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Motivated by recent studies on ferroelectriclike order coexisting with metallicity, we investigate ferroelectric
(FE) superconductivity in which a FE-like structural phase transition occurs in the superconducting state. We
consider a two-dimensional s-wave superconductor with Rashba-type antisymmetric spin-orbit coupling (ASOC).
Assuming a linear relationship between the polar lattice displacement and the strength of the ASOC, we treat
the Rashba-type ASOC as a molecular field of FE-like order. It is shown that the FE-like order is induced by
the magnetic field when the system is superconducting. Furthermore, we clarify the FE superconductivity in
a low carrier density regime, which was recently discovered in doped SrTiO3. It is demonstrated that the FE
superconducting state can be stable in this regime in the absence of the magnetic field. Our results open a way to
control the electric polarization by superconductivity, that is, superconducting multiferroics.
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I. INTRODUCTION

Recent experimental observations have generated a flurry of
interest in the relationship among metallicity, ferroelectricity,
and superconductivity [1–3]. In principle, metals cannot ex-
hibit ferroelectricity because dielectric polarization is screened
by conduction electrons. However, in 1965, Anderson and
Blount predicted the existence of ferroelectric (FE) metals in
which FE-like structural phase transition occurs in the metallic
state [4]. A lot of experiments have been devoted to searches
of FE metals for half a century [5–11], and recently, a FE-like
structural phase transition was observed in metallic LiOsO3

[1].
Following the discovery of a candidate of FE metals, the

relationship between ferroelectricity and superconductivity
has also received a lot of attention. A promising candidate
material of FE superconductivity in which FE-like order
coexists with superconductivity, is SrTiO3 (STO). STO is
a quantum paraelectric (PE) [12] whose dielectric constant
is extremely high about 20 000 at low temperatures, but a
pure compound does not exhibit ferroelectricity because the
long-range FE order is suppressed by quantum fluctuation.
However, STO turns into a FE by tiny isovalent Ca doping
[13], isotopic substitution of 16O with 18O [14] or application
of stress [15]. On the other hand, charge carriers can be
doped into the STO by substituting Sr atoms with La, Ti with
Nb, or by oxygen vacancy, and then, STO becomes a metal
showing superconducting instability at low temperatures [16].
Based on these observations, Rischau et al. [2] have recently
performed various measurements for Sr1−xCaxTiO3−δ with
oxygen vacancy and weak Ca doping. They mapped out a
temperature-versus-carrier density phase diagram in which a
coexistent phase of FE-like order and superconductivity exists.
Their experimental results suggest the FE superconductors.
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FE-like structural phase transition in the metallic state can
be defined as the appearance of a polar axis and the disap-
pearance of an inversion center in the presence of conducting
electrons [1]. In such a situation, antisymmetric spin-orbit
coupling (ASOC) is induced by the combination of spin-orbit
coupling and spontaneous inversion-symmetry breaking. This
means that the emergence of the FE-like order in a spin-
orbit-coupled system is characterized by the appearance of
ASOC [17]. Recent theoretical and experimental studies have
elucidated various intriguing phenomena of noncentrosym-
metric (NCS) superconductors, for example, parity mixing
of Cooper pairs [18], an upper critical field exceeding the
Pauli-Chandrasekhar-Clogston limit [19–21], and stabilization
of a helical superconducting state under a magnetic field
[22–25]. FE superconductors may be a new platform of such
exotic superconducting states. However, relations between the
spontaneous FE-like order and the NCS superconductivity
remain a mystery.

The pairing mechanism of superconductivity in STO is also
mysterious despite a long history of investigations. Metallic
STO exhibits superconductivity at very low carrier density
on the order of 1017 cm−3 [26,27], which is exceptionally
low compared to any other known superconductors. In this
region of carrier density, the Fermi temperature TF is lower
than the Debye temperature TD [28], and it seems difficult
to generate Cooper pairs by phonon-mediated attractive in-
teractions [29,30]. Recent theories propose several situations
to explain the pairing mechanism of this extremely dilute
superconductivity in STO. For example, Edge et al. [31] have
proposed dilute superconductivity induced by the quantum FE
fluctuations. Despite various theoretical works [30–38], there
is still no consensus about the origin of superconductivity in
STO. However, recent works point to the superconductivity
influenced by the FE quantum criticality.

In this paper, we investigate a ubiquitous mechanism of
the FE superconductivity in a spin-orbit-coupled system,
namely, spin-orbit-coupled FE superconductivity. We consider
a two-dimensional (2D) s-wave Rashba superconductivity on
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a square lattice as a minimal model and analyze the model
with the use of the mean-field (MF) theory. Assuming a linear
relationship between the polar lattice distortion and the induced
Rashba-type ASOC, we treat coupling strength of the ASOC
as a FE order parameter. Then, the free energy, including the
energy of polar lattice displacement, is minimized with respect
to the superconducting and FE order parameters. We map out
the phase diagram for the thermodynamic states. The results
reveal two carrier density regions distinguished by the stability
of FE superconductivity, i.e., high carrier density regime and
low carrier density regime. In the high carrier density regime
near a FE critical point, it is shown that the FE superconducting
state is stabilized under the applied magnetic field, even though
it is unstable at zero magnetic field. On the other hand, in the
low carrier density regime, the FE superconducting state can
be stabilized without applying the magnetic field, owing to the
enhancement of density of states (DOS) by the FE-like order.
The result is consistent with the experimental phase diagram
of Sr1−xCaxTiO3−δ [2] in which the FE superconducting state
is stabilized in the low carrier density regime at a zero field.
Furthermore, it is implied that the FE superconducting phase
may be stabilized in various superconductors by applying the
magnetic field. Such effect arises from an unusual magnetic
response of NCS superconductors [18–21]. Thus, not only
the FE-like structural transition, but also other types of spon-
taneous inversion-symmetry breaking [39] might be induced
in spin-orbit-coupled superconductors in a controllable way.
Previous works have not focused on the feedback effect of
superconductivity on the inversion-symmetry-breaking order.
Thus, our theoretical proposal might broaden the research
field of the superconductivity, ferroelectricity, and higher-order
multipole order.

