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Evidence for triplet superconductivity near an antiferromagnetic instability in CrAs
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Superconductivity was recently observed in CrAs as the helimagnetic order is suppressed by applying pressure,
suggesting possible unconventional superconductivity. To reveal the nature of the superconducting order parameter
of CrAs, here we report the angular dependence of the upper critical field under pressure. Upon rotating the field
by 360◦ in the bc plane, six maxima are observed in the upper critical field, where the oscillations have both
sixfold- and twofold-symmetric components. Our analysis suggests the presence of an unconventional odd-parity
spin-triplet state.
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I. INTRODUCTION

Unconventional superconductivity, where the Cooper pairs
are bound by a mechanism other than the conventional
electron-phonon pairing mechanism described by BCS theory,
has often been found to occur in close proximity to mag-
netic order in systems such as the cuprates, iron pnictides,
and heavy-fermion superconductors. For instance, in many
heavy-fermion materials, magnetism is suppressed to zero
temperature at a quantum critical point (QCP) upon tuning
with nonthermal parameters, which is often surrounded by
a superconducting dome [1,2]. Non-Fermi-liquid behavior is
observed in the quantum critical region, indicating the presence
of strong critical spin fluctuations, which may mediate the
unconventional superconductivity in these materials.

Recently, some other d-electron compounds have also
been reported to show similar phase diagrams to the Ce-
based heavy-fermion superconductors, namely, CrAs and MnP
[3–5]. CrAs and MnP crystallize in an orthorhombic structure
at room temperature, as displayed in Fig. 1(a). The room-
temperature crystal structure corresponds to a distortion of the
hexagonal NiAs-type structure with space group P 63/mmc

and point group D6h to the orthorhombic phase with space
group Pnma and point group D2h [6]. The configuration of the
Cr atoms in the undistorted hexagonal structure is displayed
in Fig. 1(b), which is suggested to exist well above room
temperature in CrAs [7], where two layers of hexagonally
arranged Cr atoms are shown, with one Cr atom in the center.
The arrangement of the Cr atoms after the orthorhombic
distortion is shown in Fig. 1(c), where the hexagons are
distorted along one direction in the layer. At ambient pressure,
CrAs shows a first-order magnetic transition at TN = 265 K
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to a helimagnetic state, which occurs concurrently with a
structural transition where there is an elongation of the b

axis [7–10]. The ordering temperature TN is suppressed upon
applying pressure and vanishes above around 0.7 GPa [3,4],
which likely coincides with the disappearance of the structural
transition [10]. Meanwhile, superconductivity under pressure
is also observed in the highest quality samples, where at lower
pressures there is phase separation between superconductivity
and magnetism, while at higher pressures TN disappears and
Tc reaches a maximum of around 2 K [3,4,11]. Evidence for
spin fluctuations in the normal state was also found from the
non-Fermi-liquid behavior of the resistivity with ρ(T ) ∼ T 1.5,
as well as nuclear quadrupole resonance (NQR) measurements
[12,13]. MnP also shows similar superconducting properties,
where a superconducting dome is again observed after the
suppression of magnetic order under pressure, which occurs
at a higher pressure of around 8.0 GPa [5].

Another related family of Cr-based superconductors
A2Cr3As3 (A = K, Rb, or Cs) [14–16] were recently reported
with a hexagonal crystal structure (space group P 6̄m2). The
structure shows some similarities to the undistorted hexagonal
structure of CrAs, although rather than having a planar hexag-
onal arrangement, the Cr atoms form face-sharing octahedra.
Despite the lack of long-range magnetic order, these materials
also display a number of novel superconducting properties
including very large and anisotropic upper critical fields
[17–19], nodal superconducting order parameters [20–22], and
low-dimensional spin fluctuations in the normal state [23,24].
It is therefore of particular interest to probe whether the
superconductivity in CrAs and A2Cr3As3 shares a common
nature.

