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Nodeless superconductivity in the type-II Dirac semimetal PdTe2:
London penetration depth and pairing-symmetry analysis
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Superconducting gap structure was probed in type-II Dirac semimetal PdTe2 by measuring the London
penetration depth using the tunnel diode resonator technique. At low temperatures, the data for two samples
are well described by a weak-coupling exponential fit yielding λ(T = 0) = 230 nm as the only fit parameter at
a fixed �(0)/Tc ≈ 1.76, and the calculated superfluid density is consistent with a fully gapped superconducting
state characterized by a single gap scale. Electrical resistivity measurements for in-plane and inter-plane current
directions find very low and nearly temperature-independent normal-state anisotropy. The temperature dependence
of resistivity is typical for conventional phonon scattering in metals. We compare these experimental results with
expectations from a detailed theoretical symmetry analysis and reduce the number of possible superconducting
pairing states in PdTe2 to only three nodeless candidates: a regular, topologically trivial s-wave pairing, and two
distinct odd-parity triplet states that both can be topologically nontrivial depending on the microscopic interactions
driving the superconducting instability.
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I. INTRODUCTION

Finding materials that exhibit topological superconductivity
is one of the primary goals of current research efforts in
condensed matter physics, mainly motivated by their unique
Majorana surface state properties [1–3]. These protected non-
Abelian surface modes [4,5] can, for example, be exploited in
quantum computing schemes [6]. The search for topological
superconductors (TSCs) has recently been boosted by the
discovery of various material classes that feature topological
band structures already in the normal state. There are multi-
ple scenarios in which superconducting pairing among such
states, characterized by a nonzero topological invariant [e.g.,
a (mirror) Chern number], are (at least theoretically) known
to result in the emergence of topological superconductivity
[1–3].

There are several examples of such a scenario. For in-
stance, superconductivity arises in topological insulators ei-
ther from doping such as in CuxBi2Se3 [7–9] and Sb2Te3

[10], or from proximity coupling of the 2D Dirac surface
state to a regular s-wave SC [2,11]. Other examples are
semiconductor heterostructures and 1D quantum wires with
strong spin-orbit coupling and (proximity-induced) supercon-
ductivity [12]. Further candidate systems are magnetic, i.e.,
inversion-symmetric (but time-reversal-symmetry breaking),
Weyl semimetals (SMs) that are predicted to favor odd-parity
(often topological) pairing over ordinary even-parity pairing
[3,13,14]. This is a result of the unique spin texture on the
Fermi surfaces surrounding the Weyl points [3,15]. In addition,
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time-reversal-invariant (but noncentrosymmetric) Weyl SMs
were theoretically shown to host topological superconductivity
for suitable electronic interactions [16]. Three-dimensional
Dirac SMs such as Cd2As3 [17], Na3Bi [18] (type-I), and
PdTe2 [19] (type-II) are proper starting points to realize Weyl
SMs by either breaking inversion or time-reversal symmetry,
e.g., via magnetic order or external fields. Moreover, Dirac
SMs have been predicted to be a rich platform for topological
crystalline SCs with Majorana surface modes arising from a
nonzero mirror Chern number. Such a scenario requires the
presence of a mirror symmetry, and was proposed to occur in
the C4 symmetric systems Cd2As3 and Au2Pb [3,20].

Here, we investigate superconductivity in single crystals
of the transition metal dichalcogenide PdTe2 (space group
P3̄m1), which is a type-II Dirac SM [19,21–23]. As shown
by ARPES and band structure calculations [21,22], the Dirac
band crossing occurs about 0.6 eV below the Fermi energy and
is protected by C3 rotation symmetry. In addition, quantum
oscillation measurements of the de Haas–van Alphen effect
[21] revealed a nonzero Berry phase in one of the (hole) Fermi
surface pockets, confirming the topological nature of the band
crossing. Notably, the superconducting state that we study
emerges below 1.7 K [24,25].

We report experimental results of the London penetration
depth using a tunnel diode resonator (TDR) technique [26].
Our findings clearly indicate a fully gapped superconducting
state, in agreement with previous thermodynamic [27], scan-
ning tunnel microscopy (STM) [28], and heat capacity [29]
measurements. Combining these experimental insights with a
detailed theoretical symmetry analysis, we are able to reduce
the possible superconducting pairing states in PdTe2 to only
three candidates, two of which can be topologically nontrivial.