This paper is constructed as follows. In Sec. II, a model of
an electron-lattice-coupled 2D s-wave Rashba superconductor
is introduced. We analyze the model with the use of MF
theory, and then, the energy of polar lattice distortion is
included phenomenologically. In Sec. III, we show the results
of the high carrier density regime. It is shown that the FE
superconducting state is stabilized in the presence of the
magnetic field, although it is unstable at a zero field. In Sec. IV,
a significantly different relationship between ferroelectricity
and superconductivity in the low carrier density region is
demonstrated. We show that dilute superconductors, such as
STO are advantageous to stabilize the FE superconducting
state, and thus, the coexistent FE superconducting state is
stabilized even at a zero magnetic field. A possibility of a
self-organized topological superconducting state by FE-like
structural transition is also discussed. In Sec. V, a qualitative
understanding of our results is given by the Ginzburg-Landau
free energy. Finally, a brief summary and discussion are given
in Sec. VI.

II. MODEL AND FORMULATION

A. Model

In this paper we consider a minimal model for a spin-orbit-
coupled FE superconductivity, that is, a 2D electron system on
a square lattice coupled to a polar lattice distortion [Fig. 1(a)].
This kind of 2D superconductivity is actually realized in the
δ-doped STO [40], for example. In this model, a FE-like

FIG. 1. (a) Crystal structure of a 2D tetragonal lattice. The blue
and red circles show the metal ions and the nonmetal ions, respec-
tively. (b) Polar lattice displacement of the 2D tetragonal system.
Displacement of the metal (light blue plane) and nonmetal (light red
plane) planes induces the FE-like order, and then, the Rashba-type
ASOC arises.

structural phase transition with spontaneous mirror-symmetry
breaking [Fig. 1(b)] is taken into account. The crystallographic
point-group D4h descends to the subgroup C4v by the FE-like
structural transition. Hence, due to a spin-orbit coupling,
the Rasba-type ASOC is induced by the FE-like structural
transition [41]. Based on these observations, we introduce a
model of electron-lattice-coupled 2D Rashba superconductor
as follows:

H = Hkin + Hpol + Hpair + HZ, (1)

Hkin =
∑
k,s

[ε(k) − μ]c†kscks , (2)

Hpol =
∑
k,s,s ′

αg(k) · σ̂ ss ′c
†
kscks ′ , (3)

Hpair = 1

N

∑
k,k′,q

V (k, k′)c†k↑c
†
−k+q↓c−k′+q↓ck′↑, (4)

HZ = −μB

∑
k,s,s ′

H · σ̂ ss ′c
†
kscks ′ , (5)

where cks is the annihilation operator of an electron with
momentum k and spin s = ↑,↓. This model represents the
Hamiltonian of electrons, and later we add the energy arising
from the polar lattice distortion.

The first term Hkin is the kinetic-energy term including the
chemical potential μ. We assume a simple nearest-neighbor
hopping tight-binding form ε(k) = −2t (cos kx + cos ky ) on
a square lattice, where t is the hopping integral. We choose the
unit of energy as t = 1.

The second term Hpol represents the Rashba-type ASOC
which is induced by the FE-like structural phase transition.
The g vector of the Rashba-type ASOC on a square lattice
is described as g(k) = (− sin ky, sin kx, 0). Here, we assume
P ∝ α with P being a lattice polarization [Fig. 1(b)], and
α is the coupling strength of the ASOC. This relation has
been verified by a first-principles calculation of perovskite
2D electron systems [42], which shows that the Rashba-type
ASOC is induced by the polar lattice displacement. Based
on this picture, we treat α as an order parameter which
characterizes the FE-like order.
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The third term Hpair expresses the attractive interaction for
superconductivity. N = L2 is the number of sites, and q is the
center-of-mass momentum of Cooper pairs. We consider the
s-wave superconductivity expected in bulk STO [43,44] and
other conventional superconductors by adopting momentum-
independent pairing interaction V (k, k′) = −Vs . For NCS
superconductors, the parity mixing of the superconducting gap
function generally occurs [18]. Thus, in this case, an odd-
parity p-wave component is induced in addition to the s-wave
component [18,45]. However, when the pairing interaction
in the s-wave channel is dominant, FE-like order is hardly
affected by the p-wave component. Therefore, we neglect the
p-wave gap function in the following.

