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Short-time dynamics in s + i s-wave superconductor with incipient bands
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Motivated by the recent observation of the time-reversal symmetry broken state in K-doped BaFe2As2

superconducting alloys, we theoretically study the collective modes and the short time dynamics of the
superconducting state with s + is-wave order parameter using an effective four-band model with two hole and
two electron pockets. The superconducting s + is state emerges for incipient electron bands as a result of hole
doping and appears as an intermediate state between s± (high number of holes) and s++ (low number of holes).
The amplitude and phase modes are coupled giving rise to a variety of collective modes. In the s± state, we find
that the collective excitations are the Higgs (amplitude) modes, while the Leggett mode is absent due to strong
interband interaction. In the s + is and s++ state, we uncover a new coupled collective soft mode. Finally we
compare our results with the s + id solution and find similar behavior of the collective modes as in the s + is

state.
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I. INTRODUCTION

Ultrafast pump-probe experiments recently become a pow-
erful tool to probe the temporal dynamics of symmetry bro-
ken states and relaxation in conventional and unconventional
superconductors [1–13]. For high frequency excitation with
frequency exceeding the superconducting gap, �, the radiation
breaks Cooper pairs into quasiparticles, which yields rapid
dissipation and thermalization of the system. However, an
intense pulse as used in Ref. [7] couples nonlinearly to the
Cooper pairs of the superconductor. This, as was argued
theoretically, should lead to a coherent excitation of the Higgs
amplitude mode �(t ) [14–25]. In the experiments [4,7,12] the
detection is performed over a window of about 10 picoseconds
(ps), well before thermalization occurs (likely due to acoustic
phonons on a timescale of 100 ps [26]).

While nonequilibrium collective modes in conventional
single-gap superconductors are relatively well understood,
the investigation of collective excitations in unconventional
nonequilibrium superconductors with multicomponent or mul-
tiple gaps is a very intriguing topic due to a very rich spectrum
of the collective excitations [27–32]. Fe-based superconduc-
tors are particularly interesting in this regard due to its variety
and complexity of their phase diagrams. For example, recent
experimental studies of the Fe-based superconductors have
demonstrated the emergence of a superconducting state with
incipient bands, i.e., bands which do not cross the Fermi
level [33,34]. Furthermore, the formation of the incipient
bands is often connected to the Lifshitz transition, where
one of the bands continuously moves away from the Fermi
level as a function of doping [35]. A peculiar example of
an iron-based superconductor with a Lifshitz transition is
Ba1xKxFe2As2 where the Fermi surface topology changes
from the one having both the electron and the hole pockets
to the one where the electron pockets sink below the Fermi
level. Angle-resolved photoemission (ARPES) [36,37] and

thermopower [38] measurements point toward the existence
of such a transition in the overdoped hole-doped compounds
with x ∼ 0.7–0.9. Intriguingly, in the same doping range,
the structure of the superconducting gaps undergoes dramatic
changes, seemingly inconsistent with a two-band description.
While multiple experiments supports the nodeless s+−-wave
superconducting gap near the optimal doping x ∼ 0.4 [39–42],
the situation is very different for the extremely overdoped
case. In this doping range the experiments indicate either
strongly anisotropic s-wave Cooper pairing with sign change
on the remaining two hole pockets [43–45] or the d-wave
pairing with well-defined nodes [46,47] on the hole Fermi
surface sheets. Moreover, in the intermediate doping region,
frustration between the two superconducting channels has been
theoretically predicted to result in a time-reversal symmetry-
breaking s + is state [48–52] or s + id state [53,54]. In these
states, the phase difference φ between the order parameters at
the two hole bands is not equal to a multiple of π with the
φ → −φ symmetry being spontaneously broken.

The time-reversal symmetry breaking s + is and s + id

states possess several interesting properties and should demon-
strate an unusual dynamics. For example, as a result of
simultaneous breaking of U (1) and Z2 symmetries, the vortex
fractionalization and unusual vortex cluster states have been
predicted to exist for the s + is state [49]. The collective ex-
citations of the phase differences between order parameters of
different bands (Leggett modes) in the s + is state is expected
to have a peculiar phase-density nature [49] and have been
predicted to soften at the s + is critical points [51,52]. The
time-reversal symmetry breaking is most directly manifested
in spontaneous currents around nonmagnetic impurities [55]
or quench-induced domain walls [56]. The currents result in
local magnetic fields in the superconducting phase and provide
a signature of the time-reversal symmetry broken state.

Recent measurements on Ba1−xKxFe2As2 report an en-
hanced zero field muon spin relaxation rate at x = 0.73 [57],
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close to the region where the Lifshitz transition is expected
to occur. These results are consistent with a time-reversal
symmetry breaking s + is state or s + id state. This obser-
vation stimulates to analyze further details of the time-reversal
symmetry broken states in strongly overdoped iron-based
superconductors.

