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We report a neutron scattering study of the metallic triangular lattice antiferromagnet PdCrO,. Powder neutron
diffraction measurements confirm that the crystalline space group symmetry remains R3m below Ty. This
implies that magnetic interactions consistent with the crystal symmetry do not stabilize the noncoplanar magnetic

structure, which was one of two structures previously proposed on the basis of single crystal neutron diffraction
measurements. Inelastic neutron scattering measurements find two gaps at low energies, which can be explained
as arising from a dipolar-type exchange interaction. This symmetric anisotropic interaction also stabilizes a
magnetic structure very similar to the coplanar magnetic structure, which was also suggested by the single crystal

diffraction study. The higher-energy magnon dispersion can be modelled by linear spin-wave theory with exchange
interactions up to sixth nearest neighbors, but discrepancies remain which hint at additional effects unexplained

by the linear theory.
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I. INTRODUCTION

Geometric magnetic frustration, wherein the exchange in-
teractions between spins on particular types of lattices cannot
be simultaneously satisfied, can lead to novel ground states
[1] and unusual excitations [2,3]. In the case of the triangular
lattice, for example, a spin liquid ground state was famously
predicted by Anderson [4] for § = % Even for larger S, where
anoncollinear 120° spin structure can provide a nondegenerate
ground state to satisfy the frustration, effects such as magnon
decays [5], magnon-phonon coupling [6,7], and multiferroicity
have been observed. In addition, if the magnetic electrons are
itinerant, complex chiral magnetic ordering can emerge due to
Fermi surface nesting as a result of the triangular geometry [8].
Similar chiral structures are also obtained if the itinerant elec-
trons, coupled by ferromagnetic double-exchange interactions,
compete with antiferromagnetically (superexchange) coupled
local moments [9].

One candidate for such a material is the metallic delafossite
compound PdCrO,, where Cr** (§ = %) spins form triangular
layers in the ab plane separated by O-Pd-O dumbbells, as
shown in Fig. 1(a). The triangular chromium-oxide layers
are insulating and host localized spins on the Cr ions, while
the Pd d electrons are itinerant and form conducting lay-
ers sandwiched by the magnetic CrO, layers. In common
with other metallic delafossites [10], the in-plane resistiv-
ity of PdCrO, is astonishingly low &~ 9 uQ cm at room
temperature [11,12], which is of the same order of magni-
tude as elemental metallic conductors. This has motivated
studies of its electronic structure, through quantum oscilla-
tions [11,13] and angle-resolved photoemission spectroscopy
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[14,15]. These works showed that the nonmagnetic Fermi
surface is reconstructed into the magnetic Brillouin zone below
the antiferromagnetic transition at 7y = 37.5 K, and sug-
gest a strong coupling between the localized and conduction
electrons.

One particularly interesting feature is the observation of
an unusual anomalous Hall effect [16], in which the Hall
coefficient is not proportional to the magnetization. This was
attributed to a noncoplanar magnetic structure of the Cr spins
which would allow a finite scalar spin chirality in the presence
of a magnetic field [17]. The noncoplanar magnetic structure
consists of spins in each triangular ab layers lying in a vertical
plane whose orientation changes from layer to layer. The spin
plane for each ab layer always includes the c-axis and makes an
angle o with respect to the a-axis, as shown in Fig. 1(c). In the
noncoplanar structure proposed by [17], there are two angles
o1 = 31° and o, = 44° for consecutive layers. However, the
same single-crystal neutron diffraction study [17] found that
this noncoplanar structure could barely be distinguished from
a very similar coplanar structure, with a single o = 35° for
all layers. This coplanar structure, however, has zero net
scalar spin chirality and cannot explain the unconventional
anomalous Hall effect.

To shed further light on this matter, we have used neutron
scattering to elucidate the magnetic exchange interactions and
constructed a spin Hamiltonian, which can be used to model
and determine the most energetically favorable magnetic struc-
ture. This is supported by density functional theory calculations
of the ground-state energy of the different magnetic structures.
In addition, we were also motivated by the apparent strong
coupling between the localized spins and conduction electrons

©2018 American Physical Society
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FIG. 1. The crystal and magnetic structure of PdCrO,. (a) The crystal structure showing the Cr-O and Pd-O bonds. (b) A view of a single Cr
layer with the in-plane magnetic interactions highlighted. Solid lines (shading-coded by the type of anisotropic dipolar interaction, labeled A;)
show nearest-neighbor couplings, while dash-dotted, arrowed, and lighter dotted lines show further neighbor interactions up to fourth nearest
neighbor. Single-headed arrows indicate the spin moment direction for each Cr** ion, with some pointing along the ¢ axis. Double-headed
arrows indicate the exchange interactions. (c) The nearest interlayer interactions shading-coded by the type of dipolar interactions, and the
angle o between the vertical spin plane and the a axis. The diagonal boxes show interlayer bonds whose exchange energy does not cancel, and
indicate the preferred orientation of the spin plane as described in the text in Sec. III B 2. The ions in a particular layer are colored the same,
with the lowest layer (z = é) in red, the middle layer (z = %) in blue and the top layer (z = %) in green. (d) shows a side view of the couplings

in (c), the ¢ angle between equivalent spins in different layers, and also illustrates the staggered (alternating) chirality in different triangular
layers, where the sense of the 120° rotation between adjacent spins change in different layers.

to look for how this would modify the exchange interactions
compared to the localized case.