In this paper we clarify the magnetic response of the FE
superconductor. For this purpose, we introduce the Zeeman
coupling term HZ by the fourth term of Eq. (1), where σ̂ is the
Pauli matrix and μB is the Bohr magneton. We consider two
directions of the magnetic field, i.e., the perpendicular field
H = (0, 0,Hz) and the in-plane field H = (Hx, 0, 0). In most
bulk superconductors, the orbital depairing effect is not negli-
gible, and therefore, we should include the gauge interaction
with the vector potential in addition to the Zeeman coupling
term. However, the orbital depairing effect is suppressed by the
geometry when we consider a quasi-2D system in the in-plane
magnetic field, and we can ignore it. For the perpendicular
magnetic field, the importance of the orbital depairing effect
depends on the Maki parameter αM = √

2H orb
c2 /H P

c2, where
H orb

c2 is the orbital limiting field and H P
c2 is the Pauli limiting

field. Since αM ∝ |�|/E∗
F with E∗

F being a renormalized Fermi
energy, heavy fermion superconductors or low carrier density
superconductors with a small E∗

F are candidates of our analysis,
for instance. More precise study including the orbital depairing
effect is left for a future work.

In the Rashba superconductors, a Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) state [46,47] is stable, and the center-
of-mass momentum q is finite when the in-plane field is
applied [22–24]. However, because the phase diagram of the
FE superconductivity is hardly affected by a finite q, we fix
q = 0, i.e., the Bardeen-Cooper-Schrieffer (BCS) state in the
following. A possibility of the FE FFLO state is briefly dis-
cussed later. It is expected that some ubiquitous relationships
between ferroelectricity and superconductivity are captured by
our model. Although the bulk STO is a three-dimensional and
multiorbital [48] system, a material-specific study taking into
account these ingredients is left for a future work.

B. Mean-field theory

We investigate the superconducting state by means of mean-
field theory. The pairing interaction termHpair is approximated
as follows:

Hpair = −Vs

N

∑
k,k′

c
†
k↑c

†
−k↓c−k′↓ck′↑

�
∑

k

(�c
†
k↑c

†
−k↓ + H.c.) + N

Vs

|�|2, (6)

by introducing the order parameter,

� = −Vs

N

∑
k′

〈c−k′↓ck′↑〉. (7)

To describe the MF Hamiltonian in a matrix form, we here
define the vector operator,

Ĉ
†
k = (c†k↑, c

†
k↓, c−k↑, c−k↓). (8)

Then, we obtain

HMF = 1

2

∑
k

Ĉ
†
kĤBdG(k)Ĉk + Ec, (9)

where Ec is

Ec =
∑

k

[ε(k) − μ] + N

Vs

|�|2. (10)

The Bogoliubov–de Gennes (BdG) Hamiltonian ĤBdG(k) is
given by

ĤBdG(k) =
(
Ĥ0(k) �̂

�̂† −ĤT
0 (−k)

)
, (11)

where

Ĥ0(k) = [ε(k) − μ]σ̂0 + [αg(k) − μB H] · σ̂ , (12)

and �̂ = �iσ̂y .
We carry out Bogoliubov transformation by using the

unitary matrix Û (k),

HMF = 1

2

∑
k

Ĉ
†
kÛ (k)Û †(k)ĤBdG(k)Û (k)Û †(k)Ĉk + Ec

= 1

2

∑
k

�̂
†
kÊBdG(k)�̂k + Ec. (13)

The Bogoliubov quasiparticle operator �̂
†
k = Ĉ

†
kÛ (k) and the

diagonal matrix ÊBdG(k) are expressed with using pseudospin
τ = ↑,↓,

�̂
†
k = (γ †

k↑, γ
†
k↓, γ−k↑, γ−k↓), (14)

ÊBdG(k) = diag(Ek↑, Ek↓,−E−k↑,−E−k↓). (15)

Then, the MF Hamiltonian is described as

HMF =
∑
k,τ

Ekτ

(
γ
†
kτ γkτ − 1

2

)
+ Ec. (16)

Because of the particle-hole symmetry of the BdG Hamilto-
nian, the unitary matrix Û (k) is expressed as follows:

Û (k) =

⎛
⎜⎜⎜⎜⎜⎝

u
(↑)
k↑ u

(↓)
k↑ −v

(↑)∗
−k↑ −v

(↓)∗
−k↑

u
(↑)
k↓ u

(↓)
k↓ −v

(↑)∗
−k↓ −v

(↓)∗
−k↓

v
(↑)
k↑ v

(↓)
k↑ u

(↑)∗
−k↑ u

(↓)∗
−k↑

v
(↑)
k↓ v

(↓)
k↓ u

(↑)∗
−k↓ u

(↓)∗
−k↓

⎞
⎟⎟⎟⎟⎟⎠

. (17)

Thus, from Eqs. (7) and (17), the order parameter is obtained
by

� = −Vs

N

∑
k,s,τ

sv
(τ )∗
ks u

(τ )
ks f (sEkτ ), (18)

where f (E) is the Fermi-Dirac distribution function.
Equation (18) is the gap equation to be solved numerically.
Since we treat the Rashba-coupling constant α as an order
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parameter which describes the FE-like order and α causes a
change in the band structure, we have to solve the particle num-
ber equation simultaneously. The particle number equation is
obtained

n = 1

N

∑
k,s

〈c†kscks〉, (19)

where n is the carrier density. In the basis of the Bogoliubov
quasiparticle, Eq. (19) is recast

n = 1

N

∑
k,s,τ

[∣∣u(τ )
ks

∣∣2
f (Ekτ ) + ∣∣v(τ )

ks

∣∣2
f (−Ekτ )

