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Evidence of macroscopic quantum tunneling from both wells in a ϕ Josephson junction
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We study Nb-AlOx-Nb Josephson junctions (JJs) with a phase-discontinuity κ created by a pair of current
injectors attached to one of the Nb electrodes. For κ ≈ π the Josephson potential energy U as a function of the
average phaseψ across the JJ has the form of a 2π -periodic double-well potential. Thus, the device behaves as aϕ JJ
with degenerate ground state phases ψ = ±ϕ (the value of ϕ depends on the system parameters). Experimentally,
the existence of two wells of the potential is confirmed by the observation of two different critical currents Ic±,
corresponding to the escape from different wells. We investigate the escape of the Josephson phase from both
wells by collecting statistics of the switching currents. The histogram of switching current exhibits two peaks
corresponding to Ic±. The dependence of the width σ+ and σ− of each peak on the bath temperature T indicates
the transition from thermal activation to macroscopic quantum tunneling (MQT) at T � ≈ 260 mK as T decreases.
We argue that the observed saturation value of σ+ and σ− below T � is indeed related to quantum tunneling rather
than to parasitic noise in the system, as the histogram width can be reduced by tuning the value of κ away from
π . The comparison of the experimental escape rate � with theoretical predictions further confirms MQT of the
phase ψ from both wells.
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I. INTRODUCTION

ϕ Josephson junctions (JJs) are fascinating novel devices
showing unusual physics [1–3] and offering a functionality
suitable for applications in superconducting electronics. The
key property of a ϕ JJ is that its Josephson energy U (φ) has the
form of a 2π -periodic double-well potential, with minima at
the values of the Josephson phase φ = ±ϕ mod 2π . A nonzero
ground state phase allows one to use ϕ JJs as phase batteries,
similar to π JJs [4,5]. The two ground states are degenerate
and can be used to store information [6], as demonstrated
recently [7]. The degeneracy can be lifted upon application
of, e.g., a magnetic field, and the Josephson energy profile
may become reflection asymmetric. This property is useful
to construct ratchets [8] that attracted a lot of attention in
the last years [9]. The ϕ JJs were not investigated in the
quantum domain up to now. Thus, the investigation of macro-
scopic quantum tunneling (MQT) is the topic of immediate
interest.

The first experimental realization of a ϕ JJ was based
on a 0-π JJ in a superconductor-insulator-ferromagnet-
superconductor (SIFS) heterostructure with a tailored ferro-
magnetic barrier [10]. The experiment followed the theoretical
proposal that a 0-π JJ with somewhat asymmetric 0 and
π segments (lengths L0 �= Lπ or critical current densities
jc0 �= jcπ ) results in a ϕ JJ, if parameters are carefully chosen
[11–13]. The existence of two degenerate ground states was
successfully demonstrated by detecting two critical currents,
Ic+ and Ic−, corresponding to the escape of the phase from the
+ϕ and −ϕ wells of the potential. Further investigations and
the first applications of the SIFS-based ϕ JJs were reported
[2,3,7,8]. However, the macroscopic quantum properties of a
ϕ JJ remain uninvestigated.

The SIFS based ϕ JJs at the present stage of technology are
not very suitable for MQT experiments. First, due to the pres-
ence of the ferromagnetic layer, they have a rather low critical
current density jc (the world record is ∼50 . . . 60 A/cm2 in the
π state [10,14]), that leads to a thermal-to-quantum crossover
temperature T � ∼ 20...30 mK—i.e., at the limit of available
dilution refrigerators. Second, SIFS ϕ JJs have a relatively high
damping even at mK temperatures [3], which will result in a
strong decoherence.