II. METHODS

A 22-g powder sample was synthesized through an ion-
exchange reaction [ 18], and used in inelastic neutron scattering
measurements on the Sequoia [19] (Spallation Neutron Source,
Oak Ridge) and LET [20] (ISIS facility) spectrometers, while
neutron powder diffraction measurements were performed on
HRPD [21] (ISIS).

The Sequoia measurements used higher incident energies
(8-120 meV) to observe the overall magnon dispersion over

a wide temperature range from 5 to 200 K, while the LET
measurements concentrated on the low energy gaps at 5 K
using E; from 1.8 to 7 meV. The inelastic data were reduced
using the MANTID [22] program, and analyzed using the SPINW
[23] linear spin-wave theory, and MCPHASE [24] mean-field
modeling packages. The calculated spin-wave spectrum was
convoluted with a Gaussian line shape whose width in energy
transfer was obtained from an analytical calculation of the
chopper opening times [25,26], and whose width in momentum
transfer was obtained from the angular widths of the sample
as seen from the moderator and detectors combined with the
calculated divergence of the neutron guides at the incident
energies used. We used the coplanar 120° magnetic structure
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FIG. 2. The measured (red cross) and refined (black line) powder
diffraction pattern of PdCrO, from the backscattering detectors of
HRPD at 286 K. Ticks below the pattern indicate, in order from top
to bottom, the positions of nuclear reflections of PdCrO, and the
impurity phases Cr,03 (0.63 wt%), PdO (0.84 wt%), and LiCl (0.13
Wt%), respectively. The small peak at &~ 2.14 A is from the vanadium
sample container. The inset shows the measured patterns at 286 and
4.3 K indicating that there is little change in the diffraction pattern
below Ty = 37.5 K.

found in Sec. IIIB 2 for the spin-wave calculations, but also
found that using either of the magnetic structures proposed
in ref [17] produced negligible differences in the calculated
convoluted spectra.

Diffraction patterns at 4.3 and 286 K were acquired on
HRPD. Data from the backscattering detector banks in the
time-of-flight range from 30-130 ms, and additionally 10—
110 ms in the case of the 286 K data, were analyzed by
the Rietveld method as implemented in the general structure
analysis system (GSAS) [27] using the EXPGUI interface [28].
Density functional theory (DFT) calculations of PACrO, were
carried out to determine the stability of several magnetic
structure models were carried out using the OPENMX code
[29,30] within the LDA+U framework [31].

III. RESULTS

A. Neutron powder diffraction

Figure 2 shows the measured powder neutron diffraction
data at 4.3 and 286 K. Very little difference was observed
between the patterns measured above and below Ty = 37.5 K,
as indicated by the inset. Rietveld refinements were carried out
using the literature reported R3m and a distorted C2/m crystal
structure. The effects of anisotropic strain, after Stephens [32],
and small' amounts of impurities were accounted for in the
refinement. We found that at 286 K the R3m structure (Ryp =
3.34%, x? = 6.38 with isotropic displacement parameters)
fitted better than the C2/m structure (Ry, = 5.05%, x> =

'The impurities in our samples were determined to be PdO
(0.84 wt%), Cr,03 (0.63 wt%), and LiCl (0.13 wt%).

TABLE 1. Anisotropic displacement parameters of PdCrO, in

units of (100 10%2) obtained from refinement of powder neutron
diffraction data at room temperature, using the data from both the
10 to 110 ms and 30 to 130 ms time-of-flight windows. The space
group is R3m, with lattice parameters a = 2.922692(15) A and
c = 18.08691(11) A. The Pd atoms are at the 3a Wyckoff sites (0, 0,
0), the Cr atoms occupy the 3b sites (0, 0, 0.5), and the O atoms the
6c sites (0, 0, z) with z = 0.110511(8). The weighted R,,, = 3.07%,
with x2 = 5.383.

Atom U Uy Uss Un Us Ux
Pd 0.673(6) 0.673(6) 0.426(10) 0.3364(28) 0.0 0.0
Cr 0.483(8) 0.483(8) 0.498(14) 0.242(4) 00 0.0
(0] 0.586(4) 0.586(4) 0.469(7) 0.2933(21) 0.0 0.0

14.56 with isotropic displacement parameters), while at 4.3 K,
the two structures had similar R factors with the R3m structure
very marginally smaller (Ry, = 2.46%, x> = 9.47 for R3m
compared to Ry, = 2.48%, X2 = 9.63 for C2/m, both with
isotropic displacement parameters). We thus conclude that the
space group of PACrO, remains R3m below Ty, and that no
symmetry lowering distortions could be observed. The refined
parameters are given in Table 1.