2469-9950/2018/98(2)/024508(8) 024508-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.98.024508&domain=pdf&date_stamp=2018-07-16
https://doi.org/10.1103/PhysRevB.98.024508


S. TEKNOWIJOYO et al. PHYSICAL REVIEW B 98, 024508 (2018)

FIG. 1. Powder x-ray diffraction (XRD) pattern of crushed single
crystal of PdTe2 (black line). The red lines are calculated XRD peaks
for PdTe2 with hexagonal structure [P 3̄m1, 164]. Blue stars mark
peaks of solidified Te flux.

The three possible SC pairing states are the standard
s-wave BCS state, which is topologically trivial, and two
time-reversal-symmetric odd-parity triplet states transforming
under the representations A1u and Eu of the point group
D3d of the normal state. Whether these odd-parity states are
topologically trivial or nontrivial depends on the relative sign of
the superconducting order parameter on the two Fermi surfaces
[30] enclosing the � point in the Brillouin zone and, hence,
is determined by whether the electron-electron interactions
between the different pockets is repulsive or attractive.

II. EXPERIMENTAL DETAILS

Single crystals of PdTe2 were grown out of Te-rich binary
melts. Elemental Pd (99.9+%) and Te (Alfa Aesar, 99.999+%)
were put into a Canfield crucible set (CCS) [31] with initial
stoichiometry, Pd0.10Te0.90, and sealed in an amorphous silica
tube. The ampules were heated up to 900 ◦C, within 10 hours,
held for 5 hours, cooled to 500 ◦C, over 120 hours, and finally
decanted using a centrifuge [32]. The obtained single crystals
of PdTe2 were hexagonal plate in morphology as shown in the
Fig. 1 inset.

A Rigaku MiniFlex II diffractometer (Cu Kα radiation
with monochromator) was used for acquiring a powder x-ray
diffraction (XRD) pattern at room temperature. The acquired
patterns are well matched with calculated peaks for hexagonal
structure of PdTe2 with P 3̄m1 (164) as shown in Fig. 1. The
low-intensity extra peak marked with a blue star is associated
with residual Te solvent left on the crystals. However, the
relative intensity of the peaks is different from the calculated
powder pattern, presumably because of the preferential orien-
tation of the ground powder due to the layered structure.

Samples used for four-probe in-plane electrical resistivity,
ρ‖, measurements were cleaved from inner parts of large
single crystals and had dimensions of typically (2–3) × 0.5 ×
0.1 mm3 with the longer side along an arbitrary direction
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FIG. 2. Temperature-dependent in-plane electrical resistivity of
PdTe2, with bottom left panel showing zoom of the superconducting
transition. Note a range below approximately 10 K, where resis-
tivity becomes temperature-independent, and linear increase above
40 K. Left top inset compares normalized temperature-dependent
part of resistivity in PdTe2 and Ag wire [38]. Right inset shows
temperature-dependent resistivity anisotropy ratio, ρc/ρ‖, with error
bars determined by uncertainty of experimental geometry.

in the hexagonal plane. Silver wires were soldered using In
to the fresh-cleaved surface of the samples [33] to make
electrical contacts with sub-m� resistance. Sample resistivity
at room temperature, as determined on array of 7 samples
was ρ(300 K) = 24 ± 5 μ� cm. This is consistent with early
reports [25] but is notably lower than the 70 μ� cm reported
recently [29]. Montgomery technique [34,35] measurements
were performed on a sample with 1 mm by 0.5 mm cross-
section area in the ac plane of the crystal. Contacts were
soldered on sample corners covering the whole length of the
sample in the third dimension. The large uncertainty of the ge-
ometric factor in the crystal due to non-negligible contact size
(typically 0.1 mm) compared to the sample size makes these
measurements semiquantitative. The anisotropy value ρc/ρ‖ =
0.9 ± 0.3 was found to be temperature independent; see Fig. 2.
Temperature-dependent electrical resistivity measurements in
four-probe and Montgomery configurations were performed
down to 1.8 K in a Quantum Design PPMS. Measurements of
the superconducting transition temperature range, below the
PPMS range down to 1.8 K, were performed in a cryogen-free
He3 system using the same samples and an LS370 resistance
bridge from Lake Shore.