In the current work, we implement a ϕ JJ based on
conventional Nb-AlOx-Nb SIS technology, where the phase
discontinuity is created by means of two tiny current injectors
attached to one of the Nb electrodes of the junction [15–18] at
a position slightly shifted from its center (Fig. 1). The injectors
have a width Winj and are separated by a distance Wd. In order
to have a steplike phase discontinuity, the injector dimensions
have to be chosen in such a way that 2Winj + Wd � λJ , where
λJ is the Josephson penetration depth. The current Iinj flowing
through the injectors twists the phase φ(x). Consequently φ(x)
changes from 0 to κ between the injector leads. The value of
κ is proportional to Iinj, thus a π discontinuity can be created
[17] by applying the proper Iinj = I κ=π

inj .
Such injectors were already used in the past to realize 0-π

or, more generally, 0-κ JJs for the investigation of integer
[15,16,19,20] and fractional Josephson vortices [17,18,21,22].
Now, we demonstrate that a similar device can be used to
build a junction that can be turned from a 0 into a ϕ JJ by
simply controlling the current Iinj applied to the injectors [23].
The tunability of the phase discontinuity turns out to be a
powerful tool for measurements in the quantum domain, since
it allows us to rule out effects due to parasitic noise in our
system.
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FIG. 1. Sketch of the investigated Josephson junction with two
current injector leads attached on the top electrode. The blue line
represents the spatial variation of the phase along the junction length.

In the following, we introduce the model used to describe
and numerically simulate a JJ with a phase discontinuity
induced by current injectors. Results are compatible with the
ones obtained from the effective model for a short JJ with
steplike discontinuity presented in [23]. However, here, we
take into account the finite size of the injectors. We show
simulations of the energy of the junction as a function of
various parameters and discuss the results. Further, we present
first characterization in the classical regime and subsequently
statistics of both switching currents of our ϕ JJ in the quantum
limit. The dependences of the widths σ± of both histograms vs
temperature and injector current, together with the calculation
of the escape rate �, are shown and the proofs of MQT are
provided.

II. THE MODEL

We consider a JJ of normalized length l = L/λJ in the x

direction and a normalized width w = W/λJ � 1 in the y

direction. The JJ is one dimensional (1D) in the sense that
the phase φ, currents, and other quantities only depend on x.
The JJ is equipped with a pair of current injectors of width
winj = Winj/λJ and distancewd = Wd/λJ from each other, that
are connected to the top electrode of the junction at a position
x0 = X0/λJ , see Fig. 1. In this paper, we will describe the case
x0 � 0. The opposite configuration (x0 < 0) is analogous. In
such a system, the dynamics of the Josephson phase φ(x,t) can
be modeled by the 1D sine-Gordon equation

φxx − φtt − sin φ = αφt − γ − γinj(x), (1)

where the subscripts x and t denote the derivatives with
respect to the coordinate x and the time t , α = 1/

√
βc is

the damping parameter (βc = 2πjcr
2c/�0 is the McCumber-

Stewart parameter, where jc is the the critical current density of
the junction, c is its barrier’s capacitance per area, and r is the
junction resistance times area and the magnetic flux quantum
�0 ≈ 2.068 fWb), γ = j/jc is the normalized bias current
density, and γinj(x) is the injector current density normalized
in the same way. Note that the spatial average of γinj on the
whole JJ length is 〈γinj(x)〉 = 0 as the injector current does
not pass through the barrier, but rather injected and extracted
to/from the top electrode. In Eq. (1), the spatial coordinate
x is normalized to λJ and the time t is normalized to the
inverse of the Josephson plasma frequencyω−1

p = c�0/(2πjc).
The injector current density distribution is related to the phase

discontinuity κ as

γinj(x)

=

⎧⎪⎨
⎪⎩

κ
winj(winj+wd) x0 − (

winj + wd
2

)
< x < x0 − wd

2 ,

0 x0 − wd
2 < x < x0 + wd

2 ,

− κ
winj(winj+wd) x0 + wd

2 < x < x0 + (
winj + wd

2

)
.

(2)

The total normalized current injected/extracted from each
injector is, therefore, iinj = κ/(winj + wd). In physical units
Iinj = κ(jcλ

2
J W )/(Winj + Wd). Thus, κ ∝ iinj ∝ Iinj.

In the case of a perfect κ discontinuity (winj → 0 and
wd → 0) γinj → κδ′(x) = −κδ(x)/x, i.e., γinj looks like two
oppositely oriented δ functions at x = ±0. We will call this
limit of a perfect steplike discontinuity the limit of “δ-like
injectors.”