]
. (20)

From Eq. (16), the Helmholtz free energy per sitefel is obtained
as

fel = − 1

Nβ

∑
k,τ

[
ln(1 + e−βEkτ ) + βEkτ

2

]
+ Ec

N
+ μn,

(21)

where β = 1/kBT is the inverse temperature. Here, the last
term of Eq. (21) is required when the carrier density of this
system is fixed as n. Using � and μ obtained by solving
Eqs. (18) and (20), we calculate the electronic part of the
free-energy fel from Eq. (21).

C. Lattice polarization

To study the stability of a FE superconducting state, we
have to include the contribution of polar lattice displacement
to the free energy. As explained in Sec. II A, we assume a linear
relation P = Cα, where P and C are the lattice polarization
and the proportional constant, respectively. This allows us to
introduce the energy loss by lattice polarization as follows:

fpol = 1
2γP 2 + ηP 4, (22)

where γ and η are coefficients which describe the elasticity of
the lattice.

In globally NCS superconductors, it is known that the
strength of ASOC satisfies α � EF [18] in most cases, where
EF is the Fermi energy. The second term of Eq. (22) is included
to cut off the value of α in this realistic regime.

D. Superconducting states

The total free energy of the system is given by

ftot = fel + fpol. (23)

The thermodynamically stable state is determined by mini-
mizing the free-energy ftot with respect to the order parameter
of superconductivity � and that of the ferroelectricity P . We
here summarize the two superconducting states which can be
stabilized in our model: the PE superconducting state and the
FE superconducting state. In the PE superconducting state,
there is no polar lattice displacement, and Ps = 0, where Ps

is the lattice polarization minimizing the free energy. The FE
superconducting state is the self-organized NCS superconduct-
ing state with Ps �= 0. In the following discussion, we assume
that the normal state is PE near the critical point of the FE
order. This situation is realized in the carrier-doped STO. Then,
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FIG. 2. γ dependence of the FE order parameter Ps in the high
carrier density regime (n = 0.3). The temperature is set to T =
0.0001, i.e., almost zero temperature. The blue dotted line shows Ps

in the superconducting state, whereas the orange solid line shows Ps

in the normal state. The two lines almost coincide with each other.
The yellow and light blue areas represent the FE regime (Ps �= 0) and
PE regime (Ps = 0), respectively.

we elucidate the relationship between superconductivity and
FE-like order.

III. HIGH CARRIER DENSITY REGIME

A. Quantum ferroelectric criticality

First, we examine the stability of the FE superconducting
state in the high carrier density regime by setting n = 0.3. The
attractive interaction is chosen to be Vs/t = 2.0, hence the
superconducting transition temperature is set to Tc0 = 0.043
in the absence of the magnetic field. The following results are
not qualitatively altered by another choice of Vs . To calculate
the free energy, we have to determine the values of γ and
η. The cutoff value η is chosen to be η = 0.25/C4 so that
αs = Ps/C < 0.5 is satisfied. A more important parameter, γ

is assumed so as to express the quantum PE state which realizes
in STO, for instance. Figure 2 plots the γ dependence of Ps at
a zero magnetic field and almost zero temperature. We see that
Ps vanishes at γ = γc = 0.2396/C2, and the quantum critical
point (QCP) γc separates the FE phase and the PE phase. To
consider the quantum PE state in the vicinity of the QCP, we
assume γ = 0.240/C2, which is slightly larger than γc in the
following.

B. Perpendicular magnetic field

Figure 3(a) shows the Hz-T phase diagram in the high
carrier density regime. It is shown that the FE superconducting
state is stabilized by the applied perpendicular magnetic
field, although it is unstable at a zero magnetic field. At the
same time, the Pauli limiting field is drastically enhanced
by the transition from the PE superconducting state to the
FE superconducting state. These results can be understood
on the basis of the spin susceptibility and spin texture of
NCS superconductors [19]. As shown in Figs. 4(a) and 4(b),
Cooper pairs formed by electrons with momenta k and −k
(i.e., the BCS pairing) are possible under the perpendicular
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FIG. 3. Superconducting phase diagram in the high carrier density regime for (a) the perpendicular field and (b) the in-plane field. The bold
(thin) line shows the first-order (second-order) phase transition line. The black dashed line shows a superconducting phase transition line of
a 2D superconductor with inversion symmetry. The temperature T and magnetic-field μBH are normalized by the superconducting transition
temperature Tc0 at a zero magnetic field.

field for Rashba superconductors when μBHz � α is satisfied.
Thus, the Pauli depairing effect is suppressed due to the
FE-like structural phase transition inside the superconducting
state. Hence, the FE superconducting state is stable under the
Zeeman magnetic field, and the Pauli limiting field is enhanced
compared to the superconductors with inversion symmetry.