The R3m crystal structure imposes several strong con-
straints on the terms of the spin Hamiltonian. The first is that
the exchange interactions must agree with the point group
symmetry of the midpoint of the Cr-Cr bond (Wyckoff d or
e sites, for intra- or interlayer interactions respectively, both
having point group 2/m or Cy;). The second is that single-ion
anisotropy terms must be invariant under the operations of the
point group symmetry of the magnetic Cr sites (Wyckoff b site,
point group 3m or Ds,). The threefold rotation axis parallel to
¢ of Ds,; implies that the only allowed quadratic anisotropy
term is the K SZ2 term, which may produce either an easy-axis
along the ¢ axis (K < 0) or an easy-plane perpendicular to
the ¢ axis (K > 0). An easy-axis single-ion anisotropy would
favor a spin plane which includes the ¢ axis as reported in
[17], but the azimuth angle of the plane, o, would still be
undetermined, as the ground-state magnetic energy for all o
would be degenerate.

In the context of the proposed noncoplanar structure of
PdCrO,, however, the first point is more important, as the
Wyckoff d and e sites, midpoints of all Cr-Cr pairs, are
centers of symmetry. This implies that Dzyaloshinskii-Moriya
(DM) interactions are forbidden [33] for all pairs of Cr spins.
Since the alternating rotations of « in consecutive ab layers
in the noncoplanar magnetic structure proposed by Ref. [17]
may only be stabilized by an interlayer DM interaction, this
constraint implies that the noncoplanar structure cannot be
realized. This is in agreement with DFT calculations, which
show that the coplanar magnetic structure has the lowest
electronic ground-state energy, as explained in more detail in
Sec. III C. Nonetheless, we cannot rule out the possibility that
there exist very small distortions that cannot be detected by the
current experiments and which break the inversion symmetry
of the system and hence allow a DM interaction. Indeed, we
note that any vertical 120° magnetic structure in this lattice
breaks inversion symmetry, and will discuss these issues in
greater detail in the conclusions.
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FIG. 3. Measured powder-averaged magnon spectra (a) from Sequoia with E; = 25 meV, compared with (c) calculated spectra using SpinW.

(b) and (d) Constant momentum transfer cuts around the magnetic Bragg peak at Q = (% % %) with (b) E; = 60 meV, integrated over the range

14 <|0l <16 15\71 and (d) E; = 25 meV. Lines in (b) show the fitted elastic scattering of the 5 K data set, scaled to fit the elastic intensities
of the other data sets, to emphasize the extensive low-energy inelastic scattering which persists to the highest temperatures measured. Lines in
(d) are the sum of the fitted elastic peak and resolution convoluted calculations from linear spin-wave theory. In both (b) and (d), a peak shape
defined by the convolution of an Ikeda-Carpenter and a pseudo-Voigt function was used to fit the elastic line.

B. Powder inelastic neutron scattering Figure 4 shows the data measured with E; = 7 and 3 meV

Figure 3 shows the high-energy part of magnon spectrum using the LET spectrometer. Two clgar energy edges, at E3. =
obtained using the Sequoia spectrometer. Panels (a) and (d) 2.2 and E4 = 0.4 meV, can be seen in the energy cuts, which
show the data measured at 5 K with E; = 25 meV as a 2D  are likely to be from energy gaps caused by the magneng
intensity map (a) and as cuts (d) along neutron energy transfer ~ ANSOUOPY. However, as 1.10ted in Sec. TITA, onl.y the KS;
at constant |Q| around the antiferromagnetic ordering wave single-ion anisotropy term is allowed by the crystalline symme-
vector (111) at |0] = 1.5 A. Two peaks at E; = 15.4 meV try of PdCrO,, and this term only results in a single anisotropy
and E, 3=372.7 meV are seen. Their momentum dependence energy gap, rather than the two observed edges E3 and Ei.
follows the magnetic form factor of Cr* and we attribute This suggests that an additional interaction must be included,
them to van Hove singularities corresponding to the maxima and this, together with its effect on the magnetic structure, is

considered in Sec. III B 2. However, we will first discuss how

of two different branches of the magnon dispersion. Panel . . . .
_ . the Heisenberg exchange interactions can be obtained from the
(b) shows data measured at E; = 60 meV as a function of .
high-energy data.

temperature. The two magnon peaks disappear above Ty =

37.5 K but a significant amount of low-energy inelastic

scattering remains up to 200 K, indicating that magnetic The dominant magnetic interaction between Cr*" ions, with

fluctuations persist up to at least 57y. These are likely to S = %, is expected to be the superexchange, which generally

be associated with correlations within the triangular ab layers results in a Heisenberg Hamiltonian:

where the exchange interactions are strong, while the magnetic gHeisenbers _ Z S-S, + Z K ( SZ(,))z’
ij i