The phase profile φinj(x) imprinted by the injectors is
defined by doubly integrating Eq. (2) over x. For the numerical
solution of Eq. (1), it is more convenient to introduce the phase

μ(x,t) = φ(x,t) + φinj(x) + 2πf x, (3)

where f = �/�0 is the normalized externally applied mag-
netic flux. The physical applied flux is defined as � = B · � ·
L, where � ≈ 2λ (λ is the London penetration depth) and B is
the magnetic field applied perpendicular to the plane of Fig. 1.
Equation (1) can be rewritten in terms of μ(x,t) as:

μxx − μtt − sin[μ − φinj(x) + 2πf x] = αμt − γ. (4)

From Eq. (4), we can determine the effective normalized
current-phase relation (CPR) γs(ψ), where we defined ψ ≡
〈μ(x)〉—the average phase across the device. In accordance
with Eq. (3), the phase ψ is related to 〈φ(x)〉, which is the
phase visible by external circuitry, as 〈μ(x)〉 = 〈φ(x)〉 + (1 +
X0/L)κ/2. To find γs(ψ) we use two approaches. In the first
one (dynamical method) the supercurrent is reconstructed from
the time evolution of the phase μ(t) that we obtain by setting
a finite bias γ � γc, which brings the junction into the voltage
state (μt > 0). The second approach (static method) is based
on the calculation of the average phase 〈μ〉 of the static solution
for different values of the bias. With this method only the
stable part of the CPR can be scanned. The unstable part,
corresponding to the regions near the local maxima of the
energy, cannot be obtained. The comparison of the CPRs
obtained with the two approaches shows a rather good match
in the stable region, as visible in Fig. 2(a) (continuous lines).
Once the effective CPR is found, the potential energy U (ψ)
of the JJ can be easily derived from it, since γs(ψ) = ∂U/∂ψ .
Below, we show simulations of the energy U (ψ) of the device
from Fig. 1, calculated using the dynamical method.

To this purpose, we considered l = 2, winj = wd = 0.06,
and x0 = 0.02, because they are close to the experimental val-
ues. In Fig. 2(b), the potential U (ψ) for κ = 0,π is displayed.
When κ = 0, the JJ is in the 0 state and the potential changes as
∼(1 − cos ψ) with minima at ψ = 2πn, with n an integer. As
κ approaches π , two minima develop within every 2π period
in the potential at ψ = ±ϕ. The value of ϕ depends on the
geometry of the junction.

This result generally confirms the theoretical predictions
made for JJs with a perfect discontinuity [23]. However, one
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FIG. 2. (a) The CPR of the simulated JJ for κ = π calculated with
the dynamical method (blue) and with the static method (red). The
dotted line represents the unstable part of the CPR. (b) Josephson
potential U (ψ) (normalized to the Josephson energy EJ = Ic�0/2π )
for κ = 0 and κ = π . At κ = π the wells have different depths, but
this can be tuned by either κ/2π (c) or f (d). (e) U (ψ)/EJ for different
injector positions x0 indicated by the numbers. For each curve, the
phase discontinuity κ is adjusted to κsym, f = 0.

can note some differences. For a perfect phase discontinuity,
the potential U (ψ) is symmetric at κ = π and becomes
asymmetric at κ �= π . Instead, in our case here, at κ = π

the potential appears already asymmetric with two energy

wells having different depths, cf. Fig. 2(b). We associate this
asymmetry with the finite injectors size, i.e., φinj(x) is not a
sharp jump from 0 to κ , but rather a smooth function of x.
From Eq. (4) the normalized Josephson-energy density term

u(μ,x) = 1 − cos[μ − φinj(x) + 2πf x]. (5)