Precision in-plane London penetration depth �λ(T ) mea-
surements using the TDR technique [26] were performed
in a high-stability 3He cryostat with a base temperature of
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∼0.4 K. Two samples A and B were measured. The samples
were placed with their c axis parallel to an excitation field,
Hac ∼ 20 mOe, much smaller than Hc1 [27]. The shift of
the resonant frequency, �f (T ) = −G4πχ (T ), is proportional
to the differential magnetic susceptibility χ (T ). The constant
G = f0Vs/2Vc(1 − N ) depends on the resonant frequency, f0,
demagnetization factor N , sample volume Vs , and coil volume
Vc. To avoid uncertainties associated with parameters needed
to calculate G, it was experimentally determined by measuring
the full frequency change when the sample is physically pulled
out of the coil at low temperature. Magnetic susceptibility,
4πχ , of arbitrarily shaped samples can be described by the
expression (exact for a superconducting slab in parallel field)
4πχ = (λ/R) tanh(R/λ) − 1, where λ is the penetration depth
and R is the effective geometry-dependent sample dimension
[36]. Physically, R takes into account penetration of the
magnetic field from all surfaces, not only the sides. From the
calculated R and measured 4πχ , the London penetration depth
and its change, �λ(T ), can be obtained [36,37].

III. RESULTS

The main panel of Fig. 2 shows the temperature-dependent
in-plane resistivity of PdTe2. Despite relatively high resistivity
value ρ(300 K) = 24 μ� cm, the dependence is very typical
of a good metal: it is T -linear for T � 40 K, and flattens below
approximately 10 K in the residual resistivity range before the
superconducting transition at Tc ∼ 1.76 K (bottom left inset
in Fig. 2) using offset as a criterion for determination. Note
that the resistive transition at Tc is very sharp, with the width
of 0.04 K, as expected for a high-quality stoichiometric single
crystal without substitutional disorder. Direct comparison of
the temperature-dependent part of the resistivity, [ρ(T ) −
ρ(0)]/[ρ(300 K) − ρ(0)], with that of Ag wire [38] is made
in the left top inset in Fig. 2 and finds a nearly perfect match.
The slightly lower end of the T -linear range in PdTe2 is
caused by a slightly lower Debye temperature, 
D ∼ 207 K
[39], as compared with 225 K in Ag. This observation clearly
identifies phonon scattering as the main scattering mechanism.
Nearly isotropic resistivity without noticeable temperature
dependence (right bottom inset in Fig. 2) identifies the material
as being three-dimensional, in agreement with band structure
calculations [40].

The top left inset in Fig. 3 shows the temperature-dependent
penetration depth in PdTe2, measured over the whole range of
superconductivity existence. The superconducting transition
with Tc = 1.75 K is very sharp, in agreement with resistive
measurements (see Fig. 2). The main panel of Fig. 3 shows the
low-temperature part of the temperature variation of �λ(T )
in two single-crystalline samples (A, red, and B, blue) of
PdTe2. The data are shown on a normalized temperature
scale T/Tc in a temperature range below 0.5Tc. In the clean
limit, the temperature-dependent London penetration depth
is expected to be exponential in full-gap superconductors
and is expected to be close to T -linear in superconductors
with nodes in the gap. The addition of sufficiently strong
disorder pushes the dependence to T 2 for both cases [41]. We
use a power-law function �λ(T ) = A + BT n to quantify the
experimental data for the intermediate cases, when the amount
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FIG. 3. Temperature variation of London penetration depth
�λ(T ) measured in He3 TDR setup for samples A (red) and B
(blue). Main panel shows data with best fit using power-law function
�λ(T ) = A + BT n, with n = 4.3 (A) and n = 4.2 (B). Right bottom
panel shows same data plotted as a function of T 4 to verify quality of
the fit. Top inset shows data over the whole temperature range up to
Tc ∼ 1.8 K.

of disorder is not known. Note that the gap magnitude can
vary either on the same Fermi surface sheet (gap anisotropy)
or between different sheets of the Fermi surface (multiband
superconductivity).