1. High-energy spectrum

ey

ordering results from the weaker interlayer exchange inter-
action coupling each layer. This is consistent with the large
difference between the Curie-Weiss temperature (Ocw =~ 500 where the exchange interactions J;; between ion pairs i and
K [34]) compared to Ty in this compound, indicating that  j up to sixth-nearest-neighbor are considered in this work,
the interlayer interactions that are responsible for the Neel and K is the single-ion anisotropy constant. The peak energies
ordering are significantly smaller than other interactions in the E, =154 meV and E, = 7.7 meV may be modelled by
system. the above spin Hamiltonian in linear spin-wave theory, and
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FIG. 4. Measured powder-averaged magnon spectra from LET
with (a) E; = 7 and (b) 3 meV, compared with calculated spectra using
SpinW (white contour lines). (c) Constant | Q| cuts integrating over the
range [1.4,1.5] 10\71 of the E; = 7meV (red squares) and E; = 3 meV
(black circles) data with linear spin-wave theory calculations (solid
and dashed lines) for the model discussed in the text.

correspond to the energy of modes at the magnetic Brillouin
zone edges where next-nearest neighbor spins (which are
ferromagnetically aligned) precess either in-phase (E5) or in
antiphase (E;). Note that for both modes, nearest neighbor
spins (aligned at 120° with respect to each other) precess in
antiphase. This means that for the E, mode one third of next-
nearest spins cannot be satisfied and thus remain stationary.
That is, they cannot simultaneously precess in-phase with their
next-nearest neighbors while in antiphase with their nearest
neighbors. Thus a spin-wave model with only nearest-neighbor
interactions implies a ratio E; = 1.5E,2 because only two

>The E,;/E, ratio also has a weak quadratic dependence on the
single-ion anisotropy K, which is not considered here.

thirds as many spins contribute. The actual value of E; is
determined by E| &~ 5J;.

That we observe a ratio closer to E| ~ 2E, thus requires
nonzero further neighbor interactions. A ferromagnetic next-
nearest neighbor interaction, J,, pushes E; higher in energy
relative to E'|, because it favors the in-phase precession of next-
nearest neighbor spins and thus allows more than two thirds
of spins to participate in the £, mode. A ferromagnetic third-
nearest-neighbor interaction, J3, on the other hand, acts in the
opposite way to decrease the energy of E, with respect to E;.
This suggests that to match the observed ratio of the peak ener-
gies E|/E, & 2, an antiferromagnetic J, > 0 or a ferromag-
netic J3 < 0 is needed. An in-plane fourth-nearest-neighbor
interaction, Jy, on the other hand, does not change the ratio
E/E, but serves to scale the overall bandwidth of the magnon
excitations in a similar way to J;, so we will not consider it or
further neighbor interactions in the following analysis.

Setting either J, or J3 to zero would yield unique values
of the two remaining in-plane exchange interactions from the
two observed energies E| and E,. However, previous analyses
[35,36] of data for CuCrO,, which also adopts the delafossite
structure and has a similar magnetic structure, have retained up
to third nearest neighbor interactions, which were determined
to be still significant (J,/J; = 18% and J3/J; ~ 3% [36]).
Furthermore, for two nonzero interactions (either J; and J, or
Ji and J3), the E| and E, peak intensities are calculated to be
approximately equal, or with the E peak slightly more intense
than the E, peak, in clear contrast to the data, where the ratio
of the peaks is I/1; ~ 2. This can be rectified by increasing
|J2| as this favors the in-phase precession of the E, mode as
noted above.

Using these two constraints, E|/E, = 2and I/I; = 2,and
the absolute energies of the peaks E; and E,, we obtained
the intralayer exchange interactions Ji, J», and J3 listed in
Table II. These exchange constants give a mean-field Curie-
Weiss temperature Ggl\ff“_ﬁeld = —725 K, which somewhat

TABLE II. Spin wave exchange parameters fitted to data in meV.
Positive values indicate antiferromagnetic exchange. Also shown is
the reduced x? calculated from the cuts shown in Figs. 3 and 4,
and the mean-field calculated Néel and Curie-Weiss temperatures
from the stated exchange constants (7 is calculated from only the
interlayer interactions, while Ocw is calculated from all exchanges).
For comparison, the measured values are Ty = 37.5 K and Ocy =
—500 K [34].

Bond dist (A)

J; (meV) 6 2.9
J, (meV) 1.2 5.1
J3 (meV) 0.6 5.8
Je1 (meV) 0.3 6.2
Joo (meV) 0.13 6.9
J3 (meV) 0.048 7.5
K (meV) —0.02

x4 435

TNF (K) 39

oM (K) —725
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overestimates the observed 0&“\%3“@ = —500 K [34]. This is
because the I/1; = 2 ratio implies a large |J,|, which in turn
demands a larger | J; | and a larger | J3| of the same sign as J;, to
keep the E,/ E, = 2ratio, as J3 acts opposite to J, with respect
to the E |/ E; ratio as described above. As can be seen in Fig. 3,
however, the width of peak E, at 7.7 meV is not resolution
limited and it has a low-energy shoulder which cannot be fitted
by our linear spin-wave theory model, regardless of the number
of parameters included. There is thus some uncertainty in the
integrated intensity /; and hence in the ratio I;/I;, which may
well be smaller than we have used here, thus resulting in an
overall reduction of the estimates of the exchange interactions.
In any case, the exchange interactions given here should
be considered an approximate estimate, and a more detailed
single-crystal study of the magnon dispersion will be needed
to obtain more accurate values. Nonetheless, we note that
the exchange interactions obtained here are consistent with
PdCrO; having a coplanar 120° magnetic structure according
to the theoretical phase diagrams of Messio et al. [37]. On
this phase diagram, a larger J, or smaller (or ferromagnetic)
J3 would stabilize a noncoplanar magnetic structure, but this
structure would have magnetic Bragg reflections at (%00) and
equivalent points, in contrast to observations.