This is the Josephson energy per junction width w and λJ nor-
malized to �0jc/(2π ). For f = 0 it looks like the conventional
1 − cos(μ) and the shifted 1 − cos(μ − κ) profiles in the left
and the right part of the JJ, respectively, see the background
image in Fig. 3 corresponding to the u(μ,x) profile. Near the
injectors the valleys (minima) are connected according to the
φinj(x) dependence. One can see that at κ = π the two phase
solutions μ±(x), see Fig. 3(a), are not in a symmetric situation.
The μ+(x) passes through the “canyon”—a low Josephson
energy density (dark) region near the injectors, while the μ−(x)
solution passes through the “ridge”—a high energy Josephson
energy density (light) region near the injectors. This explains
why the total energy of the +ϕ = 〈μ+(x)〉 solution is lower
than the one of the −ϕ = 〈μ−(x)〉 solution.

The asymmetry of U (ψ) shown in Fig. 2(b) for κ = π can
be cured by increasing κ slightly over π . In this way we shift
the cos-like energy profile in the right side of Fig. 3 further up
(towards a larger phase) so that the μ+(x) solution gets a larger
phase difference μ+(l/2) − μ+(−/2) and therefore a larger
total energy, while the μ−(x) solution gets a smaller phase
difference μ−(l/2) − μ−(−l/2) and therefore a smaller total
energy. At some value κsym the energies U (−ϕ) = U (+ϕ), see
Fig. 2(c). A similar compensation can be obtained by applying
a small magnetic flux f to the junction [see Fig. 2(d)]. For a
finer tuning of the potential, κ and f can be changed simultane-
ously (not shown). The value of κsym seems to depend linearly
on the effective injector size weff = winj + wd , while it does
not change with the injector location x0 (provided x0 is far from
±l/2). In Figs. 2(c) and 2(d) yet another interesting feature of
these junctions becomes evident: The energy minima do not
simply occur at ψ = ±ϕ, but at ψ = ±ϕ + ϕ0. This is not very
surprising if one looks at Fig. 3. At κsym, the phase offset ϕ0 ∝
κsym − π ∝ weff and the two parameters are linked by the fol-
lowing equation ϕ0 = 0.5(κsym − π ), provided x0 is so small
that we are in the double-well potential regime. The emergence
of a finite ϕ0 is thus related to the shift of κ from π to κsym.

Finally, in Fig. 2(e), we show that the height of the energy
barrier U0 separating the ±ϕ wells decreases as the injectors
move away from the center of the junction. We observe that
by varying the injectors position, together with κ to retain the
symmetry of the potential, the two wells become more and
more shallow with increasing x0. Eventually, for x0 > xc, U0

vanishes and one returns to the case of a single minimum.
However, the minimum is shifted from zero [see Fig. 2(e)], i.e.,
we obtain a ϕ0 JJ [24]. The value of xc strongly depends on the
length of the junction—the shorter l, the smaller xc—as already
pointed out in previous works [11,12,23,25] for a perfectly
sharp discontinuity. Note that, if one is interested in the creation
of a ϕ0 JJ, this can be done even better by choosing κ away
from κ = π , regardless of the value of x0. In Fig. 3(c) we give
an example by showing the phase μ(x) for the case x0 = 0.10
and κ = 0.68π .

Below we use this model to numerically fit the experimental
results. Possible discrepancies are to be explained considering
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FIG. 3. Solutions μ(x) red lines on top of the grayscale plot
u(μ,x) of the corresponding normalized Josephson energy density
profile given by Eq. (5). The grayscale shows the range of u.
(a) x0 = 0.02 (vertical dashed line), κ = π ; (b) x0 = 0.02, κ =
κsym = 1.028π ; (c) x0 = 0.10, κ = 0.68π (ϕ0 ≈ 0.3π state). In all
the plots, the normalized applied magnetic flux f = 0.

that the theory describes the simple geometry of a 1D junction
with 1D injectors, while in real samples, we have 3D objects
and the distribution of the currents applied to the junction and
to the injectors may flow in a more complex way.

FIG. 4. Optical image of a JJ, for which the data are reported. It
is equipped with three injector pairs, but only one of them, Iinj1, was
used for the experiment reported here.