It is empirically accepted that a variation described by the
power-law function with n > 3 corresponds to the case of a
full gap, and n < 2 corresponds to a nodal case. This fit is
made in a characteristic range below 0.3Tc, in which the tem-
perature dependence of the superconducting gap magnitude is
negligible in single-gap superconductors, and the dependence
is determined by thermal excitation of quasiparticles across
the superconducting gap. The red (blue) line in the main panel
of Fig. 3 shows our power-law fit of the data for sample A
(B) of PdTe2 over the range up to 0.4Tc, which yields the
exponent n = 4.3 (n = 4.2). To check the quality of the fit and
justify the extended fitting range up to 0.4Tc, in the bottom
right inset in Fig. 3, we plot the penetration depth data as a
function of (T/Tc)4, finding an approximately straight line,
verifying �λ ∝ (T/Tc)4 for a temperature range up to 0.6Tc

for both samples.
A power-law function with such a large value of the

exponent (n ≈ 4) is indistinguishable from an exponential
function (over the range of temperatures observed), which is
the expected behavior for penetration depth in a fully gapped
BCS superconductor [42]. We therefore also fit our data using
an exponential temperature dependence of �λ. In the top panel
of Fig. 4 we show the resulting fit of the London penetration
depth data using the regular BCS expression,

�λ(t ≡ T/Tc) = λ(0)
√

πδ/(2t)e−δ/t (1)
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FIG. 4. Top panel: Fit of the temperature variation of London
penetration depth with exponential BCS function, enabling determi-
nation of λ(0) = 240 nm (sample A, red) and λ(0) = 220 nm (sample
B, blue). Inset: Logarithmic plot of the BCS function, showing that
the function fits the data well in the range 1/t ≡ Tc/T = 2–4, or
T = 0.25Tc–0.5Tc. Bottom panel shows calculated superfluid density
ρs(T ) ≡ [λ(0)/λ(T )]2 using λ(0) values extracted from the fit.

with δ = �(0)/(kBTc) = 1.76. We obtain a good fit of the
penetration depth using the zero-temperature value

λ(0) = 240 nm (sample A), (2)

λ(0) = 220 nm (sample B). (3)

The determination of λ(0) is quite important, since it
enters the expression for superfluid density, ρs = λ(0)2/λ(T )2.
The standard tunnel diode resonator technique measures the
change in London penetration depth with respect to some
starting reference point, usually at the lowest temperature,
�λ(T ) = λ(T ) − λ(Tmin). However, λ(0) can be measured
with some additional and quite complicated procedure that
involves coating the sample with a thin uniform layer of
aluminum [37]. Here for PdTe2 we can simply use the fact
that we can fit the data reasonably well using Eq. (1) valid for a
conventional, single-gap, weak-coupling BCS superconductor.
The inset in Fig. 4 (top panel) shows that the function matches
the data well up to t = T/Tc = 0.5. Here λ(0) is the only
adjustable parameter whereas the gap amplitude is fixed at the
weak-coupling ratio, �0/kBTc = 1.763. We obtained λ(0) =
230 nm as the average value for two samples used in this
work. This is notably different from the estimate λ(0) = 39
nm based on Hall effect carrier density [27]. The origin of the

discrepancy may potentially lie in the compensated character
of Hall transport in PdTe2 [21], leading to an overestimate of
the carrier density.

Combining our result λ(0) = 230 nm with a literature value
for the coherence length ξ = 439 nm taken from Ref. [27],
one finds a Ginzburg-Landau parameter κ = λ(0)/ξ = 0.52 <

1/
√

2 ≈ 0.7. This is consistent with type-I superconductivity,
which was reported previously [27]. Note that the published
version of Ref. [27] states ξ = 114 nm, which is a typo [43].

The previously determined λ(0) allows us to construct
the temperature-dependent normalized superfluid density as
ρs = [λ(0)/λ(T )]2, with λ(T ) = λ(0) + �λ(T ). In the bottom
panel of Fig. 4 we show the resulting superfluid density ρs ,
calculated using our experimental data and the values λ(0) as
determined from the exponential fit. The data are plotted versus
temperature T/Tc (normalized to Tc), and compared with
BCS expectations for a single fully gapped superconductor
(thick gray line). The onset Tc = 1.75 K is used for both
samples, which give curves that lie close to expectations
for BCS full-gap superconductors. This clearly shows that
superconductivity in PdTe2 is characterized by a single and
full superconducting gap.

IV. DISCUSSION

In the following, we will discuss the implications of our
experimental findings for the possible superconducting order
parameters. Focusing on superconducting phases that do not
break lattice translation symmetry, we can classify different
pairing states according to the irreducible representations (IRs)
of the point group D3d = 3̄ 2

m
of the normal state of PdTe2.

