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Quantum collapse of a small skyrmion in a thin magnetic film with Dzyalishinskii-Moriya (DMI) interaction
has been studied. The energy of the skyrmion and the stability threshold determined by the DMI, the external
magnetic field, and the underlying atomic lattice are investigated analytically and numerically. The Lagrangian
describing the coupled dynamics of the skyrmion size and the chirality angle is derived. Equations of motion
possess an instanton solution that corresponds to the skyrmion underbarrier contraction via quantum tunneling
with subsequent collapse and decay of the topological charge. The tunneling rate is computed and the conditions
needed to observe quantum collapse of a skyrmion in a magnetic film are discussed.
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I. INTRODUCTION

Skyrmions have been originally introduced in nuclear
physics as possible nonlinear field-theory prototypes of
hadrons [1]. They quickly attracted interest in condensed
matter physics in applications to topological defects in 2D
ferro- and antiferromagnetic films and layered materials [2–8],
Bose-Einstein condensates [9], quantum Hall effect [10,11],
anomalous Hall effect [12], and liquid crystals [13]. Skyrmions
are currently at the forefront of research in magnetism due to
their interesting topological properties and their potential for
topologically protected information storage, see, e.g., reviews,
Refs. [14–18].

Solid-state research on skyrmions is focusing on their
stability, dynamics, and various symmetry properties. The
majority of published works treated skyrmions as classical
objects, although some attention has been paid to their quantum
excitations as well [19]. In most cases, application of classical
theory is justified because even the smallest nanometer-size
skyrmion would be comprised of a macroscopic number of
degrees of freedom. Consequently, if one is interested in the
dynamics of the skyrmion as a whole and not in small exci-
tations, the field-theory action associated with such dynamics
would be large compared to the Planck constant. This makes
quantum features strongly suppressed. Nevertheless, they can
be important in the context of information storage if the
topological charge of a skyrmion can decay in the long run
via quantum processes.

Besides its practical importance, if such a behavior of a
skyrmion was detected in experiment, it would manifest an-
other fascinating example of macroscopic quantum tunneling
(MQT) that has been intensively studied in condensed matter
physics in the past. MQT research included tunneling of the
magnetic moment in single-domain magnetic nanoparticles
and tunneling of domain walls [20], spin tunneling in molecular
magnets [21,22], tunneling of vortices in 2D superconductors
and quantum depinning of flux lines in 3D superconductors
[23], tunneling between supercurrent states in nano-SQUIDS
[24], etc.

In this paper, we are asking a question whether quantum
collapse of a classically stable skyrmion can be observed in ex-
periment. In a pure exchange model in a 2D crystal, skyrmions
collapse classically due to the violation of the scale invariance
by the presence of the discrete atomic lattice [25]. Anisotropy,
dipole-dipole interaction (DDI), magnetic field, and confined
geometry can stabilize significantly large magnetic bubbles
with skyrmion topology [26–30], while the stability of small
skyrmions requires other than Heisenberg exchange cou-
pling, strong random anisotropy, or a noncentrosymmetric
system with large Dzyaloshinskii-Moriya interaction (DMI)
[16,31–36].

In this paper, we study skyrmions stabilized by the DMI
and an external magnetic field, which is a typical situation
in most experiments. At a given strength of the DMI, the
size of the skyrmion is determined by the magnetic field; the
stronger the field the smaller the size. Stable skyrmions above
critical size λc exist below a critical field Hc determined by
the strength of the DMI. Above that field, skyrmions collapse
irreversibly. We assume that skyrmion stability is dominated by
the exchange, DMI, and strong magnetic field, and neglect the
effect of the weaker dipolar fields that would make the quantum
problem significantly more involved. The classical dynamics
of a collapsing skyrmion has been studied in Ref. [25]. For a
nanometer-size skyrmion, it occurs on a nanosecond time scale.
It has been shown that the skyrmion preserves its topological
charge until the final stage of the collapse where it reaches
an atomic size. At that point the topological charge of the
skyrmion abruptly changes from 1 to 0.

The existence of the critical field in a system with DMI
allows one to control the energy barrier for the collapse of a
stable skyrmion by tuning the magnetic field close to Hc. We
show that such tuning of the field, which is easily within exper-
imental reach, allows one to achieve a sufficiently large rate
of underbarrier quantum contraction of the skyrmion below
the critical size. Once such a process occurs due to quantum
tunneling, the skyrmion continues to collapse classically until
it decays completely into the magnons [25]. We solve the
tunneling problem by reducing it to the dynamics of a single
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parameter—the skyrmion size λ. We show that equations of
motion for λ in imaginary time possess an instanton solution
that corresponds to the quantum tunneling from λ > λc to
λ < λc. The Euclidean action along the instanton trajectory
gives the WKB exponent for the tunneling, while the attempt
frequency related to small oscillations of λ near the energy
minimum provides the pre-exponential factor for the tunneling
rate.