III. EXPERIMENT

We fabricated Nb-AlOx-Nb JJs with two injectors con-
nected on the top electrode of the junction. The JJs have mod-
erate length L ∼ 1.25...2.5λJ and different width Winj = 1,

1.5 μm and position X0 of the injectors [26]. In all our samples,
Wd 
 Winj. A picture of one of the JJs is shown in Fig. 4. We
have measured several junctions. The data presented in this
paper were obtained on a junction with L = 40 μm, width
W = 0.8 μm, Winj = 1.5 μm, and X0 ∼ −0.125 μm. The
junction has the typical current-voltage (I -V ) characteristic
and dependence of Ic on the external magnetic field H of
SIS JJs (both not shown), with Ic = 667 μA at temperature
T = 4.2 K. This corresponds to jc ≈ 2.08 kA/cm2 and λJ ≈
16 μm [calculated from a numerical fit of Ic(H )]. Thus, our
JJ has a normalized length l = 2.5λJ and normalized injectors
size winj ∼ 0.09.

A. Classical domain

Since the discontinuity κ is proportional to Iinj, the critical
current of the JJ modulates with Iinj. In the case of δ injectors,
this Ic(κ) [or equivalently Ic(Iinj)] injectors calibration curve
reaches the first minimum at κ = π , if the JJ is perfectly
symmetric (X0 = 0) and no self-field effect is present. The
injectors calibration curve is symmetric for positive and nega-
tive bias, and the minimum corresponds to the formation of a
ϕ JJ with a symmetric potential and ϕ = ±π/2. For a JJ with
X0 �= 0, the first minimum of the I+

c (Iinj) and |I−
c (Iinj)| curves

[27] occur, instead, at different values of Iinj. The injector
current corresponding to κ = π is centered between these
values [23]. In the case of injectors with finite dimension, the
calibration curve is analogous, however, as explained in Sec. II,
the potential is expected to be symmetric at κsym > π .

The experimental calibration curve of our junction is shown
in Figs. 5(a) and 5(b). The first thing to notice here is that four
critical currents (two for each bias polarity) appear around the
first minimum of the curve. In addition, if we zoom in and
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FIG. 5. (a) Experimental (blue line) and simulated (orange line) calibration of the injectors of a 40 μm long JJ with 1.5 μm wide injectors
located at X0 = −0.125 μm at T = 4.2 K and H = 0. In (b) a zoom around the first minimum is displayed. The dotted line indicates the value
of κ (or Iinj) for which the potential has symmetric ±ϕ wells. (c) The I -V curve at I

sym
inj = 3.67 mA showing two distinct critical currents is

plotted.

inspect more carefully, we observe a tiny asymmetry between
the positive and negative bias curves [see Fig. 5(b)]. The dotted
line in Fig. 5(b) indicates the value of Iinj = I

sym
inj = 3.67 mA

where the Josephson potential is symmetric, i.e., I+
c± = |−I−

c±|.
From the comparison with the simulated curve, cf. Fig. 5(b),
we can estimate κsym = 1.042π . The value of I

sym
inj changes

slightly with temperature; at T = 20 mK we measured I
sym
inj =

3.71 mA.
Figure 5(c) shows the I -V curve measured for I

sym
inj =

3.67 mA. By applying the bias current using special sweep
sequences [10], we were able to detect the two critical currents
Ic− and Ic+. The two currents are also observable in the Ic(H )
dependence, where a characteristic minimum around H = 0
appears (not shown), as we know from Ref. [11]. In our
previous work, where we used the SIFS-based ϕ JJ, the high
damping prevented us from observing two critical currents at
T = 4.2 K. In the present junctions, instead, the damping is
very low and two critical currents are measurable in a wide
range of temperatures.