Whilst the intralayer interactions determine the energies
of the two peaks seen in the constant |Q| cuts, the main
effect of the interlayer exchange is to broaden the peak widths
by lifting the degeneracy of the magnon modes at the zone
boundary. However, large values of this interlayer interaction
would stabilize an incommensurate magnetic structure [35],
in contrast to observations which showed that the propaga-
tion vector, g = (3 ) 2) is commensurate. In addition, the
long-range 3D Néel order depends strongly on the interlayer
interaction, such that they are the main determinant of 7. We
have thus used mean-field calculations of Ty, the requirement
that the spin-wave eigenvalues at the I" point should be real
(which would otherwise indicate an incommensurate structure
is more favorable), and the width of the £ = 15.4 meV peak
to determine the three nearest-neighbor interlayer exchange
interactions J.;, J.2, and J.3 as shown in Table II. As with the
intralayer interaction, however, there is a degree of uncertainty
in these parameters because the major feature of the data
sensitive to them, the widths of the magnon peaks, may also
have contributions from other processes, such as magnon
decay. A single crystal measurement of the dispersion along
Q1 is thus needed to accurately determine these parameters.

2. Low-energy spectrum

As noted in Sec. IIIB, we observe two anisotropy gaps,
E; =2.2meV and E4 = 0.4 meV, while only one single-ion
anisotropy term yielding one anisotropy gap is permitted by
the Ds, point symmetry of the Cr site. Thus in addition to
the Heisenberg term (1), we turn to an anisotropic exchange
interaction as the mechanism behind the second gap. However,
the measured magnetic susceptibility along the ¢ axis and in the
ab plane is very similar [34], which implies that any anisotropic
exchange interaction is small. One possible interaction is the
dipolar coupling, which may arise classically from interactions
between local Cr spin moments, or from a modification of the
direct or superexchange interactions by the spin-orbit coupling.

This latter case is often referred as a pseudodipolar interaction,
in contrast to the classical mechanism, and has a coupling
strength which scales with the square of the spin-orbit coupling
constant [33,38,39]. The dipolar interaction is symmetric, and
thus is not forbidden by the C,, Cr-Cr bond symmetry, in
contrast to the Dzyaloshinskii-Moriya interaction which is
antisymmetric and does not satisfy the bond symmetry.
The form of the dipolar interaction is given by
- Fi;)(S; '3f‘ij) -Si-S; Q)

rij

]_fipolar _ _:u“ng//L%; 3(Sl
J 47

which may also be expressed as Hgip = S,K,- iS; where Ki =

_ tog” "“B (3t;; A;jr 8i;). The S; - 1;; and S; - £;; terms couple

47r
only the components of the spins along the bond direction f;;,
which makes the dipolar (or pseudodipolar) interaction bond-
and magnetic-structure dependent. In addition, these terms also
result in the r;; direction being a local easy direction. For
PdCrO,, there are three inequivalent bonds for the nearest-
neighbor intra- and interplane interactions, which are shown
in Figs. 1(b) and 1(c).

Letus consider first the nearest neighbors within a triangular
ab plane. Figure 1(b) shows that each type of dipolar bond
(denoted by different colored solid lines) connects a spin to
neighboring spins, which are rotated at +120° and —120° with
respect to it (note that as the figure shows the projection onto
the ab plane, the spins appear to be aligned antiparallel). This
means that the (S; - #1)(S; - ;) term (for nearest neighbors
linked by r}) cancels for each type of bond, so that no particular
in-plane spin direction is favored by the nearest-neighbor
dipolar interaction. However, since £; has no z component, this
term also has no z component, which means that there is a net
Ising-like —S§; S easy-axis anisotropy from the final —S; - S;
term in equation (2). The cancellation of the in-plane exchange
components leaving a net c-axis anisotropy also holds true
for the other in-plane dipolar interactions. This net c-axis
anisotropy provides one of the two observed spin anisotropy
energy gaps.

In addition, the local easy axis defined by each r;; bond
direction serves to lift the degeneracy of the spin waves with
precession axes that include a component in the ab plane, and
yields the required second energy gap observed in the data.
Using the combined Hamiltonian gyHeisenbere 4 gpdipolar apq

values of A . obtained from the classical dipolar interaction

(|A1 2| = 0.02 meV), we found splittings of ECdlC ~ 1.6 meV
and E$° &~ 0.5 meV. Thus, the calculated E is slightly higher
than that measured, as illustrated in Fig. 4. The larger energy
gap E; is from the Ising-like c-axis anisotropy term, which acts
on all spins, while the smaller energy gap E4 is from the in-
plane dipolar anisotropy where each type of dipolar interaction
acts only on one third of spins. In order to better fit the observed
E; =2.2 meV, a small easy axis single-ion anisotropy term
K = —0.02 meV needs to be added. The lower observed value
of E4 = 0.4 meV compared to E§° ~ 0.5 meV may be due
to screening of the moments.