The characterization of pressure-induced superconductivity
is experimentally challenging. Until now, very little is known
about the superconducting gap symmetry and therefore the
pairing mechanism of CrAs, even though its superconduc-
tivity appears on the border of antiferromagnetism. NQR
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FIG. 1. (a) Unit cell of CrAs at room temperature with an
orthorhombic structure, where Cr atoms are shown in red and As in
green. The arrangement of the Cr atoms is shown for (b) the hexagonal
NiAs-type structure and (c) the orthorhombic structure of CrAs which
is a distortion of the aforementioned hexagonal structure.

measurements were performed under pressure at temperatures
down to about 1 K (≈Tc/2), which show that the temperature
dependence of the spin-lattice relaxation rate 1/T1 lacks a
coherence peak and follows a ∼T 3 dependence below Tc [12].
Although these results indicate unconventional superconduc-
tivity in CrAs with possible line nodes in the energy gap, its
pairing state is still unclear and further characterization of the
superconducting order parameter is badly needed. The field-
angle dependence of quantities such as the upper critical field
(Bc2) and heat capacity are powerful tools which can provide
important information about the symmetry and structure of the
superconducting gap [25–27]. Here, we report measurements
of the angular dependence of Bc2 of CrAs under pressure
using a triple-axis vector magnet, in order to characterize the
superconducting state of CrAs. We find a clear anisotropy of
Bc2 in the bc plane, where both twofold and sixfold oscillatory
components are observed, which are consistent with an odd-
parity triplet superconducting state.

II. EXPERIMENTAL DETAILS

Single crystals of CrAs were synthesized using Sn flux, as
described previously [28]. The elements were combined in an
atomic ratio Cr:As:Sn of 3:3:40, placed in an alumina crucible
and sealed in an evacuated quartz ampoule. The ampoule was
held at 650 ◦C for 8 h, then 1000 ◦C for 15 h, before being
slowly cooled down to 600 ◦C and centrifuged. The needlelike
single crystals, with the a axis along the needle direction are
high quality, with a residual resistivity ratio at ambient pressure
of ρ(300 K)/ρ(2 K) ≈ 330. Resistivity measurements under
pressure were carried out using a piston-cylinder-type pressure
cell, with Daphene 7373 used as a pressure transmitting
medium to ensure hydrostaticity. The sample was mounted
onto a rectangular plastic plate so that the needle axis of the
sample was aligned with the long direction of the plate. The
plate was then attached vertically to the plug of the pressure

FIG. 2. (a) Temperature dependence of the electrical resistivity
ρ(T ) at 1.3 GPa under various magnetic fields, with the field and
current both applied parallel to thea axis. (b) Temperature dependence
of the upper critical field Bc2(T ), determined from where there is a
50% drop of the resistivity relative to the normal state. The solid line
shows a fit to an empirical formula described in the text.

cell. Although a small misalignment cannot be ruled out, this
should not significantly affect our conclusions. The pressure
was determined by measuring the superconducting transition
of Pb. The angular dependence of the magnetoresistance was
measured using a 370 resistive bridge with a triple-axis vector
superconducting magnet that accommodates a 3He cryostat.
All the measurements were performed at one pressure of
1.3 GPa, with the current along the a axis.

III. RESULTS

A. Temperature and field-angle dependence of the resistivity

The temperature dependence of the resistivity [ρ(T )] of
needle-shaped single crystals were measured with a current
applied along the needle direction, which corresponds to the
a axis. The measurements were performed at 1.3 GPa, well
above the critical pressure for the suppression of magnetism
and the structural transition, close to the pressure where the Tc

is maximum and the normal state is paramagnetic. As shown
in Fig. 2(a), a sharp superconducting transition is observed
at about 1.85 K, slightly higher than reported previously [3].
The residual resistivity is about 1.5 μ� cm, which is in good
agreement with the former study and along with the sharp
transition, indicates a high sample quality. Upon applying a
field, the superconducting transition in ρ(T ) is suppressed
to lower temperatures. The values of Bc2(T ) are determined
from where ρ(T ) drops to 50% of the normal-state value,
and are displayed in Fig. 2(b). The data are fitted using
the empirical equation Bc2(T) = Bc2(0){1 − [T/Tc]n}, with
n = 1.36. The extrapolated zero-temperature value Bc2(0) =
1.1 T is similar to the orbital limiting field [Borb

c2 (0)] of about
1.03 T calculated using Borb

c2 = 0.72Tc(dBc2/dT )T =Tc
. This is

compared to a Pauli limiting field of BP = 1.86Tc = 3.44 T
and corresponds to a Maki parameter αM = √

2Borb
c2 (0)/BP of

about αM = 0.42, which indicates that orbital pair breaking is
the dominant pair-breaking mechanism in an applied magnetic
field, and Pauli limiting is not expected to be significant.
We also measured the resistivity upon rotating the applied
magnetic field, so as to determine the angular dependence
of Bc2 at different temperatures. In Fig. 3, the resistivity is
shown at three temperatures for various fields applied within
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FIG. 3. (a) Illustration of the configuration for field-angle-dependent resistivity measurements. (b) Field-angle dependence of the electrical
resistivity ρ(φ′) for various magnetic fields applied within the bc plane at three temperatures, where the φ′ is an azimuthal angle.

the bc plane, while the current was applied along the a

axis, always perpendicular to the field direction. It can be
seen that there are six dips of the resistivity upon rotating
the field through 360◦, which correspond to six maxima
of Bc2.