B. Quantum domain

Further we investigated the phase escape from the double
well potential of the ϕ JJ. For this, we have cooled down our
sample in a dilution refrigerator and performed measurements
in a temperature range from 20 mK to 600 mK. To reduce
the noise the dilution fridge has RC filters, π filters, and
powder filters at different stages. We have collected statistics
of switching currents at I

sym
inj = 3.71 mA by sweeping the bias

current with a constant ramp rate İ = 79.6 mA/s, recording
the value of the switching current during each sweep. By
repeating such measurements N = 5000 times, we were able
to plot histograms of switching current distributions. Since at
low damping the initial state (−ϕ or +ϕ) is random [2,3], we
obtain histograms containing two peaks corresponding to Ic−
and Ic+, as shown in Fig. 6(a). As the temperature decreases,
each peak shifts towards the noise-free critical current Ic0± and
the width of the histogram decreases. The dependence of the
width σ±(T ) of each peak is extracted from the experimental
data and presented in Fig. 6(b). One clearly sees that both

FIG. 6. (a) Several switching current histograms taken at I
sym
inj =

3.71 mA and at different temperatures. Each histogram has two peaks
corresponding to the escape from the −ϕ and the +ϕ well. Each peak
is somewhat below Ic0+ and Ic0−, the fluctuation-free critical currents
of the ϕ JJ. (b) The widths σ± of the Ic− and Ic+ peaks in (a) as a
function of temperature T is shown.
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FIG. 7. The dependences σ±(κ) at T = 20 mK. The dotted line
indicates the symmetry point occurring at I

sym
inj = 3.71 mA.

σ±(T ) saturate at T < T � ≈ 260 mK at values σ sat
+ ≈ 137 nA

and σ sat
− ≈ 142 nA. Such a saturation of the escape peak width

is evidence of the crossover from the thermal escape of the
phase to the macroscopic quantum tunneling of the phase out
of the −ϕ or +ϕ well.

However, one should be extremely careful with such con-
clusions, since the saturation might be caused (a) by the
parasitic heating of the sample to a temperature above the
bath temperature due to temporary switching to the resistive
state or (b) by some background noise in our experimental
setup, which has little to do with MQT. There can be several
types of such noise: (i) constant background noise picked up
from the environment because some wires work as an antenna;
(ii) noise in the bias current circuit with σb = c0 + c1I ;
(iii) noise in the injector circuit with σinj ∝ Iinj. To rule
out overheating, we have repeated our measurements using
different duty cycles and different ramp rates and observed no
qualitative difference.

The standard technique to exclude the saturation due to
electronic noise is to demonstrate that in the used setup one
can measure σ values, which are below σ sat

± , possibly in the
same experiment and with the same sample. Already from
Fig. 6(b) one can conclude that σ sat

− is not due to the background
noise because we have measured a smaller value of σ sat

+ at the
same Iinj. Nevertheless, if the noise is ∝I , one can easily
observe such σ sat

− as Ic− > Ic+. An analysis of the σ (Ic)
dependence suggests that this is not the case in our measure-
ments, since σ±(Ic) stays approximatively constant when Ic is
modulated by the injector current, see Fig. 7. Moreover, we
can exclude significant contribution of random noise in the
bias circuit as, for T < T �, the dependences of the skewness
(S) and kurtosis (K) of escape histograms on Ic are constant
and they tend to the universal values of S = −1 and K = 5
[28].

In MQT experiments with conventional small JJs, one
usually changes some parameter, e.g., one applies a magnetic
field, in order to decrease the effective Ic and, accordingly
[29], the histogram width σ ∝ I

3/5
c . In our system the tuning

parameter is κ , therefore we have measured σ sat
± (Iinj) at T =

20 mK, see Fig. 7. The dependence is almost symmetric with

respect to the value I
sym
inj = 3.71 mA. One can see that both

σ sat
+ and σ sat

− have a maximum at κ ≈ π and that our setup is
able to measure values of σ as low as 130 nA. The presence
of points (κ values) where σ± < σ sat

± automatically means
that at all other values of κ , where σ± is larger, we do not
observe saturation due to noise. Also, if the noise would be
caused by Iinj, one would observe its monotonous increasing
component as κ ∝ Iinj grows. Figure 7 clearly shows that this is
not the case. The higher moments S(Iinj) ≈ −1 and K(Iinj) ≈ 5
confirm also absence of white noise contributions. We conclude
that we indeed observe MQT.