Because of the thombohedral symmetry, successive trian-
gular layers along the ¢ axis are offset by of a unit cell
in the [110] direction, which means that the symmetry of
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the interlayer dipolar interactions is different to that of the
in-plane interactions. The three inequivalent bonds are shown
in Fig. 1(c) by different colored lines. Unlike for the in-plane
interactions, the nearest neighbor spins connected by a given
dipolar bond do not necessarily form pairs whose energy
cancels. Instead, as highlighted by the light blue rectangles
in the figure, one set of dipolar bonds will connect next-
neighbor (interlayer) spins which are parallel. The energy of
these bonds will be lower than the other two bonds, so that
its preferred direction (along the bond direction) is also the
globally preferred spin direction.

In Fig. 1, we chose one particular stacking of the ab-layer
120° magnetic structure which favors the blue A.;, bonds
and hence o = 30°. This choice was made for consistency
with the single crystal diffraction work of Ref. [17]. However,
there are other stacking arrangements that would favor either
of the other two types of bonds, and hence either o = 90°
or @ = 150°, which are energetically equivalent to the case we
have illustrated. Thus, in a real crystal, there would be different
domains where the easy plane is in these other directions.
Finally, we note that the planes defined by o = 30°, 90°,
and 150° are the vertical mirror planes of the R3m structure.
Choosing one of these mirror planes to be the spin plane
breaks the threefold symmetry of the crystalline structure so
the symmetry of the magnetic structure becomes C2’. This
symmetry breaking arises from the combination of the in-plane
magnetic structure, which has a threefold periodicity, and the
interlayer dipolar interaction, which has a twofold periodicity
but depends on the relative orientations of the spins. Thus,
while each interaction individually obeys the crystal symmetry,
together they act to break it in the magnetic structure, without
necessarily requiring a symmetry breaking crystal distortion.

The angle o = 30° is close to that reported (o« = 35°) for
the coplanar structure of PdCrO, [17]. Moreover, equivalent
values have also been reported in similar Cr-based delafossite
compounds, which have vertical 120° spin structures. In
particular, CuCrO; has o = 150° [40] (spins in the [110]-[001]
plane, and equivalent to &« = 30°), and LiCrO, has « = 158°
[41] (equivalent to o = 38°). Thus both these cases can also
be explained by a dipolar interaction.

In addition to favoring a particular spin plane orientation
a, the interlayer dipolar interaction also forces the spins in
alternating planes to be rotated by an additional angle, denoted
¢, around the plane normal. Unlike for -, where the preferred
angle is determined by geometry, ¢ is very sensitive to the
relative magnitude of the off- and on-diagonal components
of the dipolar interaction tensor. Whilst the geometry will
fix a particular value for this ratio, and hence ¢, for a set of
neighboring spins at a particular distance, this will be different
for a set of further neighbors. Thus we observed that varying the
range of the dipolar interaction in the calculations can change
¢ drastically across the full range of angles. This implies that ¢
will be particularly sensitive to defects or stacking faults in the
material, which will modify the dipolar interaction at longer
ranges, and the physically observed ¢ cannot be predicted with
any degree of confidence from the dipolar model.

The energy splittings between the spin-wave branches at "

vary approximately as |Z,~_/ |, so due to the % dependence of
ij
the dipolar interaction, one would expect that the additional

splitting of the spin-wave branches caused by the interlayer

interaction is %% that of the nearest-neighbor intralayer

interaction, since r; = 2.9A and re1 = 6.2 A. This serves to
smear out the edges E3 and E, but does not significantly shift
their energies. However, because of the small magnitudes of the
further neighbor dipolar interactions, this smearing is minimal.
In particular, it cannot explain the relatively smooth edge seen
in the data in Fig. 4(c) compared to the sharper calculated
edge. The observed width of the edge is much broader than
the instrument energy resolution, suggesting that it is caused
by some other interaction which lifts the degeneracy of the
magnon modes at the zone center thus giving a range of gap
energies. Large interlayer interactions J., would have this
result and can give better fit to this low-temperature data,
but will also give a much broader E; = 15.4 meV peak in
disagreement with the high-energy data.

Despite this, the close agreement between the o angles
implied by the dipolar interaction with that measured strongly
suggests that this interaction plays a large role in determining
the magnetic structure of PACrO,. Moreover, the nearest neigh-
bor dipolar interaction can also explain the presence of two
energy edges in the low-energy magnetic excitation spectrum,
whereas the symmetry allowed single-ion anisotropy term can
only yield one energy gap. That the energies of the edges
predicted by the nearest-neighbor classical dipolar interaction
(1.6 and 0.5 meV) and those measured (E3 ~ 2meV and E4 ~
0.4 meV) agree relatively well also reinforces the importance
of the dipolar interaction.