The resulting 10 possible pairing states are summarized in
Table I; four states arise from the four one-dimensional (1D)
IRs (dn = 1) and three from each of the two 2D IRs (dn = 2).
Here we choose the coordinate system such that kz refers to
the c direction, while kx and ky are momenta in the ab plane
with kx pointing along one of the twofold rotation axes of D3d

perpendicular to the c direction.
To give explicit expressions for the microscopic form of the

different order parameters in Table I, we use the pseudospin
basis. Although spin is not a good quantum number in the
presence of spin-orbit coupling (and several relevant orbitals),
we can still define a (k-space local) pseudospin basis with the
same transformation properties as spin if the system has time-
reversal and inversion symmetry. As long as different bands do
not come close to each other, we can focus on a single band for
a given k point and, hence, restrict the superconducting order
parameter �(k) to be a 2 × 2 matrix in pseudospin space. As
usual, we expand this matrix in the (pseudospin) singlet, ψ ,
and (pseudospin) triplet, with the triplet vector d, i.e.,

�(k) = [σ0ψ(k) + d(k) · σ ]iσy, (4)

where σj , j = x,y,z, denote Pauli matrices and σ0 the identity
matrix in pseudospin space. Due to the presence of inversion
symmetry, all pairing channels in Table I are either pure singlet
(gerade IRs) or triplet (ungerade IRs).

From Refs. [21,22], we know that there are two Fermi
surfaces enclosing the � point. For this reason, we have
analyzed the minimal number of nodal points or lines the
different pairing states have on a Fermi surface that encloses the
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TABLE I. Possible pairing states in PdTe2 as constrained by the point group D3d . We use X, Y , and Z to represent real-valued continuous
functions on the Brillouin zone with the same transformation properties under D3d as kx , ky , and kz. Here a, b, and c are real coefficients that
are not fixed by symmetry and follow from microscopic details of the system. The column TRS indicates whether time-reversal symmetry is
preserved (y) or broken (n). The last three columns show the form of the order parameter using the pseudospin basis (see main text), the minimal
number of nodes on a Fermi surface enclosing the � point, and, for the fully gapped states, whether the phase is necessarily topologically trivial
or can be topological depending on microscopic details.

IR Pairing dn TRS Order parameter �iσy Minimal number of nodes per FS Topology

A1g s wave 1 y a + b(X2 + Y 2) + cZ2 0 trivial
A2g g wave 1 y XZ(X2 − 3Y 2) 4 nodal lines
Eg eg(1,0) wave 2 y a(X2 − Y 2) + bYZ 2 nodal lines
Eg eg(0,1) wave 2 y aXY + bXZ 2 nodal lines
Eg eg(1,i) wave 2 n a(X + iY )2 + bZ(Y + iX) 2 nodal points
A1u p wave 1 y a(Xσx + Yσy) + bZσz 0 trivial/top.
A2u p wave 1 y a(Yσx − Xσy) + bX(X2 − 3Y 2)σz 2 nodal points
Eu eu(1,0) wave 2 y aX(X2 − 3Y 2)σx + bZσy + cYσz 0 trivial/top.
Eu eu(0,1) wave 2 y aZσx + bX(X2 − 3Y 2)σy + cXσz 2 nodal points
Eu eu(1,i) wave 2 n [aZ + ibX(X2 − 3Y 2)](σx + iσy) + c(X + iY )σz 2 nodal points [44]

� point. From the results summarized in Table I, we can see that
7 out of the 10 pairing states will necessarily give rise to nodal
lines or points and are, hence, inconsistent with our penetration
depth measurements that indicate a fully established gap on all
Fermi surfaces. Consequently, only three pairing states remain
possible: the s-wave singlet state, the p-wave order parameter
transforming under A1u, and the eu(1,0) state.

Due to the preserved time-reversal symmetry, all of the
remaining candidate pairing states belong to symmetry class
DIII which is characterized by a Z topological invariant ν in
three spatial dimensions [1]. To analyze ν, let us first focus
on one of the bands enclosing the � point. In the case of the
s-wave singlet state, we just have the standard BCS s-wave
superconductor that is known to be topologically trivial. In
the limit where the separation between the different bands at
the Fermi level is larger than the superconducting order
parameter, the invariant ν of the full system is given by the
sum of the invariants νn of the different Fermi surfaces n, i.e.,
ν = ∑

n νn [30]. For the s-wave singlet state, we just have
νn = 0 on all Fermi surfaces n and, hence, a trivial state ν = 0,
irrespective of the relative phases of the order parameter on the
different bands.