The presence of some background noise of nonthermal
origin is nevertheless obvious. One can see that the ex-
trapolation of the σ±2(T ) = [σ 2

bg + (η · T 2/3)2] dependence,
shown in Fig. 6(b), from the thermal escape region (with
η = 295 nA K3/2) towards T → 0, results in σbg ≈ 60 nA,
which can be taken as a reasonable estimate of the parasitic
noise level in our system.

Additional indications of the quantum behavior of the phase
in our ϕ JJ can be found in the analysis of the escape rate �

as a function of the bias current. For the computation of the
experimental � for each switching current peak in Fig. 6(a) we
have used the formula [30]

�±(Ik) = İ

�I
ln

∑M
j=k P (Ij )∑M

j=k+1 P (Ij )
, (6)

where M is the number of bins of width �I of the built
histogram and P (Ij ) is the discretized probability distribution
of the switching current. The results are compared to the
theoretical expectations for the thermal activation (TA) and the
MQT regime, which, in the low-to-moderate damping limit,
are, respectively, given by [31,32]

�t (I ) = at

ωp

2π
exp

(
− �U

kBT

)
, (7)

�q(I ) = aq

ωp

2π
exp

(
− 7.2

�U

h̄ωp

)
, (8)

where at and aq are damping-dependent prefactors, ωp(I ) =
Pω0 (1 − I/Ic0)1/4 is the plasma frequency, and �U =
P�U (1 − I/Ic0)3/2 is the energy barrier. Pω0 and P�U are the
plasma frequency and the energy barrier prefactors for a JJ
with two degenerate ground states. The expression and the
theoretical study of such parameters are given in Ref. [23].
By explicating the current dependence of all parameters in
the exponent of Eq. (7) and Eq. (8), one obtains �t ,�q ∼
exp[(1 − I/Ic0)m], where m = 3/2 in the thermal regime and
m = 5/4 in the quantum regime.

To perform the comparison, we first plotted the quantity
[ln(ωp/2π�±)]1/m versus the switching current I for a few
temperatures in the range from 600 to 30 mK. In such a
way, one gets a linear function and the noise-free current Ic0±
can be extrapolated from the intercept with the current axis.
We iteratively fitted the experimental data with a weighted
linear least-square fit in order to have a precise estimation of
Ic0±. For the sake of simplicity, in our procedure we adopted
at ,aq = 1. Subsequently, we graphed the double logarithm of
the normalized inversed escape rate ωp/2π�± as a function
of ln(1 − I/Ic0), that is again a linear function. The choice
of the double-log plot has been made in order to highlight
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FIG. 8. Double logarithm of the normalized inverse escape rate lnln(ωp/2π�) for different temperatures in the range 30 mK < T < 600 mK
for the Ic+ peak of Fig. 6(a) [panels (a) and (b)] and for the Ic− peak of Fig. 6(a) [panels (c) and (d)]. In the graphs, the points represent the
experimental data and the lines the fits obtained by using Eq. (7) (TA-fit) and Eq. (8) (MQT-fit). One can clearly observe that for both peaks
(both energy wells ±ϕ) the TA formula fits very well the experimental points above T �, but it does not below T �. The opposite occurs for the
MQT formula, proving quantum tunneling below the crossover, where the standard deviations σ± saturate. In panels (b) and (d), the curves
were manually shifted by −0.5 to display them better. Since there is no dependence on temperature in �q , the curves sit almost at the same
position in the diagram.

the difference in the slopes m of the thermal and quantum
formulas. Our results are displayed in Fig. 8 for both the
right and left peak of Fig. 6(a). In Figs. 8(a) and 8(c), we
fitted the data using the thermal formula for the escape rate
[Eq. (7)], while in (b) and (d) we used the quantum expression
[Eq. (8)]. What is evident here is that, for both peaks, �t

matches the experimental points perfectly for T > T �, but it
deviates significantly for T < T �. The experimental escape
below T � is fitted very well by �q , which in turn fails for higher
temperature. This analysis lends further support to the claim
that below the crossover temperature the escape mechanism in
our junction is dominated by quantum tunneling of the phase.
Note that the assumption of at = 1 and aq = 1 does not affect

the latter result, since the prefactors logarithmically enter into
the escape rate computation.