B. Angle dependence of the upper critical field

The angular dependence of the upper critical field in the
bc plane [Bc2(φ′)] is shown in Fig. 4. Note that due to the
thin needlelike shape of the single crystals, the position within
the bc plane from which the azimuthal angle φ′ is measured
could not be determined, and therefore φ′ = 0 was chosen to
correspond to where Bc2 is at a minimum. The Bc2 values
were obtained by measuring ρ(φ′) in various fields and taking
the field where ρ is half the normal-state value, as displayed in
Fig. 4(a). As shown in Fig. 4(b), at all temperatures there are six
maxima in Bc2(φ′) which are approximately separated by 60◦.
Overall, Bc2(φ′) also shows the twofold symmetry of the or-
thorhombic crystal structure of CrAs and therefore these results
suggest the presence of both sixfold- and twofold-symmetric
components to the oscillations. There are also differences in the
intensities of the peaks. At 0.3 K, the largest peaks are at about
90◦ and 270◦ and upon increasing the temperature to 1.0 K,
the difference between the intensities of these two peaks and
the others is enlarged. However, at 1.5 K, the peaks at 150◦
and 210◦ now have the greatest intensity, in contrast to the
measurements at 0.3 and 1.0 K. This temperature is very close
to Tc where the angular variation is much weaker, whereas at
lower temperatures the anisotropy is much more pronounced.
The presence of these sixfold and twofold components within
the bc plane indicates that there is a non-s-wave pairing state.
The out-of-plane angular dependence of the upper critical field
as a function of the polar angle [Bc2(θ )] is shown in Fig. 5,
where two large peaks can be observed rotating through 360◦.
The peak positions are at about 0◦ and 180◦, which correspond
to fields along the a axis.

The observation of an oscillatory Bc2(φ′) gives evi-
dence for unconventional superconductivity in CrAs. In the
following, we discuss the potential superconducting states

compatible with this observation. We first derive the relation
between the pairing symmetry and the angular dependence
of the upper critical field Hc2 based on Gorkov’s theory
[29–31]. Starting from a Hamiltonian with electron-electron
interactions,

H =
∑

σ

∫
d3r ψ̄σ (r)

(
− ∇2

2m
− μ

)
ψ (r)

+
∫

d3r
∫

d3r′ψ̄↑(r)ψ̄↓(r′)V (r − r ′)ψ↓(r′)ψ↑(r),

(1)

where m and σ label the mass and spins of the electrons,
respectively, the equations of motion can be written using the
normal and anomalous Green’s functions as

(
iωn − 1

2m
(−i∇ + eA)2

)
Gσ,σ ′ (r, r′, ωn)

+
∑

ρ

∫
d3ξ �σρ (r, ξ )F̄ρσ ′ (ξ, r′, ωn) = δ(r − r′)δσσ ′,

(2)
(

− iωn − 1

2m
(−i∇ − eA)2

)
F̄σ,σ ′ (r, r′, ωn)

+
∑

ρ

∫
d3ξ �∗

σρ (r, ξ )Gρσ ′ (ξ, r′, ωn) = 0 (3)

with the two Green’s functions defined as

Gσσ ′ (r, r′, τ ) = −i〈Tτ (ψσ (r, τ )ψ̄σ ′ (r′, 0))〉,
Fσσ ′ (r, r′, τ ) = −i〈Tτ (ψσ (r, τ )ψσ ′ (r′, 0))〉 (4)

in which ψ (τ ) ≡ eHτψ (0)e−Hτ is defined in the imaginary-
time domain. The order parameter is given by �σσ ′ (r, r′) =
V (r − r′)Fσσ ′ (r, r′). The free Green’s function G0 satisfies(

iωn − 1

2m
(−i∇ + eA)2

)
G0

σ,σ ′ (r, r′, ωn)

= δ(r − r′)δσσ ′ . (5)
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FIG. 4. (a) Determination of the upper critical field Bc2 for
different field angles φ′ within the bc plane at 0.3 K, from the magnetic
field dependence of the resistivity normalized by the normal-state
value. The values of Bc2 were taken from where the resistivity reaches
half the normal-state value, as shown by the dashed line. The inset
shows an enlargement of the data, in the vicinity of the upper critical
fields. (b) Angular dependence of Bc2 in the bc plane at 0.3, 1, and
1.5 K. The lines show the fits for the angular dependence of an
odd-parity spin-triplet state with both twofold- and sixfold-symmetric
components. The error bars are determined from the size of the field
increments for the angle-dependent resistivity measurements.