C. Ab initio calculations

To gain further insights into the magnetic structures of
PdCrO,, we perform DFT calculations using the OPENMX code
[29-31] to obtain the total energies for a series of different
noncollinear magnetic structures and determine the lowest
energy structure. We adopt the LDA+U framework with an
effective U parameter of U = 3.7 eV for the description of
on-site Coulomb interactions for the Cr d orbitals. This value
is consistent with the Materials Project database [42] and is
close to the one used in the study of isostructural LiCrO,
[43]. Certainly, the choice of U can affect the calculated total
energies, but we confirmed that the relative energy differences
among the spin configurations under consideration remain
robust for the range of U values between 3 and 4 eV.

We investigate the energies of various spin configurations
starting from the proposed noncoplanar magnetic structure
with the angles: a; = 31°, ap =44°, ¢; = 17°, ¢, = 16°,
¢y = +1, and {, = —1, as suggested in Ref. [17]. Here, the «;
angles define the vertical spin planes across the consecutive
Cr layers, the ¢; angles stand for the relative phase of the
spins within the plane, and ¢;’s represent the handedness, i.e.,
chirality, of the 120° rotation among neighboring spins within
the same Cr ab layers. To examine the energetics near this
noncoplanar spin configuration, for the sake of clarity, we
first calculate total energies by varying o, with all the other
angles fixed at the proposed values. Figure 5(a) illustrates
the calculated total energies as a function of o, and shows
its minimum close to a, = 31°, which is different from the
proposed structure of Ref. [17]. Figure 5(b) confirms that
ar = oy = 31° is the minimum for the fixed ¢; and ¢, albeit
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FIG. 5. DFT calculated total energy of different magnetic struc-
tures. (a) shows the variation between the coplanar (with a; = 31°)
and noncoplanar (other values of «,) with other angles fixed as
described in the text. (b) shows the total energy as a function « for
a coplanar structure and (c) shows the variation of the total energy
with the difference between the ¢ angles of consecutive layers. In all
cases, {; = +1and ¢, = —1 applies, which means that the sense of the
120° rotation between neighboring spins in the same layer alternates
in consecutive layers, which is the staggered chirality case described
in the text.

the variation in the total energies is very small, of the order
10 eV /Cr-atom. Although the magnetic ordering with o} =
o, is coplanar, there are still possibilities of having variations of
¢; angles within the coplanar plane. Hence we have examined
total energies with varying the ¢; angles and found that the
energy dependence on ¢; is extremely small at the order
of dozens of eV /Cr-atom but its relative difference is still
meaningful within the computational precision. As shown in
Fig. 5(c), the energy curve for given values of o, = o} = 31°
and ¢; = 0° has a minimum at ¢, ~ 60°.> Thus, from DFT
calculations, we conclude that the coplanar structure (with
ap = o) = 31°) is energetically favored over the noncoplanar
ordering. Further, it is interesting to note that there is a large
energy difference between the oy = o) and | — 1| = 180°
configurations. The configuration with |op — orj| = 180° is
also coplanar but has the same chirality of | = ¢, + 1 between
the alternating layers, while the o, = o] configuration has the
staggered chirality of {; = 41 and {; = —1. The configuration
of ap = o is indeed consistent with the observed staggered
chirality in experiments [17]. However, this contrasts with the
classical spin energy calculations used in Sec. III B 2 with the
dipolar interaction, where both straight ({; = {, = +1) and
staggered ({; = +1, &, = —1) chirality yields the same energy.
The stability of the staggered chirality may reflect the influence

3The ¢ angle in Sec. IIIB2 is actually the absolute difference
between the ¢ of consecutive layers and effectively corresponds to
¢, in Fig. 5(c) with ¢; = 0°.

of the conduction electrons on the magnetic ordering, which is
ignored by the dipolar calculations.

IV. DISCUSSIONS

We have carried out a neutron scattering investigation of the
metallic triangular lattice antiferromagnet PdCrO,. Neutron
powder diffraction shows no evidence of symmetry lowering
in the magnetically ordered phase. This implies that the
antisymmetric anisotropic Dzyaloshinskii-Moriya interaction
is forbidden for all pairs of Cr spins, which means that the non-
coplanar magnetic structure posited by Ref. [17] cannot be sta-
bilized by a spin Hamiltonian consistent with the symmetry of
the space group of PACrO;. On the other hand, the allowed sym-
metric anisotropic dipolar interaction was found to adequately
explain the measured low-energy inelastic neutron spectrum
and also explains the observed easy spin plane, which includes
the ¢ axis. Nonetheless, we note that this coplanar magnetic
structure (or, indeed, any 120° magnetic structure with a
vertical spin plane) has space group P2’ and thus itself breaks
inversion symmetry. This may, in turn lead to a nonzero DM in-
teraction and a noncoplanar magnetic structure. It is uncertain
whether the magnitude of such a DM interaction may produce
the reported noncoplanar structure, with spin planes canted
by 13° with respect to each other, however. In any case, such
an interaction would produce splittings of the magnon modes
which would be too small to be experimentally measured.