Given these theoretical and experimental developments, in
this paper we study the signatures of the s + is Cooper pairing
in the pump-probe spectroscopy. Specifically, we adopt the
four-band model developed in Ref. [52] to analyze the pairing
dynamics within mean-field approximation. In addition, we
also analyze the nature of the collective excitations. One of
our main findings is the emergence of the s + is pairing when
initially the superconductor is in the s± state and existence of
the sharp collective in the s + is state. In addition, we also
studied the pump-probe dynamics in the s + id state and find
that this state shows a very similar soft mode dynamics as is
the case for the s + is state.

Our paper is organized as follows. Sections II and III contain
a description of the model and its ground state within the
mean-field theory approximation. In Sec. IV we study the
nonadiabatic dynamics of an s± superconductor initiated by
a sudden change of the pairing strength or an application of
an external electromagnetic field. In Sec. V we present our
results for the collective excitations depending on the doping
level. Section VI is devoted to the discussion of our results.

II. MODEL

Motivated by the optimally doped Ba1−xKxFe2As2 com-
pound around x ∼ 0.4 we consider a model with four bands—
two holelike and two electronlike—with fully local particle-
particle interactions; the Fermi surface topology is sketched
in Fig. 1(a). Upon further hole doping the electron bands are
shifted away from the Fermi surface and the system undergoes
the Lifshitz transition with hole only Fermi surface sheets in
KFe2As2 [Fig. 1(b)] and the electron pockets become incipient.
The evolution of unconventional superconductivity has been
considered previously for this model [52]. Despite the fact that
the electronic bands become incipient, the hole bands still have
Fermi energies much larger than the superconducting gaps,
thus remaining in the BCS limit. Furthermore, as the dominant
interaction is assumed to be the interband one, it further limits
the phase space of the BCS-BEC crossover [58].

In particular, the four-band Hamiltonian has the form [52]

Ĥ =
∑
k,a,σ

ξ a
k ĉ

a†
kσ ĉa

kσ +
∑
kk′

∑
ab

(
Uabĉ

a†
k↑ĉ

a†
−k↓ĉb

−k′↓ĉb
k′↑ + H.c.

)
.

(2.1)

Here {a, b} ∈ {h1, h2, e1, e2} are the band labels, ĉa†
kσ (ĉa

kσ ) are
the fermionic creation (annihilation) operators, Uab > 0 are
coupling constants, and ξa

k are the single particle dispersions
in each band. In what follows, we simplify our model by
considering two identical electron- and holelike bands within
the tight-binding approximation:

ξ
hi

k = th(2 − cos kx − cos ky ) + ED

2
− μ,

(2.2)

ξ
ei

k = te(2 − cos kx − cos ky ) − ED

2
− μ,

FIG. 1. Fermi surface sketch for the optimally (a) and overdoped
(b) Ba1−xKxFe2As2 plotted for the folded (black) and unfolded
(gray) Brillouin zone consisting of 1 and 2-Fe atoms per unit cell,
respectively. Blue circles represent the two hole pockets at the � point
and the red ellipses represent the two electron pockets at the M Point.
In the overdoped regime (x ∼ 1) the electron pockets shift away from
the Fermi level and become incipient.

where i = 1, 2, te,h are the hopping amplitudes, μ is the
chemical potential, and ED accounts for the changes in the
relative occupation numbers of the electron and hole bands.

For simplicity we set intraband interaction in iron-based
superconductors to zero. Furthermore, as the relevant phase
transition occurs due to increasing hole-hole interaction, we
also simplify our model by neglecting the interaction between
the electron pockets. Therefore we set the coupling constants
as

Uh1h1 = Uh2h2 = 0, Ue1e1 = Ue2e2 = 0,

Uh1h2 = Uh2h1 = Uhh, Ueihj
= Uhj ei

= Ueh (2.3)

(in the last expression i �= j ). Effectively, we reduce the
model to an effective three-band model, focusing only on
the frustration between hole-hole and electron-hole scattering.
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Having formulated the model, we now review its ground state
properties within the mean-field approximation.

III. MEAN-FIELD THEORY

Using the standard methodology, we decouple the two-
fermion interaction term (2.1) in the particle-particle channel
introducing the following mean-field pairing amplitudes: �e ∝∑
k

〈ĉe†
k↑ĉ

e†
−k↓〉 and �hi

∝ ∑
k

〈ĉhi†
k↑ ĉ

hi†
−k↓〉 (i = 1, 2). Minimizing

the free energy with respect to the mean-field amplitudes yields
the following system of equations

�e = −Ueh(�h1Ih1 + �h2Ih2 ),

�h1 = −2Ueh�eIe − Uhh�h2Ih2 , (3.1)

�h2 = −2Ueh�eIe − Uhh�h1Ih1 ,

where we introduced

Ia =
∑

k

tanh
(
Ea

k/2kBT
)

2Ea
k

, a ∈ {e, h1, h2} (3.2)

for brevity and Ea
k = √

(ξa
k )2 + |�a|2 are the single-particle

energies. The mean-field equations (3.1) have to be supple-
mented by the particle-number equation which determines
the changes in the chemical potential due to the onset of
superconducting order. It turns out to be convenient to evaluate
the chemical potential as a function of the carrier number nc