In order to discuss the order of the phase transition, we show
the magnetic-field dependence of the FE-like order parameter
Ps at several temperatures in Fig. 5. As shown in Fig. 5(a),
the FE-like order parameter Ps continuously increases with
increasing the applied perpendicular field. This implies that
the phase transition from the PE superconducting state to the
FE superconducting state is second order. On the other hand,
upon increasing the magnetic field after the FE-like structural

FIG. 4. Split Fermi surfaces of a polar electron system with
Rashba-type ASOC under (a) a zero magnetic field, (b) a perpen-
dicular magnetic field, and (c) an in-plane magnetic field. The arrows
on the Fermi surfaces illustrate spin texture.

transition occurs, an abrupt drop in Ps occurs at the Pauli
limiting field. Therefore, the transition from the FE supercon-
ducting state to the normal state or the PE superconducting
state by increasing the magnetic field is the first-order phase
transition. In Fig. 3, the type of phase transition is illustrated
by the thickness of the transition lines.
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FIG. 5. FE-like order parameter Ps as a function of (a) the
perpendicular field strength and (b) the in-plane field strength for
several values of T .
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The responses to the magnetic field shown above are similar
to the magnetoferroelectricity in multiferroic materials, such
as TbMnO3 [49], because the FE-like order is induced by
the magnetic field in the superconducting state. Therefore,
in the following, we call this magnetic-field-induced FE-like
transition inside the superconducting state superconducting
multiferroics.

C. In-plane magnetic field

Here we turn into the in-plane magnetic field. Figure 3(b)
shows the Hx-T phase diagram in the high carrier density
regime. The applied in-plane magnetic field stabilizes the FE
superconducting state as we observed for the perpendicular
field. On the other hand, unlike the case of the perpendicu-
lar field, the enhancement of the Pauli limiting field is small.
This field angle dependence can also be understood as a
result of the spin texture of Rashba superconductors. In-plane
magnetic fields induce asymmetric deformation of the Fermi
surfaces as shown in Fig. 4(c). Although this deformation
causes a suppression of the Pauli depairing effect, the Pauli
limiting field at zero temperature is enhanced roughly by only
a factor of

√
2, compared to centrosymmetric superconductors

[19]. Therefore, the FE superconducting state is stabilized
under the in-plane field as well, and the Pauli limiting field
is enhanced a little.

Figure 5(b) shows the the magnetic-field dependence of Ps

at several values of T , and we can see that the order of the phase
transition is the same as that for the perpendicular field. Since
the suppression of the Pauli depairing effect is not significant
in the in-plane field, the amplitude of Ps is smaller than that
for the perpendicular field.

IV. LOW CARRIER DENSITY REGIME

A. Dilute superconductivity

Next, we study the superconducting phase diagram in the
low carrier density regime by setting n = 0.001. This situation
corresponds to the dilute superconductivity realized in doped
STO. In such a low carrier density regime, qualitatively
different behaviors from the high carrier density regime are
shown below.

In order to elucidate properties of the dilute superconducting
state, we first discuss the normal state in the low carrier
density regime. Upon decreasing the carrier density for α �=
0, the Fermi energy becomes lower than the crossing point
of the Rashba spin-split bands at the time-reversal invariant
momentum k = 0 [Fig. 6(a)], and then, the nature of Rashba
spin-split Fermi surfaces changes, i.e., the Lifshitz transition
occurs. In a low carrier density regime below the critical
value of the Lifshitz transition, the DOS significantly increases
owing to an effective reduction of dimensionality [50]. On the
other hand, when α = 0, the Lifshitz transition is accompanied
by the metal-insulator transition, and the DOS vanishes after
the Lifshitz transition. Therefore, the DOS is significantly
increased by nonzero α, namely, the ferroelectricity [Fig. 6(b)].
This causes qualitatively different properties of the dilute su-
perconductivity from the high carrier density regime discussed
in Sec. III.
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FIG. 6. (a) Band structure of a 2D Rashba system. The chemical
potential is set to μ = 0, and a large ASOC α = 0.5 is assumed to
emphasize the Rashba spin splitting. The Lifshitz transition occurs at
the dashed red line. (b) DOS ρ(ε) in the normal state for α = 0 (solid
line) and α = 0.5 (dashed line). The DOS is enhanced in the low
carrier density regime for α = 0.5. The chemical potential is again
set to μ = 0.

We here consider the condensation energy �f = fs − fn,
which is the difference of free energy between the supercon-
ducting state and the normal state. According to the BCS
theory, the condensation energy at zero temperature is obtained
as follows:

�f = fs − fn = − 1
2ρ0|�|2, (24)

where ρ0 is the DOS per unit volume at the Fermi energy.
� nonlinearly increases with ρ0. Thus, the superconducting
state is more stable for a larger ρ0. Combining this with
the above discussion on the normal state we expect that
the FE superconducting state is more stable than the PE
superconducting state in the low carrier density regime because
of the Rashba spin splitting in the energy bands.

B. Quantum ferroelectric criticality

Here, we determine the values of γ and η in the same way
as in Sec. III A. In this section the magnetic field is set to zero.
The attractive interaction is chosen to be Vs/t = 3.5, and then
the superconducting transition temperature Tc0 is Tc0 = 0.018
in the absence of the magnetic field. η is chosen to be η =
0.003/C4 so that α < 0.5. The following results are nearly
independent of the value of η.

