonstrable convergence. For example, we have used
more than 120 000 (positive) Matsubara frequencies to achieve
convergence for some of the low electron-phonon couplings
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used in this study. We have also obtained analytical solutions to
first order in the coupling constant to reinforce these numerical
solutions. The main messages of this study, reinforcing those
of Refs. [11,12], are as follows:

(i) The weak-coupling expression for superconducting Tc

has a reduced prefactor multiplying the phonon frequency
scale.

(ii) The gap function approaches a Lorentzian function of
frequency as λ → 0, and first-order corrections provide very
good, quantitatively correct results when compared to numer-
ical results. This corrects the impression that the frequency
dependence of the order parameter is a feature that arises in
Eliashberg theory only beyond the weak-coupling regime. In
fact, it remains a characteristic of the superconducting state
even in the weak-coupling limit, in contrast to the picture
provided in the BCS model calculation.

Further investigation will include results in the supercon-
ducting state, below Tc and at zero temperature. In particular,
the gap edge at zero temperature, given in BCS theory by an
analytical result similar to that of Tc [Eq. (13) or (14)], will
also acquire a correction in weak-coupling Eliashberg theory
analogous to that for Tc, i.e., Eq. (26) or (37), so that the

gap ratio remains universal as λ → 0 [8]. Another avenue of
possible investigation, perhaps through the Josephson effect,
is to determine whether the frequency dependence of the gap
function can be measured, even in weakly coupled supercon-
ductors like aluminum.

Note added in proof: We were alerted to Tc solutions in
the literature after this paper was submitted. In Ref. [34]
expressions were derived for Tc in the weak coupling limit
for any shape of α2F (ν), while in Ref. [35] the authors use
a more general framework that nonetheless reproduces the
correct prefactor for Tc in the weak coupling limit. We are
grateful to Roland Combescot and Jim Freericks for bringing
these papers to our attention.
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