IV. CONCLUSIONS

In conclusion, we have demonstrated a ϕ JJ realized using
a phase discontinuity κ created in a SIS JJ by two tiny current
injectors of finite size and investigated the quantum properties
of such a ϕ JJ. We have described the system theoretically
and have shown simulations of the Josephson energy potential
taking into account the finite size of the injectors. We have
shown that such a JJ can be turned from a 0 JJ to a ϕ0 ± ϕ JJ by
simply varying the amplitude of the current Iinj flowing through
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the injectors. Additionally, one can obtain a ϕ0 JJ if the injectors
are located far away from the center of the junction or if κ is
not near κsym. We have demonstrated such a tunable device
experimentally by giving clear evidence of the ±ϕ states. The
predicted ϕ0 shift of the phase in the ground state could not be
proven or estimated, since this requires a phase-sensitive setup.

Furthermore, simulations show that by changing the posi-
tion of the injectors along the length of the junction, the energy
barrier U0 between the ±ϕ wells decreases down to values of
the order of 10−4EJ , which is interesting if one wants to per-
form measurements to study macroscopic quantum coherence
between the−ϕ and+ϕ states. Nevertheless, the approach with
two injectors is not very suitable for such an operation. In order
to have very shallow and symmetric wells, the position of the
injectors and the values of the applied Iinj have to be controlled
with high precision [11,12,23,25]. To solve this problem, one
can use more injectors, see Fig. 4, to electronically fine tune the
potential. Details will be given elsewhere. Another approach is
to use a 0-π SQUID instead of 0-π continuous junction. In the
0-π SQUID the effective double-well potential is less sensitive
to the parameter spread [33].

Finally, we have performed quantum mechanical experi-
ments of the Josephson phase escape and provided evidence
of macroscopic quantum tunneling of the average phase ψ

from both minima ±ϕ of the Josephson potential. The thermal
to MQT crossover temperature occurring at T � ≈ 260 mK
is indicated by the saturation of the widths σ±(T ) of the
histograms for the switching currents Ic− and Ic+. We exclude
the possible influence of background noise in our system,
since we could measure values of σ± lower than σ sat

± . Further
proofs of MQT are given by fitting the escape rates from both
wells using MQT and TA formulas. The fits show that thermal
activation is the dominant escape process above T �, while
quantum tunneling prevails below T �.
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APPENDIX

The histograms in Fig. 6(b) exhibit an unexpected tempera-
ture dependence. The left peak corresponding to Ic− moves to
higher values of current as T is lowered, up to T = 120 mK,
when it moves back. In order to understand the source of such
an anomaly, we measured the Ic(Iinj) dependence at different

FIG. 9. (a) Modulation of the critical current Ic with injector
current Iinj at different temperatures. The vertical line indicates
I

sym
inj = 3.71 mA. (b) Mean switching currents vs temperature at

I
sym
inj = 3.71 mA.

temperatures. As visible in Fig. 9(a), starting from T = 30 mK
and increasing T , the minimum of the Ic(Iinj) curve shifts to the
right and decreases in value. Nevertheless, the symmetry point
I

sym
inj remains unvaried [vertical dotted line in Fig. 9(a)]. As a

consequence, the critical current Ic− moves to lower values,
whereas Ic+, first, raises slightly reaching a shallow maximum
at T ≈ 210 mK and then sinks. Thus, the ways the two currents
change in temperature is different, as plotted in Fig. 9(b).

We suppose that this anomaly might be due to the geometry
of our JJ. Our device has actually three injector pairs, as shown
in Fig. 4. However, only the first one (Iinj1) was used. The
additional pairs (Iinj2,Iinj3) were not connected. Nevertheless,
their presence makes the right and left halves of the junction
different, e.g., the capacitances are higher in one side than in
the other. The asymmetry in the geometry of the device may
cause unusual temperature dependence of some quantities, e.g.,
Ic±(T ).
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