From Eqs. (2) and (4) we obtain the gap equation as

�σσ ′ (r, r′) = T V (r − r′)
∑
n,ρ

∫
d3ξ d3ξ ′G0

σ ′σ ′

× (r′, ξ ′,−ωn)�σρ (ξ, ξ ′)Gρσ ′ (r, ξ, ωn), (6)

where T is the temperature and V is the interaction strength.
In the presence of a magnetic field, we can further simplify the
above equation by introducing

G(r, r′) = e−ie
∫ r

r′ A(l)·dlG
0
(r, r′), (7)

and the corresponding G
0
, which satisfies

(
iωn − 1

2m
(−i∇)2

)
G

0
σ,σ ′ (r, r′, ωn) = δ(r − r′)δσσ ′, (8)

FIG. 5. Angular dependence of the upper critical field Bc2(θ ) as a
function of the polar angle θ , where θ = 0 corresponds to the a axis.

with a solution

G
0
σσ (r, r′, ωn) = − m

2π |r − r′|

× exp

{
|r − r′|

[
ipF sgn(ωn) − |ωn|

vF

]}
,

(9)

where pF is the Fermi momentum. Upon plugging the above
solution into Eq. (6) and considering the gap function in the
center-of-mass coordinates and relative coordinates, we finally
obtain the gap function

�σσ ′ (R, k) =
∫

d3k′

(2π )3
T V (k − k′)

×
∑
n,ρ

∫
d3ξ d3ξ ′eik′ ·(ξ ′−ξ )

×G
0
σ ′σ ′ (ξ,−ωn)eiξ ·�(R)�σρ (R, k′)

×Gρσ ′ (R, ξ ′, ωn), (10)

in which �(R) ≡ −i∇ + 2eA(R) and �(R, k) = ∫
d3r

e−ik·r�(R, r).
First, we take the in-plane p-wave pairing superconducting

state [32–36] as an example, so as to derive the period-
icity of Hc2. The p-wave order parameter is �(R, k) =
�(R) cos(φ)(| ↑↓〉 + | ↓↑〉)/

√
2, where φ is the azimuthal

angle. In the weak coupling limit, Eq. (10) simplifies to

�(R) = gT
∑

n

∫
d3�ξ cos2(φ)G

0
↓↓(ξ,−ωn)

×G
0
↑↑(ξ, ωn)eiξ ·�(R)�(R), (11)

where g is the interaction strength. By considering a magnetic
field applied along the c axis, Hc2 is determined by κη −
χ∗χ = 0, where

κ = 1 − gT
∑

n

∫
d3�ξ cos2(φ)G

0
↓↓(ξ,−ωn)

×G
0
↑↑(ξ, ωn)e− eHc2ξ2

2 , (12)
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χ = −gT
∑

n

∫
d3�ξ cos2(φ)e2iφG

0
↓↓(ξ,−ωn)

×G
0
↑↑(ξ, ωn)e− eHcξ2

2
eHc2ξ

2 sin2 θ√
2

, (13)

η = 1 − gT
∑

n

∫
d3�ξ cos2(φ)G

0
↓↓(ξ,−ωn)

×G
0
↑↑(ξ, ωn)e− eHcξ2

2 L2(eHc2ξ
2 sin2 θ ). (14)

Here, θ is the polar angle and L2(x) is the second Laguerre
polynomial, which is equal to (x2 − 4x + 2)/2.