We show γ dependence of Ps in Fig. 7. We see that Ps

vanishes at γ = γc1 = 0.000 998/C2 when we assume a non-
superconducting state. On the other hand, the FE order survives
until γ exceeds γc2 = 0.001 487/C2 in the superconducting
state. This result should be contrasted to the high carrier density
regime where the two critical values of γc1 and γc2 almost
coincide. In the low carrier density regime, for a wide range
of γ , the superconducting state is FE, although the normal
state is PE. In other words, the FE-like order occurs in the
superconducting state without a polar lattice distortion in the
normal state. As discussed in Sec. IV A, the condensation
energy gained by the superconductivity is increased by the
FE-like order in the low carrier density regime, and therefore,
the FE superconducting state can be stabilized even in the
absence of the magnetic field. This is the main result of this
section. The existence of the wide FE superconducting region
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FIG. 7. γ dependence of the FE-like order parameter Ps in the low
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is an inherent nature of the dilute superconductivity since it
originates from the effective reduction of dimensionality in
Rashba spin-split bands.

C. Perpendicular magnetic field

In the following part we clarify effects of the magnetic
field which are also qualitatively different from the high carrier
density regime. We choose two values of γ . The first one is
γ = 0.001 49/C2, slightly larger than the FE critical value of
γc2 = 0.001 487/C2. This situation is similar to Sec. III. The
other is γ = 0.001 25/C2 far below the critical point. In both
cases the behaviors peculiar to the dilute superconductivity are
shown below.

Figures 8(a) and 8(c) show the T -Hz phase diagram in
the low carrier density regime for γ = 0.001 49/C2 and γ =
0.001 25/C2, respectively. For γ = 0.001 49/C2 (i.e., slightly
above the QCP at H = 0), the FE superconducting state is
stabilized under the perpendicular magnetic field, and the su-
perconducting multiferroics is realized as it is in the high carrier
density regime. On the other hand, for γ = 0.001 25/C2, the
FE superconducting state is stabilized even at a zero magnetic
field. This result is consistent with the phase diagram of
Sr1−xCaxTiO3−δ [2] in which the low carrier density regime is
advantageous to host the FE superconducting phase, and the
FE superconducting state is stabilized at a zero magnetic field.
Our results indicate that the FE-like order may occur in the
superconducting state even in the doping region where the FE
order disappears in the normal state. Figure 8(c) also shows the
enhancement of the FE superconductivity by a magnetic field.
The superconducting multiferroics in the low carrier density
regime also arises from the suppression of the Pauli depairing
effect in Rashba superconductors. Note that the change in the
Fermi surfaces and spin texture induced by the perpendicular
field is similar between the high carrier density regime and the
low carrier density regime.

D. In-plane magnetic field

Here we show that the response to the in-plane magnetic
field is remarkably different between the low carrier density
regime and the high density regime. Figures 8(b) and 8(d)
show the T -Hx phase diagram in the low carrier density regime
for γ = 0.001 49/C2 and γ = 0.001 25/C2, respectively. For
γ = 0.001 49/C2, the FE superconducting state is unstable in
the whole phase diagram. Furthermore, for γ = 0.001 25/C2,
the FE superconducting state is destabilized by applying the in-
plane magnetic field. Thus, the behavior of the superconducting
multiferroics is not observed in the low carrier density regime
for the in-plane magnetic field.

The difference from the high carrier density regime can
be understood by noting the drastic deformation of Fermi
surfaces which is inherent in the low carrier density regime.
As shown in Fig. 9(a), the topology of the Fermi surface
drastically changes by applying the in-plane magnetic field
because of the asymmetric deformation of the band structure
[Fig. 9(b)]. This Lifshitz transition and resulting asymmetric
Fermi surface are destructive for the superconductivity. The
highly asymmetric Fermi surface in Fig. 9(a) implies that
spin-singlet Cooper pairs with q = 0 assumed here cannot
be generated. Therefore, the FE-like order competes with the
superconductivity in the in-plane magnetic field, whereas they
are cooperative at H = 0. Although the asymmetric band
structure is ubiquitous in NCS systems under the magnetic
field, such Lifshitz transition does not occur in the high carrier
density regime. Therefore, the T -Hx phase diagram in the low
carrier density regime is qualitatively different from that in the
high carrier density regime.

On the other hand, the asymmetric Fermi surface makes the
FFLO state with q �= 0 Cooper pairs more stable than the BCS
state, and therefore, the destruction of the FE superconducting
state might be prevented by stabilizing a FFLO state to some
extent. This dilute FFLO state may be distinguished from
the helical state which is realized in the high carrier density
regime [22–24] because of the Lifshitz transition of the Fermi
surface in the low carrier density regime. Note that the highly
asymmetric Fermi surface in Fig. 9(a) also destabilizes the
FFLO state, and therefore, the phase diagram in Fig. 8(d) is
not qualitatively altered.