(per spin), i.e., the difference between the electrons and holes:

nc =
∑

k

[
ξ e

k

Ee
k

tanh

(
Ee

k

2kBT

)
+ ξh

k

2E
h1
k

tanh

(
E

h1
k

2kBT

)

+ ξh
k

2E
h2
k

tanh

(
E

h2
k

2kBT

)]
. (3.3)

The detailed analysis of mean-field equations (3.1) can be
easily performed numerically. Upon closer inspection of these
equations, however, it becomes clear that one can basically
guess the solution of these equations without resorting to
numerics. Indeed, for the values of the chemical potential well
below the bottom of the electronic bands, it is clear that there
should be no pairing on the electronic pockets, �e = 0, so
from the mean field equations it follows that �h1 = −�h2 ,
while the |�h1 | = |�h2 | = �h will be given by the root of
UhhIh[�h] = 1. Thus, for μ � −ED/2 the superconductivity
is described by s± order parameter. At this point one needs to
keep in mind that incipient electron bands raise the question
of the applicability of the BCS approximation. This question
has been addressed previously [52,58], where it was found
that despite the fact the electron bands become incipient
the mean-field approximation remains valid for the dominant
interband interaction. The only effect outside of the mean-field
approximation is a necessity to include the renormalization of
the chemical potential in Eq. (3.3).

Let us now consider the opposite limit of filled electronic
band, μ > −ED/2. Without any loss of generality, let us
consider the pairing order parameter on the electron pockets
to be purely real. Furthermore, the structure of the mean-field
equations suggests that the pairing amplitudes in the hole bands
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FIG. 2. Solution of the mean-field equations for the pairing ampli-
tudes on the electron and hole pockets shown here as a function of the
parameter EFe = μ + ED/2 with ED = 0.12 eV, te = th = 2.54 eV,
Uhh = 2.1925 eV, Ueh = 2.3205 eV. Note that the width of the s + is

region is approximately 1.5 meV.

must be the same:

�e = |�e|, �h1 = |�h|eiφ1 , �h2 = |�h|eiφ2 . (3.4)

We can now insert these equations into (3.1) and separate the
real and imaginary parts. It then follows that for the phases the
following relation must hold

φ1 = −φ2 = ϕ/2, (3.5)

where the relative phase ϕ is determined by

cos
(ϕ

2

)
= − Uhh

2Ueh
· |�e|
|�h| , (3.6)

while the amplitudes |�e| and |�h| are the roots of the
following two equations: UhhIh(�h) = 1 and

|�e| · [
1 − 2U 2

ehIe(�e )Ih(�h)
] = 0. (3.7)

Clearly, these equations have a root corresponding to the s±
state (�e = 0, ϕ = π ) and a conventional s-wave state (�e �=
0, ϕ = 2π ). It is therefore natural to expect that there also
should be a solution corresponding to the intermediate values
of phase ϕ ∈ (π, 2π ). By analyzing the mean-field equations
above numerically, we have confirmed that it is indeed the case
and, moreover, the solution corresponding to the state with
ϕ ∈ (π, 2π ) has the lowest energy. In Fig. 2 we present the
results of the numerical analysis of the mean-field equations.

Having reviewed the mean-field results for the model, we
turn our discussion to the analysis of the collective response of
the s + is superconductor.

IV. TEMPORAL EVOLUTION OF THE s + i s
ORDER PARAMETER

In this section we discuss the short-time dynamics of
the s + is superconductor initiated by either sudden change
of the pairing strength or by a short pulse of an external

024522-3



MÜLLER, SHEN, DZERO, AND EREMIN PHYSICAL REVIEW B 98, 024522 (2018)

electromagnetic field. Although at first glance these two ways
of driving a system out of equilibrium seem to be very different,
one can employ the linear analysis of the equations of motion,
i.e., consider the limit of weak deviations from the ground
state, to demonstrate that for the time-dependent correction to
the ground state pairing amplitude external pulse has is many
ways the same effect as a quench of the pairing strength [23].

To study the short time dynamics of a superconductor within
the mean-field approximation described above, it is convenient
to use the Anderson pseudospin variables [59]

Sl
k = 1

2 〈�†
klσ�kl〉, (4.1)

where σ = (σx, σy, σz)T are the Pauli matrices and
�

†
kl = (c†kl↑, c−kl↓) are spinors. In the equilibrium at zero

temperature the pseudospins Skl are given as

S
l,eq
k,x = �lx

2Ekl

, (4.2)

S
l,eq
k,y = �ly

2Ekl

, (4.3)

S
l,eq
k,z = − ξkl

2Ekl

. (4.4)

Here we introduced the shorthand notation �l = �lx − i�ly .
In terms of these variables, the equations of motion are

∂tSl
k = Bl

k × Sl
k, (4.5)

where l = {h1, h2, e} and Bl
k = 2(−�lx ,−�ly , ξ

l
k ). The x and

y component ofBl
k are given by the mean-field self-consistency

equations

�±
h1

(t ) =
∑

k

[−2UehS
±
ke(t ) − UhhS

±
kh2

(t )
]
,

�±
h2

(t ) =
∑

k

[−2UehS
±
ke(t ) − UhhS

±
kh1

(t )
]
, (4.6)

�±
e (t ) = −Ueh

∑
k

[
S±

kh1
(t ) + S±

kh2
(t )

]
,

and we use the shorthand notation �± = �x ± i�y . In the
equilibrium a given pseudospin Sl

k is collinear with the corre-
sponding Bl

k, so the sudden change of one of the coupling
constants entering into (4.6) brings a system far from its
equilibrium state [16,22].