When there is an in-plane magnetic field at an angle θ0 to
the a axis, we can rotate the coordinates and rewrite the above
equations by replacing cos2(φ) with the function

M (θ0, �ξ ′) = (− sin θ0ξ
′
y ′ + cos θ0ξ

′
z′ )2

(ξ ′)2 − (ξ ′
z′ )2

, (15)

so that Eq. (11) becomes

�(R) = gT
∑

n

∫
d3�ξ M (θ0, �ξ )G

0
↓↓(ξ,−ωn)

×G
0
↑↑(ξ, ωn)eiξ ·�(R)�(R). (16)

It is very clear from these equations that Hc2 must be a function
of cos(2θ0) and sin(2θ0), with an angular periodicity of π .
Considering that the angular dependence is generally weak,
we must have

Hc2(θ0) = H 0
c2 + δHc2 cos(2θ0 + α′), (17)

where α′ is a constant for a given model.
The above result can immediately be extended to other pair-

ing states. In general, if the superconducting order parameter
has an in-plane gap function that is proportional to cos(nφ0),
Hc2 must have an angular period equal to π

n
, namely,

Hc2(θ0) = H 0
c2 + δHc2 cos(2nθ0 + α′). (18)

The crystal structure of CrAs is orthorhombic with space
group Pnma and point group D2h. As the orthorhombic distor-
tion is rather small, we can characterize the superconducting
properties by the P 63/mmc group together with a perturbative
deviation caused by the orthorhombic distortion. Ignoring the
distortion, the pairing symmetry should be classified by the D6h

point group. The hexagonal pattern of the in-plane anisotropy
is consistent with the odd-parity spin-triplet f -wave pairing
symmetry, which belongs to the B1u or B2u irreducible rep-
resentation of D6h. Assuming �(R, k) = �(R)�(φ)(|↑↓〉 +
| ↓↑〉)/

√
2, and taking the B1u gap function as an example,

the specific gap function is proportional to x(x2 − 3y2) =
cos(3φ). Under such a pairing symmetry, the anisotropy of
the in-plane Bc2 is given by

Bc2(φ′) = α + βcos2(3φ′), (19)

which leads to a sixfold symmetry of the anisotropy following
Eq. (18), where φ′ = 0 is chosen so that α′ = 0. We note
that the only other pairing states compatible with the in-plane
anisotropy are the spin-singlet B1g or B2g states. However,
these higher-order pairings are expected to be energetically
unfavorable, owing to the additional gapless region for kz = 0.

Moreover, we can consider an orthorhombic distortion to
the hexagonal structure where the point-group symmetry is
lowered to D2h, which corresponds to CrAs in the supercon-
ducting state. Taking the B1u gap function x(x2 − 3y2) under
D6h, both terms in x(x2 − 3y2), namely, x3 and xy2, belong
to B3u under D2h. Therefore, for the orthorhombic lattice,
the lattice distortion can lead to the inclusion of a general
symmetry-broken term as

�(φ) = x(x2 − 3y2) + δ(x3 + 3xy2)

= �0 cos(3φ) + δ cos(φ) + 2δ cos(φ) sin2(φ). (20)

It is reasonable to neglect the last term in Eq. (20) since
δ is much smaller than �0. Thus, the pairing symmetry is
approximately given by

�(φ) = �0 cos(3φ) + δ cos(φ), (21)

which indicates that the superconducting state has a mixture
of f - and p-wave pairing symmetries. Thus, the anisotropy of
the in-plane Bc2 can be generally written as

Bc2(φ′) = α + βcos2(3φ′) + γ cos2(φ′). (22)

As displayed in Fig. 4(b), this expression can account
for the observed anisotropy in the bc plane, indicating that
an odd-parity triplet superconducting state best explains the
observed anisotropy. A similar modulation is obtained for the
B2u irreducible representation of D6h, but since we cannot
determine the crystallographic direction from which φ′ is
measured, we are unable to distinguish between the B1u

and B2u states. At the lowest temperature, the sixfold com-
ponent has a larger amplitude, with β/γ ≈ 3, while at the
higher temperatures they have comparable magnitudes with
β/γ ≈ 1.