E. Topological superconductivity

Finally, we discuss the possibility of a self-organized topo-
logical superconducting (TSC) phase [51–55] driven by the
FE-like structural transition. It is known that the topologically
nontrivial superconducting phase in the D class, which is
characterized by the nonzero Chern number, is realized in
2D Rashba superconductors by applying the perpendicular
field [56,57]. Sato et al. [56] clarified the condition of the
topological superconductivity, and it has been shown that the
low carrier density region is advantageous to realize the TSC
phase. The FE superconducting state in our model satisfies
the symmetry conditions, namely, broken inversion and time-
reversal symmetries. Therefore, we may expect that the TSC
state is self-organized in the low carrier density regime.
However, we can show that the TSC state is thermodynamically
unstable. Figure 10 illustrates the TSC region in which the
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condition for nontrivial Chern number
√

(4t + μ)2 + |�|2 <

μBHz <
√

μ2 + |�|2 is satisfied. This region is outside the
superconducting phase.

The above result can be understood as follows. In order
to realize the topological superconductivity in the dilute FE
superconducting state, it is necessary to satisfy μBHz > |�|
at least. However, in such a weak superconducting region, the
energy of lattice polarization is larger than the condensation
energy gained by the superconductivity. Therefore, upon in-
creasing the magnetic field, the FE superconducting state is
destabilized before the topological phase transition occurs.

V. GINZBURG-LANDAU THEORY

In this section, we interpret our results based on the
Ginzburg-Landau formulation and provide a clear physical
understanding of the spin-orbit-coupled FE superconductivity.
By expanding Eq. (21) with respect to the two order parameters
� and P within quartic order, the electronic free-energy fel can
be rewritten as follows:

fel � f0 + a(T )|�|2 + 1
2b(T )|�|4

− 1
2γn(T )P 2 − ηn(T )P 4 − 1

2γs(T )|�|2P 2

+ 1
2 (χn − χ⊥

s )H 2
z + 1

2 (χn − χ‖
s )H 2

x . (25)

The first term f0 is the free energy of the PE normal state.
According to the BCS theory, quadratic and quartic terms of
the superconducting order parameter � are described as

a(T ) = ρ0

(
T − Tc0

Tc0

)
, (26)

b(T ) = ρ0
7ζ (3)

8(πT )2
. (27)

By differentiating Eq. (21) at � = 0 with respect to α,
quadratic and quartic terms of the FE order parameter P = Cα

are obtained as

γn(T ) = β

2NC2

∑
k

|g(k)|2sech2

(
β|ξ (k)|

2

)
, (28)

ηn(T ) = β3

48NC4

∑
k

|g(k)|4sech2

(
β|ξ (k)|

2

)

×
[

tanh2

(
β|ξ (k)|

2

)
− 1

2
sech2

(
β|ξ (k)|

2

)]
, (29)

where ξ (k) = ε(k) − μ. Note that γn(T ) is positive in the
whole range of T . The coefficient of the coupling term between
the superconducting and the FE order parameters can be
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calculated in the same way and obtained as

γS(T ) = 1

NC2

∑
k

|g(k)|2
|ξ (k)|3

[
tanh

(
β|ξ (k)|

2

)

− β|ξ (k)|
2

sech2

(
β|ξ (k)|

2

)

×
{

1 + β|ξ (k)|
2

tanh

(
β|ξ (k)|

2

)}]
. (30)

The last two terms of Eq. (25) describe the magnetic energy
due to the Zeeman coupling. χn = 2μBρ0 is the magnetic sus-
ceptibility in the normal state. χ⊥

s and χ‖
s are the magnetic sus-

ceptibility in the superconducting state for the perpendicular
and in-plane fields, respectively. In Rashba superconductors,
the magnetic susceptibility can be estimated as χ⊥

s = 2χ‖
s ∼

χn(α/Tc0)2(|�|/Tc0)2 [19], and hence the applied magnetic
field induces the coupling term between superconducting and
FE order parameters. Thus, the total free energy given by
Eq. (23) is rewritten as follows:

ftot � f0 + a(T )|�|2 + 1

2
b(T )|�|4

+ 1

2
[γ − γn(T )]P 2 + [η − ηn(T )]P 4

− 1

2
γs(T )|�|2P 2 + 1

2
χn

(
H 2

z + H 2
x

)

− 1

2
ζχn

(
H 2

z + 1

2
H 2

x

)
P 2

T 2
c0

|�|2
T 2

c0

, (31)

where ζ > 0 is a constant.
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Using Eq. (31), we can get a clear understanding of the
results obtained in previous sections. First, we clarify the
origin of the quantum FE criticality explained in Secs. III A
and IV B. Equation (29) shows that ηn(T ) is positive at
almost zero temperature and hence a nonzero η is necessary
to cut off the value of α in a realistic regime. In addition,
Eq. (30) shows that γs(T ) is also positive at almost zero
temperature. Therefore, the quantum FE transition occurs at
γ > 0 as shown in Figs. 2 and 7, and the critical values of
γ in the normal and superconducting states are estimated as
γc1 � γn and γc2 � γn + γs|�|2, respectively. Since γs > 0,
superconductivity stabilizes the FE order as shown in Figs. 7
and 8. Second, almost all of the magnetic responses of the
FE superconductor can also be understood from Eq. (31).
Because of the last two terms of Eq. (31), the free energy
of the superconducting state can be minimized at nonzero
P under the magnetic field even when it has a minimum at
P = 0 at a zero magnetic field. On the other hand, the free
energy in the normal state remains to be minimized at P = 0
under the magnetic field. Thus, the magnetic-field-driven FE
superconductivity is realized. Furthermore, it is also obvious
that the optimum value of Ps for the in-plane field is smaller
than that for the perpendicular field (see Fig. 5) since χ‖

s < χ⊥
s

is satisfied. However, the destabilization of the dilute FE
superconducting state under the in-plane field [Figs. 8(b) and
8(d)] cannot be understood based on Eq. (31) since the effect
of highly asymmetric deformation of the Fermi surface is not
appropriately included in the Ginzburg-Landau formalism.