Given that the region in the parameter space of the relative
band occupation numbers where the s + is pairing state is a
ground state is quite narrow, we asked ourselves whether s + is

pairing amplitude will emerge dynamically when initially a
superconductor is in the s± pairing ground state. To address
this question, we solved the equations of motion numerically
on a discrete mesh of momentum points for quenched pairing
interactions. The results of the calculation are shown in Fig. 3.
Initially the system behaves like a two-band system oscillating
with the Higgs-mode frequency ωH  2�h10 = 2�h20, while
Leggett mode is absent due to the dominant interband inter-
action. When the final interaction values refer to an s + is

ground state, we indeed observe the dynamical onset of the
s + is-pairing state, albeit this onset happens rather slowly.
Specifically, it emerges on a time scale t∗ which far exceeds
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FIG. 3. Results of the numerical solution of the equations of
motion (4.5) on the discreet momentum mesh with Nkx

× Nky
= 4096

points. The values of the coupling parameters are chosen so that the
initial state is s± near the boundary separating the s± and s + is

ground states. Depending on the initial value of �e [panels (a) and (b)]
there is a critical time t∗ on which pairing amplitude on the electron
pocket grows signaling the onset of the emergence s + is state. The
relative phase oscillation of �h1 and �h2 for �e(t = 0) = 1.0e−9 is
shown in (c).
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τ�e
∼ h̄/�e0 where �e0 is an equilibrium value corresponding

to a ground state with the new coupling Uhh(f ).
In order to verify this result, we have performed the stability

analysis by considering the pseudospin configuration corre-
sponding to the s± state and allowing for small fluctuations
into the s + is state. Since numerical calculations show that
δ�e(t ) increases exponentially with time, we assume that

δ�±
e (t ) = d±

e e(γ±iω)t , de � |�h| (4.7)

and both γ and ω are some real parameters which we need
to determine. Employing the equations of motion, it is easy
to show that the linear correction to the pseudospins on the
electronic bands are

δS±
ke(t ) = ± δ�±

e (t )

iγ ∓ ω ± 2ξe
k
. (4.8)

Similarly to (4.8), the correction to the pseudospins on the hole
bands are found to be

δS±
kh1

(t ) = ∓ 2δ�±
h1

(t )Sh
kz

iγ ∓ ω ± 2ξh
k

,

δS±
kh2

(t ) = ∓ 2δ�±
h2

(t )Sh
kz

iγ ∓ ω ± 2ξh
k

. (4.9)

By inserting these expressions into the self-consistency equa-
tions (4.6), one arrives at the system of linear equations for
the linear corrections to the pairing fields on each pocket.
These equations will have nontrivial solution provided the
determinant of the corresponding matrix is zero. This condition
has the form of the following equation

[1 − Uhhχh(ζ )]
[
1 + Uhhχh(ζ ) − 4U 2

ehχe(ζ )χh(ζ )
] = 0,

(4.10)

where ζ = γ + iω, χe(ζ ) = ∑
k(iζ + 2ξ e

k )−1 and χh(ζ ) =
−∑

k Sh
kz · (iζ + 2ξh

k )−1. The reader can easily check that this
equation does not have a solution for Ueh = 0 which means that
the s± remains perfectly stable. However, for Ueh �= 0 such that
the s + is superconducting state is a ground state, we found
that (4.10) has a root γ ≈ 10−3�h and ω � 2μ.

V. COLLECTIVE MODES

A. Response to fast perturbations: Nonadiabatic regime

We now turn our discussion to the question of the collective
response of the s + is superconductor. Therefore, we perturb
the system with a pump pulse to simulate the THz experiment.
The electric field of this laser pulse can be described by a
time dependent vector potential E = − 1

c
∂tA. In contrast to the

usual linear response regime, one of the advantages in working
in the nonadiabatic regime is that the driving frequency does
not need to be exactly in resonance with that of the collective
modes to excite them, since the perturbation of the laser pulse
changes the ground state nonadiabatically. Thus, we choose the
spectrum of this pulse to be a Gaussian envelope with �hτ = 1
centered around a frequency ω0 = |�h| to cover the spectrum
below the quasiparticle continuum,

A(t ) = A0θ (t )e− (t−t0 )2

2τ2 cos(ω0t ). (5.1)

∆ht
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∆(
t)/

∆ h
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FIG. 4. Numerical solution of the equations of motion with a
time dependent vector potential A(t ). The oscillation of both—the
amplitude [panel (a)] and the relative phase [panel (b)] of the
order parameters—are dominated by the same frequency ωc. For
numerical accuracy we choose a cutoff energy (� = 30 meV) and
Uhh = 22 meV and Ueh = 20 meV [60].