This is different for the A1u state: Focusing for the moment
on the leading terms of the basis functions in the vicinity of the
� point, X ∼ kx , Y ∼ ky , and Z ∼ kz, the corresponding triplet
vector reads d(k) ∼ (akx,aky,bkz). For just a single Fermi
surface enclosing the � point, we thus have an anisotropic form
of the Balian-Werthamer state of the B phase of superfluid 3He.
This state is known to be topologically nontrivial with |ν| = 1
[1,46]. Taking into account higher order terms in X,Y,Z, the
invariant of the single Fermi surface can be different but must
always be odd and, hence, nontrivial. This follows from the
general result of Ref. [7] stating that the parity of the invariant
ν of a superconducting order parameter that is odd under
inversion is given by the parity of the number Nθ of the time-
reversal-invariant momenta (k = −k) enclosed by the Fermi
surfaces of the system (which is one in the present case with
one Fermi surface around the � point), ν mod 2 = Nθ mod 2.

Unfortunately, we cannot apply the criterion for topological
superconductivity of Ref. [7] to the invariant ν of the full

system as the total number of enclosed time-reversal momenta
is even [21,22]. In other words, the interplay between different
bands that are topological individually determines whether
ν = 0 or ν 	= 0. For example, if there is no additional sign
change of the triplet order parameter between the two Fermi
surfaces enclosing the � point, the invariants of the two
bands add to the nontrivial value ν = 2; see Fig. 5(a). On the
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FIG. 5. The triplet vector (black arrows) on the two Fermi surfaces
(red and blue solid lines) enclosing the � point is shown in (a), for the
same sign of the order parameter on the two Fermi surfaces, and (b),
for opposite signs, yielding a topologically nontrivial (ν1 + ν2 	= 0)
and trivial state (ν1 + ν2 = 0), respectively. In (c), we indicate the
high-symmetry points, where the triplet vectors of the two candidate
states, A1u and eu(1,0) in Table I, have to vanish as a consequence of
inversion symmetry (red dots) and rotation symmetries (blue dots).
The gray arrows illustrate the (simplest) texture of the triplet vector
of the A1u state in the kz = 0 plane (with minimal number of defects).
Panel (d) shows the directional dependence (i.e., anisotropy) of the
gap of the eu(1,0) state on a Fermi surface enclosing the � point. The
distance of the surface to the origin is proportional to the magnitude
of the gap. The state breaks the threefold rotation symmetry and its
gap is, thus, generically anisotropic.
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other hand, in the presence of an additional sign change, the
invariants cancel, resulting in a trivial state, ν = 0, as illustrated
in Fig. 5(b). In general, the situation is more complicated due
to the presence of additional pockets [21,22] away from the
� point. For example, the predicted pockets around the K
and K′ points are generically expected to yield a nontrivial
contribution to ν although K, K′ are not time-reversal invariant.
The reason is that the K and K′ points are high-symmetry
points where the triplet vector of the A1u state is forced to
vanish due to rotational symmetry [see Fig. 5(c)]. Symmetry
also enforces that the contributions νK and νK’ of the Fermi
surfaces enclosing the K and K′ points to the invariant are
equal, i.e., νK = νK′ . This can also be seen in Fig. 5(c)
upon noting that the z component of the triplet vector of
the A1u state transforms as sin(kz) under D3d . Consequently,
the textures of the triplet vector on, say, spherical Fermi
surfaces around the K and K′ points are equivalent. This
originates in the fact that K transforms into K′ under inversion
while the triplet vector changes sign under this symmetry
transformation.

While both pairing states discussed so far have a gap that is
invariant under all symmetry operations of the normal state, the
third candidate, the eu(1,0) state, transforms as kx underD3d and,
hence, has a gap that breaks the threefold rotation symmetry
along the c axis; see Fig. 5(d). The size of the anisotropy
∝ �min/�max depends on microscopic details. Given that we
observe a full gap behavior in �λ for all temperatures, we can
exclude a large anisotropy, as for T > �min one would expect
an effectively nodal behavior. While we cannot exclude such
fine tuning to a largely isotropic gap state, it makes the pairing
candidate eu(1,0) less likely.

The invariant ν of the eu(1,0) state can be deduced by
adiabatic deformation from the other triplet candidate A1u:
as we show explicitly in the Appendix, choosing the lowest
order basis functions, X ∼ kx , Y ∼ ky , and Z ∼ kz, again gives
|ν| = 1 for a single Fermi surface enclosing the � point. In fact,
the previous discussion of the topological invariant of the A1u

state based on Ref. [7] equally well applies to the eu(1,0)-wave
order parameter.