The out-of-plane anisotropy in Fig. 5 can also be explained
by assuming that the Sz = ±1 triplet pairing is slightly favored
over Sz = 0 triplet pairing. In this case, the magnetic field
parallel to the z direction does not cause the Zeeman splitting
to break the Cooper pairs while an in-plane magnetic field
has a strong Zeeman effect to break them. However, we also
note that the maximum values correspond to fields parallel to
the current, while the minima correspond to when the field
and current are perpendicular. Since the Lorentz force exerted
on vortices follows H × I, where H and I are the applied
fields and currents, this can lead to a lowering of the upper
critical field measured using the resistivity and therefore may
account for the out-of-plane anisotropy. On the other hand,
the measurements in the bc plane were all performed with
H ⊥ I and therefore the effect of the Lorentz force cannot
account for the in-plane anisotropy. We also note that although
the hexagonal cross section of the needlelike single crystals
may also give rise to a sixfold oscillation of the upper critical
field due to demagnetization effects, this would require the
system to have a significant magnetization. Since at the upper
critical field the magnetization approaches the normal-state
value, which likely corresponds to Pauli paramagnetism [37],
and there is not a significant variation of the demagnetization
factor within the bc plane, demagnetization effects do not
account for the observed in-plane modulation. On the other
hand, due to the thin needlelike shape of the sample, the change
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of Bc2 as a function of θ (Fig. 5) could have a contribution from
demagnetization effects.

IV. DISCUSSION

The presence of an odd-parity spin-triplet state deduced
from an oscillatory Bc2 within the bc plane is also consistent
with the evidence for line nodes and lack of coherence peak
below Tc from NQR measurements [12]. Furthermore, the
angular dependence of Bc2 of CrAs is remarkably similar
to that of K2Cr3As3 [19], which shows a similar sixfold
oscillation in the ab plane. This suggests f -wave pairing,
which is one of the candidates proposed theoretically [38,39].
Therefore, the common features in the upper critical field
and structural similarities between these Cr-based supercon-
ductors suggest a close relationship between the unconven-
tional superconducting states of these materials, and that they
may share a similar pairing mechanism. Moreover, there is
evidence for spin fluctuations in the normal states of both
compounds. In the case of K2Cr3As3, both nuclear mag-
netic resonance and neutron scattering measurements indi-
cate that there are short-range antiferromagnetic spin fluctu-
ations [23,24]. Meanwhile the presence of spin fluctuations
in CrAs is inferred from the low-temperature increase of
1/T1T from NQR measurements, where the suppression of
both 1/T1T and Tc with increasing pressure suggests that an
important role is played by spin fluctuations in the formation
of superconductivity [12,13]. Together with our results, this
could indicate the occurrence of triplet superconductivity
mediated by antiferromagnetic spin fluctuations. This may
be similar to the putative spin-triplet superconductor UPt3,
which also shows very weak antiferromagnetic order be-
low TN = 5 K [40–42], whereas antiferromagnetic correla-
tions set in at higher temperatures [42,43]. Therefore, how
such antiferromagnetic fluctuations can lead to a spin-triplet
pairing state requires further experimental and theoretical
exploration.

A further similarity between CrAs and UPt3 is that both
the undistorted hexagonal arrangement and the orthorhom-
bic crystal structure of CrAs correspond to nonsymmorphic
crystal structures. In the case of UPt3, it was shown that
nonsymmorphic symmetry allowed for the existence of triplet
superconductivity with line nodes [44], and such symmetries
have been shown more generally to lead to the topologi-
cal protection of gap nodes [45]. Nonsymmorphic symme-
tries have also been found to lead to a variety of unusual

topological states in condensed matter systems [46–48], and
it was recently predicted that in UPt3, the glide symmetry
leads to a topological Möbius superconducting state with
double Majorana cone surface states [49]. Meanwhile, a recent
magnetotransport study of the normal state of CrAs found a
nonsaturating linear magnetoresistance under pressure, which
was suggested to originate from the topologically nontrivial
band crossing protected by the nonsymmorphic symmetry
[50]. Importantly, band structure calculations suggest that this
novel band crossing is very close to Fermi level, and it is
therefore of great interest to determine in future whether these
topological features influence the superconductivity of CrAs.
Furthermore, given that topological superconductivity has
been proposed to occur in nodal spin-triplet superconductors,
which can lead to unusual surface states [51], the possibility
of its realization in CrAs due to our proposed triplet state with
line nodes needs to be explored.

V. CONCLUSIONS

To summarize, we have measured the angular dependence
of the upper critical field in the pressure-induced supercon-
ducting state of CrAs, which shows a sixfold oscillation in
the bc plane. These findings are explained most naturally
by an odd-parity spin-triplet pairing state. Furthermore, it
is found that CrAs and K2Cr3As2 display a similar angular
dependence of the in-plane upper critical field, suggesting
that these Cr-based superconductors may share a similar
mechanism for the formation of superconductivity. Further
experimental and theoretical investigations are necessary to
reveal the unconventional pairing mechanism and explore
the possibility of topological superconductivity in Cr-based
superconductors.
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