Here, τ controls the width of the time dependent signal and
therefore needs to be chosen in such a way, that the signal
disturbs the system nonadiabatically. Also, we choose A0 small
enough to not change the ground state, i.e., �l

∞ ≈ �l (0).
The electromagnetic vector potential couples to the system
via minimal substitution, i.e., ξ l

k → ξ l

k± eA
c

. This changes the

pseudomagnetic field in the equations of motion (4.5) into

Bl
k = ( − 2�lx ,−2�ly ,

(
ξk+ e

c
A(t )l + ξk− e

c
A(t )l

))
. (5.2)

The numerical solution of the nonequilibrium dynamics
are shown in Fig. 4. One clearly sees that both the dynamics
of the amplitude and the relative phase are dominated by
one frequency ωc ∼ 0.8�h

∞. All oscillations are undamped,
because the frequency is smaller than 2�h

∞, i.e., the smallest
possible Higgs mode and the beginning of the quasiparticle
continuum. However, the absence of damping is a peculiarity of
the model, since we assume isotropic s-wave order parameters.
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FIG. 5. The mode ωc across the full s + is state. The dashed lines
mark the borders of the TRSB state. The system parameters are chosen
similar to Fig. 4.

In the real system the nodal character of the order parameters
leads to dampening effects.

We examine the mode ωc by numerically solving the
equations of motion over the whole s + is phase. The result
is shown in Fig. 5. Obviously, the mode ωc softens close to
the borders of the s + is state and has its maximum value deep
inside the s + is regime. The coupling of both—amplitude and
relative phase oscillations—is a peculiarity of the collective
excitations in time reversal symmetry broken systems and
differs from the usual dynamics of multiband superconductors.
Also the softening of the mode close to the borders of the s + is

state can be explained by the second order phase transition from
the s + is into the s±/s++ state [49,51,52]. For comparison we
show in Appendix B that this result still holds if the system, via
an intermediate s + id-state, ends up in a d-wave symmetry at
large hole doping.

The collective modes of the s + is state in the equilibrium
were discussed in previous publications [49,51,61]. In the
linear response one requires to have resonant conditions to
observe these modes, while in the nonequilibrium one typically
excites a single mode, lowest in energy, which should be
observed in the experiment.

B. Collective response in the adiabatic regime

To study to collective mode at long wavelength limit, we
linearize equations of motion (4.5) with respect to the devi-
ations from the equilibrium, δSkl = Skl (t ) − Skl , δ�x

l (t ) =
�x

l (t ) − �lx , δ�
y

l (t ) = �
y

l (t ) − �
y

l , and the effect of per-
turbation potential, δBz

kl (t ) = Bz
kl (t ) − ξk. The deviations are

homogeneous in space so they describe the collective mode at
long wavelength limit. The details of the calculations can be
found in the Appendix A. Here we discuss our main results.

The resulting linearized equations will have nontrivial so-
lution provided the corresponding determinant vanishes which
sets us the nonlinear equation for the frequency of the collective
modes. We solve the equation for mode, Eq. (A3), for all
the ground states pseudospin configurations—s±, s + is, and
s++—and near the transitions between these states. In all three

ω
 [m

eV
]

0

0.5

1

EFe [meV]
-59.5 -59 -58.5

ω1 
ω2

FIG. 6. Mode frequencies of collective mode at q = 0 by varying
doping parameter EFe: ω1 (blue dashed line) is the overall phase
mode, ω2 (red solid line) is the coupled low energy mode. We choose
Uhh = 2.1925 eV and Ueh = 2.3205 eV.

states, we find a solution at ω1 = 0: This mode is an overall
phase mode without changing amplitude and relative phase
difference, so this motion does not cost any energy. It is the
Goldstone mode from U(1) symmetry breaking of BCS ground
state. Beside this, we also find a new low energy mode ω2 as
shown in Fig. 6. The energy of this mode decreases at the
boundary of the s + is state.

In the s± state, we find that the mode is the motion of anti-
symmetric phase change of two hole bands gaps coupled with
amplitude change of electron band gap. We have the eigenvec-
tor of mode, δ ��± = [δ�e, 0, δ�he

−iπ , 0, δ�he
−iπ , 0], where

δ�e, δ�h are positive real values, see Fig. 7. Similarly, in s++
state, we find the mode is the motion of antisymmetric phase
change of two hole bands gaps. We have the eigenvector of
mode δ ��++ = [0, 0, δ�he

i π
2 , 0, δ�he

−i π
2 , 0].

In s + is state, the mode is an amplitude-phase coupled
mode between both incipient electron and partially filled
hole bands. Therefore it corresponds to ωc in Sec. V A. The
eigenvector is

δ ��s+is

= [δ�x
e , δ�

y
e e

iπ
2 , δ�x

he
iφ, δ�

y

he
iφ, δ�x

he
−iφ,−δ�

y

he
−iφ].