As indicated in the last column of Table I, this shows that,
while the s-wave phase is a topologically trivial state, both
of the odd-parity candidate phases can be either topologically
trivial or nontrivial depending on microscopic details.

V. CONCLUSIONS AND OUTLOOK

We have presented measurements of the London penetration
depth using TDR technique and of the resistivity in single
crystals of the type-II Dirac semimetal PdTe2. Our results
reveal that the SC state is fully gapped and characterized
by a single-gap energy scale. This is in agreement with
previous STM, magnetization, and AC susceptibility results.
We determine a zero-temperature London penetration depth
of λ(0) ≈ 230 nm from a fit of our measurements of �λ(T ).
Using the previously measured value of the coherence length
ξ = 439 nm [27], one finds a Ginzburg-Landau parameter
κ = λ/ξ ≈ 0.52, corresponding to type-I superconductivity,
in agreement with previous results [27]. We also report a
temperature dependence of the resistivity and its anisotropy
that do not reveal any anomalous features and instead closely

follow expectations for an isotropic metal with dominant
phonon scattering.

We have performed a systematic theoretical analysis of all
possible SC pairing states that can be reached by a single
continuous phase transition from the normal state. Using as
input our results of a full superconducting gap together with
the known form of the Fermi surfaces [21,22], we are able to
narrow down the possible SC pairing states to only three candi-
dates: an s-wave superconductor transforming trivially under
all symmetries of the lattice, a p-wave phase transforming
under A1u, and a triplet order parameter (eu(1,0)) transforming
as kx under D3d .

While the first state is always topologically trivial, the latter
two triplet phases can be topologically nontrivial, depending on
the relative sign of the SC order parameter on different Fermi
surfaces. The crucial difference between the triplet states is
that the gap of the A1u order parameter is invariant under all
lattice symmetries, whereas the gap of the eu(1,0) state breaks
the threefold rotation symmetry along the c axis of the normal
state.

While our transport measurements indicate the relevance
of phonons for momentum relaxation, it is not clear whether
phonons also provide the pairing glue. This is important as
electron-phonon coupling alone is expected to yield a topo-
logically trivial state, even in the (time-reversal-symmetric)
Weyl SM state that can be reached by adding an inversion-
symmetry-breaking perturbation [47,48]. The situation is dif-
ferent for magnetic Weyl SMs, which preserve inversion
symmetry. Here, the singlet s-wave pairing state is not al-
lowed due to the spin structure around the Weyl points
and the pairing state necessarily has odd parity [3]. Alter-
natively, adding magnetic impurities may, in principle, also
result in topological superconductivity [48]. Further micro-
scopic calculations are necessary to understand the con-
nection between the interplay of different electron-electron
interaction channels and the resulting superconducting order
parameter.

Finally, to experimentally distinguish between the remain-
ing candidate states, we suggest investigating the different
behavior of the SC transition temperature and low-temperature
behavior of the London penetration depth when tuning the
impurity scattering rate, e.g., via electron irradiation as was
done, for example, in iron-based superconductors [49].
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APPENDIX: ADIABATIC DEFORMATION
OF THE eu(1,0) STATE

For completeness, we here present a simple argument
showing that the two candidate triplet states, A1u and eu(1,0) in
Table I with leading order basis functions around the � point
(X ∼ kx , Y ∼ ky , Z ∼ kz), are topologically equivalent, i.e.,
have the same topological invariant ν. To this end, let us define
the set of triplet vectors

dη(k) = (
a(1 − η)kx

(
k2
x − 3k2

y

) + aηkx,bkz,cky

)
, (A1)

which can be used to interpolate between the eu(1,0) state, at
η = 0, and

dη=1(k) = (akx,bkz,cky). (A2)

It is easily seen that |dη(k)| 	= 0 for 0 � η � 1, k 	= 0. Con-
sequently, the gap does not close which guarantees that ν does
not change during the deformation. Performing a rotation in
spin space, which again keeps the gap intact and does not affect
ν, the triplet vector in Eq. (A2) can be deformed continuously
into −(akx,cky,bkz). This is the form of the triplet vector of the
A1u order parameter, which proves the topological equivalence
of the two states.
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