The nonlinear field dependence of the Hall resistivity
observed in Ref. [16] was attributed to an unconventional
anomalous Hall effect arising from the effect of a noncoplanar
magnetic structure on the Berry curvature. However, a recent
theoretical work [44] suggests that a noncoplanar structure
is only a prerequisite for the unconventional anomalous Hall
effect in the absence of spin-orbit coupling. Reference [44]
showed that, as the Berry curvature is not affected by trans-
lational symmetry, only the magnetic point symmetry needs
to be considered. In particular, it noted that if there is a
twofold rotation axis through the magnetic ion, then only the
component of the tensor which is parallel to this axis will
be nonzero. The coplanar magnetic structure stabilized by the
dipolar interactions, where the vertical spin plane is coincident
with a mirror plane of the structural R3m space group (with
a = 30, 90, or 150°), adopts the C2’' magnetic space group,
which has a twofold rotation axis perpendicular to the spin
plane (parallel to the a, b, or [110] axes), passing through the
Cr sites. Thus, depending on the magnetic domain, either o,
or oy, is nonzero. This contradicts the experimental findings
of Ref. [16], where a nonzero o,, was measured.

This suggests a number of possibilities to explain the
observed Hall resistivity. First, there may be some other
anisotropy which modifies the magnetic structure of PdCrO,
so as to move the spin plane off an R3m mirror plane, and hence
break the twofold rotation symmetry allowing anonzero oy, as
measured. Alternatively there could be a small noncoplanarity,
since our ab initio calculations show that while the coplanar
structure is energetically favorable, small deviations from this
only marginally raise the total energy (by around 1 ueV /Cr for
~ 10°), as does a small shift of the spin plane off the R3m mir-
ror planes. Furthermore, the mechanism by which the dipolar
interaction stabilizes the coplanar structure depends on the fact
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that a Cr layer above a particular layer is exactly equivalent to
that below. So, it is possible that small lattice imperfections,
such as vacancies or stacking faults, may introduce an addi-
tional single-ion anisotropy or modify the dipolar interaction so
that in reality PdACrO, would not adopt the idealized magnetic
structure favored by the model Hamiltonian.

Another possibility is that the observed nonlinear field
dependence of the Hall resistivity at low temperatures is the
result of the Fermi surface reconstruction due to the \/3 X \/5
magnetic ordering and tunneling between the reconstructed
bands as suggested in Ref. [13]. In this case, a noncoplanar
magnetic structure (nonzero scalar spin chirality) is not needed
at zero magnetic field. Instead, the complex behavior of the
Hall conductivity at low magnetic fields may be qualitatively
explained by competition between the transport in different
hole and electron bands, and tunneling between them. The
true unconventional anomalous Hall effect in this scenario only
manifests at high magnetic fields where the spin moments may
cant out of plane to give a nonzero scalar spin chirality. In many
respects, this is the most attractive possibility and would accord
well with the neutron diffraction and inelastic data, which
suggests that the magnetic structure remains coplanar. It may
also offer a more robust explanation of the observed nonlinear
field dependence of the Hall resistivity, than relying on a small
noncoplanarity of the spin planes in alternating ab layers.
However, numerical calculations of the Hall conductivity as
a function of the noncoplanarity would be needed to properly
decide between these explanations.

Finally, we turn to the high-energy magnon excitations. The
exchange parameters listed in Table II were deduced entirely
from two peaks in the inelastic neutron spectrum. While they
account for gross features of the data, there remain many
discrepancies. These are, principally, the extra scattering below
the E, peak around 6 meV, and an apparent minimum in the

dispersion at the same energy around |Q| =~ 0.8 Ail. It is
important to note here that we have assumed that the single-
ion anisotropy is small (JK| < 0.1 meV) throughout our
analysis. This is in contrast to the published spin Hamiltonian

for isostructural CuCrQO, [35,36], where K ~ 0.5 meV was
reported. In fact, such a large K set of parameters also fits
the high-energy PdCrO, data, and would explain better the
low-energy shoulder on the E, peak around 6 meV. However,
this is because the large K pushes the E3 and E4 anisotropy
gaps high in energy to near E,, so the two low-energy gaps
we observed could not be explained by this large K model.
Instead, perhaps recent work on the magnon-phonon coupling
in LiCrO; [43] and CuCrO; [45] where a low | Q| dispersion
minimum similar to that observed here was seen could explain
the unexpectedly large broadening of the magnons at E; and
E,. However, due to the powder averaging of the data, and lack
of detailed information on the phonon dispersion, we could not
model such a magnon-phonon coupling for PdCrO,.
Nonetheless, the similarities of the magnetic excitations
and magnetic structures of these compounds strongly suggest
a uniform mechanism behind their behavior. This similarity,
despite PdCrO, being a metal, and CuCrO, and LiCrO, being
insulators, suggests that the effect of the conduction electrons
on the local chromium moments is subtle. Teasing out such
effects will thus require further investigations with a single
crystal using neutron and x-ray scattering measurements.
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