(5.3)

Note that the first two components of δ ��s+is has a relative
phase of π/2 which is a direct consequence of the incipiency
of the electron band, as follows directly from the structure of
the matrix elements (A3) and the fact that �e(ω) in that matrix
is purely imaginary. Unlike the overall phase mode, this low
energy mode vector is not continuous at the boundary between
the two states. Near the boundary of s± and s + is state, δ�y

e =
δ�

y

h = 0, the mode is a combination of δ ��± mode and overall
phase mode, see Fig. 8. At the end, it is not surprising because
both overall phase mode and low energy mode are soft at the
boundary. As EFe increases, δ�x

e , δ�x
h decrease and δ�

y
e , δ�y

h

increase. Near the boundary of s++ and s + is state, δ�x
e =

δ�x
h = 0, the mode is a combination of δ ��++ mode and overall

phase mode, Fig. 8. We note that our result differs slightly from
previous ones [49,51,61], as in our calculation the electron
band is incipient.

024522-6



SHORT-TIME DYNAMICS IN s + is-WAVE … PHYSICAL REVIEW B 98, 024522 (2018)

e 

h1 

h2 

h1 

h2 

e 

e 

h1 

h2 

FIG. 7. Big arrows are the gap vectors in a complex plane; small
arrows are the mode vectors. Horizontal and vertical axis represent
the real and imaginary part. From top to bottom are s±, s + is, and
s++ state.

VI. DISCUSSION AND CONCLUSION

It is well known that the problem of nonadiabatic dynamics
of the BCS model is exactly solvable [18]. The model presented
above can be also shown to be exactly integrable for a special
choice of the coupling constants, which however, do not
describe the regime where s + is state has the lowest energy.
Nevertheless, we have checked that despite the lack of the
integrability in our model, the nonequilibrium dynamics of
the order parameter, which is initiated by a sudden change of
the pairing strength, bears a lot of similarities with the results
obtained from the exactly solvable version of the model.

FIG. 8. Decomposition of s + is mode near the transition
between s± and s + is (top) and between s++ and s + is (bottom).

Another important aspect related to similarities and differ-
ences for the short-time order parameter dynamics between
integrable and nonintegrable models is concerned with the
emergence of the s + is state in the incipient electronic
band. Indeed, within both the single-channel and two-channel
pairing models for the degenerate atomic Fermi gases [22] the
realization of the steady state with periodically oscillating
amplitude is limited to the weak-to-moderately strong coupling
quenches in the vicinity of the BCS-BEC crossover. Our
results show that on one hand we have a steady state with
periodically oscillating pairing amplitude, while on the other
hand, the electronic band is incipient mimicking the BEC limit
in atomic gases. Thus observation of this effect may question
the interpretation of the s + is state as being analogous to the
BEC pairing in atomic condensates.

It is also important to keep in mind that the observa-
tion of the collective oscillations during the pump-probe
experiments can in principle be inhibited by two effects: (i)
spatial inhomogeneities of the pairing amplitude which may
develop by parametric instabilities [62] and (ii) the Coulomb
interactions between the particles. The effects of the Coulomb
interactions on the nonequilibrium dynamics still remains a
largely open problem. However, since our model involves
purely repulsive interparticle interactions, we believe that
the effects of the Coulomb interactions will not affect the
dynamics in a profound way. We further note that we do
not address here behavior of the optical conductivity, as its
behavior is also influenced by the so-called third-harmonic
generation, originally discussed in Ref. [63], i.e., the obser-
vation of a frequency peak at three times the probe-laser
frequency.

To conclude, we theoretically study the collective modes
and the short time dynamics of the superconducting state
with s + is-wave order parameter using an effective four-band
model with two hole and two electron pockets motivated by
the recent experiments on time-reversal symmetry broken state
in iron-based superconductors. The superconducting s + is

state emerges for incipient electron bands as a result of
hole doping and appears as an intermediate state between
s± (high number of holes) and s++ (low number of holes).
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The amplitude and phase modes are coupled giving rise to
a variety of collective modes. In the s± state, we find the
Higgs mode at frequencies similar to a two-band model with
an absent Leggett mode, which is pushed into the quasiparticle
continuum due to the dominant interband interaction, while
in the s + is and s++ state, we uncover a new coupled
collective soft mode. We also compare our results with the
s + id solution and find similar behavior of the collective
modes.
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APPENDIX A: COLLECTIVE MODE IN CONTINUOUS MODEL AT q = 0

The linearized equations of motion are

∂t δS
x
kl (t ) = −2�

y

l δS
z
kl (t ) − 2Sz

klδ�
y

l (t ) − 2ξklδS
y

kl (t ) − 2S
y

klδB
z
kl (t ),

∂t δS
y

kl (t ) = 2ξklδS
x
kl (t ) + 2Sx

klδB
z
kl (t ) + 2�x

l δS
z
kl (t ) + 2Sz

klδ�
x
l (t ),

∂t δS
z
kl (t ) = −2�x

l δS
y

kl (t ) − 2S
y

klδ�
x
l (t ) + 2Sx

klδ�
y

l (t ) + 2�
y

l δS
x
kl (t ). (A1)