VI. SUMMARY AND DISCUSSION

In this paper, we investigated the spontaneous coexistence
of the superconductivity and the FE-like order, that is, the FE
superconductivity. In a 2D tetragonal system with spin-orbit
coupling, the Rashba-type ASOC arises as a result of a FE-like
structural phase transition. Assuming a linear relation between
the polar lattice displacement and the coupling strength of
the Rashba ASOC, we studied the 2D spin-orbit-coupled
system as a minimal model of FE superconductivity. The
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thermodynamically stable state was determined by calculating
the free energy including the effect of the lattice polarization.
The obtained results are summarized below.

First, we have clarified the stability of the FE supercon-
ducting state in the high carrier density regime near the FE
QCP. Because of the enhancement of the Pauli limiting field
by Rashba ASOC, the FE superconducting state is stabilized
by the applied magnetic field independent of the direction
of the magnetic field. The FE superconducting region in the
T -Hz phase diagram is wider than that in the T -Hx phase
diagram since the Pauli depairing effect for perpendicular field
is suppressed more significantly than that for the in-plane field.

Next, we have elucidated the superconductivity in the low
carrier density regime. This situation may correspond to the di-
lute superconductivity in doped STO. As a result of the Lifshitz
transition at the Dirac point of the Rashba spin-split bands, the
FE superconducting state is stabilized even at a zero magnetic
field. This result is consistent with the recent experimental
observation of FE superconductivity in Sr1−xCaxTiO3−δ [2].
The magnetic field response is also different from that in the
high carrier density regime. In contrast to the high carrier
density case, the in-plane field destroys the FE-like order in
the low carrier density regime since the asymmetric Fermi
surface under the in-plane field makes it difficult to generate the
BCS pairing. This result implies the possibility of the dilute
FFLO superconductivity which is different from the helical
state in high carrier density Rashba superconductors. On the
other hand, the perpendicular field enhances the stability of
the FE superconducting state similar to the high carrier density
regime. Although the possibility of self-organized FE topolog-
ical superconductivity has been examined, it has been shown
that the TSC state is thermodynamically unstable in our model.

Finally, we clarified the origin of our results based on
the Ginzburg-Landau formulation. The total free energy of
our model was expanded with respect to the superconducting
and FE order parameters. The quantum FE criticality and
the magnetic-field-driven FE superconductivity were clearly
understood by deriving the Ginzburg-Landau free energy.
However, the T -Hx phase diagram in the low carrier density
regime could not be understood based on the Ginzburg-Landau
formalism because it is a consequence of the deformation of
the Fermi surface which is not appropriately included in the
Ginzburg-Landau free energy.

This paper is a proposal of magnetic-field-driven FE super-
conductivity in a spin-orbit-coupled system, namely, super-
conducting multiferroics, and we have revealed its ubiquitous

mechanism by analyzing a minimal model. From our analysis,
it is expected that the coexistent phase of superconductivity and
ferroelectricity, which have been detected in Sr1−xCaxTiO3−δ

[2], may be stabilized in various superconductors under the
magnetic field. For instance, a magnetic-field-induced polar
lattice displacement may occur in superconducting δ-doped
STO [40], which is a 2D electron system described by our
model. The superconducting multiferroic behavior is also
expected in three-dimensional systems because the mechanism
of FE superconductivity, namely, unusual magnetic response
of NCS superconductors, is independent of the dimensionality
[19]. Therefore, SrTiO3−δ may host the FE superconducting
phase under the magnetic field, and the FE superconducting
phase of Sr1−xCaxTiO3−δ might be broadened by the applied
magnetic field. The quantum PE STO is a promising platform
for the superconducting multiferroics. The zero-field FE su-
perconductivity is also expected to occur in a dilute metallic
state of STO. For more detailed studies of STO, an analysis of
a three-dimensional and multiorbital models is desired. Such
a material-specific study of STO is left for a future work.

Our theoretical proposal for the FE superconductivity is
based on the unique magnetic-field responses of NCS su-
perconductors. Therefore, it is indicated that not only the
FE-like structural transition, but also other types of inversion-
symmetry-breaking order [39] might be induced in spin-orbit-
coupled superconductors under an applied magnetic field.
For example, a pyrochlore oxide Cd2Re2O7 [58,59] exhibits
successive structural transitions under pressure and becomes
superconducting in the inversion-symmetry-broken phase
[60–62]. Other candidates are superconducting quasiskut-
terudites Sr3T4Sn13 (T = Rh, Ir) which undergo a structural
transition from a cubic phase to a inversion broken phase
[63–66]. Thus, an intriguing behavior, such as an enhancement
of Tc or structural transition, can be induced by applying the
magnetic field to these superconductors.
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