Fourier transformation, e.g., f (t ) = ∫
dω
2π

f (ω)eiωt , gives
⎛
⎜⎝

δSx
kl (ω)

δS
y

kl (ω)

δSz
kl (ω)

⎞
⎟⎠ = Sz

kl

ξkl

(
4E2

kl − ω2
)
⎛
⎜⎝

4(ξ 2
kl + �

y

l

2) 2iωξkl − 4�x
l �

y

l 2iω�
y

l + 4�x
l ξkl

−2iωξkl − 4�x
l �

y

l 4(ξ 2
kl + �x

l
2) −2iω�x

l + 4�
y

l ξkl

−2iω�
y

l + 4�x
l ξkl 2iω�x

l + 4�
y

l ξkl 4(�x
l

2 + 4�
y

l

2)

⎞
⎟⎠

⎛
⎜⎝

−δ�x
l (ω)

−δ�
y

l (ω)

δBz
kl (ω)

⎞
⎟⎠ (A2)

We take δBz
kl = 0 since the collective mode should not depend on the perturbation, and substituting the result into self-consistency

equation (4.6), we obtain⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 UehM
x
h1(ω) Ueh�h1(ω) UehM

x
h2(ω) Ueh�h2(ω)

0 1 Ueh�h1(−ω) UehM
y

h1(ω) Ueh�h2(−ω) UehM
y

h2(ω)

2UehM
x
e (ω) 2Ueh�e(ω) 1 0 UhhM

x
h2(ω) Uhh�h2(ω)

2Ueh�e(−ω) 2UehM
x
e (ω) 0 1 Uhh�h2(−ω) UhhM

y

h2(ω)

2UehM
x
e (ω) 2Ueh�e(ω) UhhM

x
h1(ω) Uhh�h1(ω) 1 0

2Ueh�e(−ω) 2UehM
x
e (ω) Uhh�h1(−ω) UhhM

y

h1(ω) 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ�x
e (ω)

δ�
y
e (ω)

δ�x
h1

(ω)

δ�
y

h1
(ω)

δ�x
h2

(ω)

δ�
y

h2
(ω)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0 (A3)

where the quantities in the equation at T = 0 are given by

Mα
l (ω) =

∑
k

2
[
ξ 2

kl + (
�α

l

)2]
(
4E2

kl − ω2
)
Ekl

, �l (ω) =
∑

k

iωξkl − 2�x
l �

y

l(
4E2

kl − ω2
)
Ekl

(A4)

and α = x, y.
In a usual one band or two bands superconductor, after choosing proper gauge, �l (w) = 0 due to electron-hole symmetry,

thus the amplitude and phase are decoupled in the equation. In the time reversal symmetry broken system, one cannot choose
a gauge to vanish all �l (w). Besides, the broken electron-hole symmetry of the incipient electron band makes �e(w) always
nonvanishing. As a result, the amplitude and phase oscillation are coupled in the mode. The frequency of the mode is determined
by the solution of equation

Det[M] = 0, (A5)

where M is the 6 × 6 matrix in (A3). The eigenvectors of the matrix

δ ��(ω) = [
δ�x

e (ω), δ�y
e (ω), δ�x

h1
(ω), δ�y

h1
(ω), δ�x

h2
(ω), δ�y

h2
(ω)

]
(A6)

tell how amplitude and phase are coupled in the collective excitation.

APPENDIX B: COLLECTIVE MODES INSIDE
THE s + i d REGIME

In this section we discuss the collective dynamics inside a
s + id superconductor. Therefore, we modify the Hamiltonian

(2.1) and add another channel to the inter-hole-band interaction
Uhh to allow for d-wave pairing

U
h1h2
k,k′ ≡ Uhh,s + Uhh,d cos(2φk ) cos(2φk′ ), (B1)
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FIG. 9. The solution of the mean-field equations at zero tempera-
ture. In this picture the different order parameters are plotted against
EFe. Between −10.5 meV and −18.5 meV both hole order parameters
consist out of a s-wave component and a d-wave component. We
introduced an energy cutoff � = 30 meV and Uhh,s = 20 meV,
Uhh,d = 50 meV and Ueh = 22 meV.

where Uhh,s, Uhh,d > 0 are constant and cos(2φk ) = (k2
x − k2

y )
/(k2

x + k2
y ). This leads to momentum dependent order param-

eters for the two hole bands

�
hi

k = �s
hi

+ i�d
hi

cos(2φk ), (B2)

where �s
hi

and �d
hi

are the s- and d-wave pairing amplitude. It is
important that the only possible pairing symmetry with mixed
s- and d-wave component is s + id, since s+d symmetry breaks
the C4 symmetry of the system. Also we choose the d-wave
component large enough to suppress a possible competition
between s + is and s + id superconductivity, i.e., we can
choose �s

hi
and �d

hi
real. This argument can also be shown

by free energy analysis. The pairing amplitude for the electron
band remains constant and is chosen positive to fix the overall
phase.

Minimizing the free energy with respect to the five different
pairing amplitudes we obtain

�e = −Ueh

(
�s

h1
Ih1 + �s

h2
Ih2

)
,

�s
h1

= −2Ueh�eIe − Uhh,s�
s
h2

Ih2 ,

�s
h2

= −2Ueh�eIe − Uhh,s�
s
h1

Ih1 ,

�d
h1

= −Uhh,d�
d
h2

Jh2 ,

�d
h2

= −Uhh,d�
d
h1

Jh1 , (B3)

where Ia was introduced in Eq. (3.2) and

Ja =
∑

k

tanh
(
Ea

k/2kBT
)

2Ea
k

cos2(2φk ). (B4)

Since the order parameters are momentum dependent, the
single-particle energies of the hole bands now have the form
E

hi

k =
√

(ξhi

k )2 + |�s
hi

|2 + |�d
hi

|2 cos2(2φk ).
Again, we take a closer look into this set of equations.

Clearly, in the pure s-wave limit, i.e., �d
hi

= 0, we reproduce
our previous set of mean field equations in Eq. (3.1). In the
pure d-wave limit, i.e., �s

hi
= 0, �e becomes zero and we end

61- 81-21- 41--10
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FIG. 10. The frequency of the collective mode ωc over the whole
s + id regime. Here we also compare the data to 2|�s,d

h | ≡ 2|�s,d
h1

| =
2|�s,d

h2
|.

with only the last two equations and it follows �d
h1

= −�d
h2

.
Obviously this scenario is described in the case μ � −ED/2,
where the electron band is incipient and �e = 0. Since we
choose Uhh,d large enough to make the solution �s

h1
= −�s

h2

energetically unfavorable we end up with the pure d-wave
solution. However for μ > −ED/2 we end up with finite
�e > 0 and thus finite �s

h1
= �s

h2
< 0. For large enough �e,

i.e., large enough μ, it is energetically unfavorable for the
system to condense an additional d-wave component and thus
�d

h1
= �d

h2
= 0. However, in between these two configurations

we can end up in a state where all five pairing amplitudes are
finite. This set of equations is solved numerically in Fig. (9).

Similar to Sec. IV we obtain the equations of motion for this
model by making use of Anderson pseudospin variables. The
equations of motions have the same form as in Eq. (4.5) but the
pseudomagnetic field is now Bl

k = 2(−�x
kl ,−�

y

kl , ξ
l
k ), where

we use �kl = �s
l + i�d

l cos(2φk ) and �x
kl ,�

y

kl as introduced
in the main text. Here, one needs to keep in mind that the
electron order parameter has only the s-wave component, i.e.,
�d

e = 0. The x and y component of the pseudomagnetic field
are given by

�
s,±
h1

(t ) = −
∑

k

[
2UehS

±
ke(t ) + Uhh,sS

±
kh2

(t )
]

�
d,±
h1

(t ) = −
∑

k

Uhh,dS
±
kh2

(t ) cos(2φk )

�
s,±
h2

(t ) = −
∑

k

[
2UehS

±
ke(t ) + Uhh,sS

±
kh1

(t )
]

�
d,±
h2

(t ) = −
∑

k

Uhh,dS
±
kh1

(t ) cos(2φk )

�±
e (t ) = −

∑
k

[
UehS

±
kh1

(t ) + UehS
±
kh2

(t )
]
. (B5)

Including a time-dependent vector potential A(t ) changes the
pseudomagnetic field in the equations of motion into

Bl
k = (−2�x

kl ,−2�
y

kl ,
(
ξk+ e

c
A(t )l + ξk− e

c
A(t )l

))T
. (B6)

Choosing A(t ) as in Eq. (5.1) we solve the equations of
motion for a system inside the s + id regime numerically.
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Due to the momentum dependence of the order parameters the
result is depending on the polarization of the vector potential.
However, this does not change the qualitative dynamics.
Similar to the s + is scenario we obtain that the dynamics
of both—amplitude and relative phase oscillation—are clearly
dominated by a single frequency ωc. We find that all pairing
amplitudes oscillate at the same frequency. While the relative
phase between the hole order parameters remains constant
for both the s- and d-wave component, the relative phase
between s- and d-wave component oscillate for each hole order
parameter.

In Fig. (10) we investigate this frequency over the whole
s + id phase diagram. We find that ωc behaves similarly to the

s + is scenario and vanished close to the borders of the s + id
state. However, close to the border to the d-wave state one
obtains that ωc is coupling to 2|�s

h2
|, which can be understood

as the system’s decreasing Higgs mode due to the transition into
the nodal d-wave state. This nonequilibrium effect is similar
to the one observed in Ref. [32]. Once the collective mode of
a system exceeds the system’s smallest possible Higgs mode
ωH , this mode couples to ωH and is therefore pushed below
the quasiparticle continuum. The effect is not dominant on
the border to the s-wave state, since the order parameter is
fully gapped on this site. These results are similar to previous
calculations done in the equilibrium for a single-band model,
with competing s- and d-wave instability [55].
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