This paper is organized as follows. The dependence of
the various components of the skyrmion energy on its size is
discussed in Sec. II. The vicinity of the critical field is studied
in Sec. III. The Lagrangian and equations of motion are derived
in Sec. IV. The rate of quantum collapse is obtained in Sec. V.
The results and suggestions for experiments are discussed in
Sec. VI.

II. ENERGY

We consider the following Hamiltonian of a 2D spin system

H = −J

2

∑
〈ij〉

Si · Sj

+A
∑

i

[(Si × Si+x̂ ) · x̂ + (Si × Si+ŷ ) · ŷ] − H
∑

i

Siz.

(1)

Here, the first term represents the exchange interaction between
the nearest neighbors, with Si being the spin at the i-th site
of the crystal lattice and J being the exchange constant. The
second term describes the Bloch-type Dzyaloshinskii-Moriya
interaction (DMI) of strength A in a noncentrosymmetric
crystal [16]. For the Néel-type DMI, it should be replaced with
A

∑
i[(Si × Si+x̂ ) · ŷ − (Si × Si+ŷ ) · x̂]. The third term is the

Zeeman interaction between the spins and the magnetic field
applied in the z direction, perpendicular to the xy plane of the
film.

The field theory counterpart of the above Hamiltonian that
one can obtain by switching from summation to integration
according to

∑
i → ∫

dxdy/a2 (where a is the lattice con-
stant) is

H = −1

2
Ja4

∫
dxdy

[(
∂S̃
∂x

)2

+
(

∂S̃
∂y

)2
]

+Aa3
∫

dxdy

[(
S̃ × ∂S̃

∂x

)
· x̂ +

(
S̃ × ∂S̃

∂y

)
· ŷ

]

−H

∫
dxdy S̃z, (2)

where S̃(x, y) is the spin field of constant density S/a2.
Nonuniform configurations of the spin field in 2D are

characterized by the topological charge,

Q =
∫

d2r

8π
εαβsaεabc

∂sb

∂rα

∂sc

∂rβ

=
∫

dxdy

4π
s · ∂s

∂x
× ∂s

∂y
,

(3)

which takes integer values Q = 0,±1,±2, . . . . Here, s is a
unit vector specifying the direction of the spin field, s = S̃/S̃.
At H = 0 and A = 0, the nonuniform rotations of the spin field

that minimize the exchange energy are Belavin-Polyakov (BP)
skyrmions [2]. For example, for Q = 1, the components of s
are given by

sx = 2λ
r cos(φ + γ )

r2 + λ2
, sy =2λ

r sin(φ + γ )

r2 + λ2
, sz = λ2 − r2

λ2 + r2
,

(4)

where r = (r cos φ, r sin φ) is the radius vector in the xy

plane, λ can be interpreted as the skyrmion size, and γ is the
chirality angle. In a continuous spin-field approximation, the
scale invariant 2D exchange energy of a Q = 1 BP skyrmion,
Eex = 4πJS2, is independent of its size, which is confirmed by
substitution of Eq. (4) in the first term of Eq. (2). The spin-field
in the Q = 1 Néel-type (γ = 0) and Bloch-type (γ = π/2)
skyrmions is shown in Fig. 1.

In practice, one typically has H � AS � JS, so that the
energy of the short-range rotations of S̃ is dominated by
the exchange. This suggests that for sufficiently small λ and
not very large r , Eq. (4) provides a good approximation for
the skyrmion shape. Indeed, the dimensional analysis of the
energies in Eq. (2) shows that the DM energy of the BP
skyrmion scales as AS2(λ/a), while its Zeeman energy (up
to a logarithm) scales as HS(λ/a)2. Both are small compared
to the exchange energy of the BP skyrmion when λ/a � J/A

and λ � δH , with δH ≡ √
JS/Ha. When these conditions are

satisfied, interactions other than the exchange may affect the
skyrmion shape at r � λ. However, at distances r � λ, the
skyrmion shape is determined by the exchange interaction and
is close to the BP shape given by Eq. (4). This is confirmed
by our numerical studies of skyrmions on spin lattices, see
Appendix.

Violation of the scale invariance by a discrete atomic
lattice leads to the −(2πJS2/3)(a/λ)2 contribution to the
energy of the BP skyrmion that forces it to collapse with a
lifetime proportional to (λ/a)5 in the absence of any other
stabilizing interactions [25]. The DMI and Zeeman interaction
can stabilize skyrmions. Substitution of Eq. (4) into Eq. (2)
with the addition of the discrete-lattice contribution gives the
following dependence of the skyrmion energy on the size and
chirality angle:

E = −2πJS2

3λ̄2
− 4πAS2λ̄ sin γ + 4πHSλ̄2l(H, λ̄), (5)

where we have dropped the dominant exchange contribution,
4πJS2, that does not depend on λ and introduced dimen-
sionless λ̄ = λ/a. The function l(H, λ̄), having logarithmic
dependence on δH/λ, is given by Eq. (A3) of the Appendix.
For certainty we consider a Bloch-type DMI with A > 0, but
all formulas can be modified in a trivial manner for other types
of DMI. The plus sign of the last (Zeeman) term in Eq. (5)
comes from the direction of the field being opposite to the
magnetic moment of the skyrmion. The first (lattice) term and
the last (Zeeman) term in the energy favor collapse of the
skyrmion, while the second (DMI) term favors expansion of
the skyrmion and γ = π/2. This provides the energy minimum
on λ at H < Hc. The dependence of the skyrmion energy
on the skyrmion size, λ, for fields close to Hc is shown in
Fig. 2.
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FIG. 1. Spin-field of the Bloch-type (top) and the Néel-type
(bottom) BP skyrmions with Q = 1.

To increase confidence in our results. we will develop and
compare three approaches. At first, we will treat the function l

as a constant. This is justified when dl/dλ contributes little
to the derivative with respect to λ of the Zeeman energy,
4πHSλ̄2l(H, λ̄), which requires δH � λ, 2l � 1. Such ap-
proximation elucidates the key features of the tunneling prob-
lem and it provides the leading dependence of the tunneling
rate on parameters. It will be further improved by the numerical
solution of the continuous problem that takes into account
logarithmic corrections and also by computation of all energies
in a discrete model on 500 × 500 spin lattices.

FIG. 2. Dependence of skyrmion energy on skyrmion size given
by Eq. (5) near the critical (collapse) field.

If one neglects the logarithmic dependence of l on λ the
condition that the first and the second derivative of E(λ) equal
zero give the following dependence of the critical field Hc and
the critical skyrmion size λc (at H = Hc) on parameters:

Hc

JS
= 21/3

16lκ4/3
, λ̄c = (4κ )1/3, κ = J

3A
� 1. (6)

This approximation can be improved by assuming a logarith-
mic dependence of l on κ in the expression for Hc. The scaling
of Hc/(JS) and λc/a on κ provided by Eq. (6) has been tested
by finding these parameters numerically from Eq. (5) without
assuming l = const, and also by computing the inflection point
of the total energy numerically on spin lattices of large size, see
Appendix for details. All three methods produce close results,
see Fig. 3 that represents the lattice method believed to be
the most accurate one. Note that in the numerical work κ4/3

multiplied by a function that contains logarithmic dependence
on κ can easily be interpreted as a power of κ that is slightly
different from 4/3, e.g., 3/2 = 4/3 + 1/6, and this is what is
seen in the upper panel of Fig. 3.

III. VICINITY OF THE CRITICAL FIELD

It is expected that only the smallest skyrmions will have
an appreciable rate of quantum collapse and only when the
corresponding energy barrier is sufficiently small. Thus the
quantum problem we are interested in must be studied near
H = Hc. In this region the energy shown in Fig. 4 is given by

E

JS2
= π

21/33κ5/3
[|δ̄t |(δλ̄)2 + (δλ̄)3], (7)

where δλ̄ = λ̄ − λ̄1, δ̄t = λ̄t − λ̄1 = −21/64κ1/3ε1/2, and

ε = 1 − H

Hc

� 1. (8)

The energy minimum corresponds to γ = π/2, any departure
of γ from π/2 is related to the time derivatives of λ. In that
sense, Eq. (7) gives the potential energy of the skyrmion in the
field just below H = Hc, shown in Fig. 4.

024423-3



DERRAS-CHOUK, CHUDNOVSKY, AND GARANIN PHYSICAL REVIEW B 98, 024423 (2018)

FIG. 3. Dependence of Hc (upper panel) and λc (lower panel) on
A/J obtained on 500 × 500 spin lattices, see Appendix for details.

At any H < Hc, the reduced skyrmion size λ̄1

corresponding to the energy minimum satisfies

−1 + κ

λ̄3
1

+ ω̄0λ̄1 = 0, (9)

where ω̄0 = 2lH/(AS). Close to the critical field,

ω̄0 = ω̄c(1 − ε), ω̄c = 3

4λ̄c

= 3

4(4κ )1/3
(10)

and the characteristic values of λ shown in Fig. 4 are

λ̄1 = λ̄c + 21/6κ1/3ε1/2, (11)

λ̄m = λ̄c − 21/62κ1/3ε1/2, (12)

λ̄t = λ̄c − 21/63κ1/3ε1/2. (13)

The energy barrier, U = E(λm) − E(λ1), is given by

U

JS2
= 4π 21/6

3κ2/3
ε3/2. (14)

FIG. 4. Schematic representation of the energy of the skyrmion
below the critical field that shows the energy barrier U and parameters
λ1, λm, and λt used in the text.

Note that close to Hc these results, obtained under the assump-
tion l = const, do not depend on l and, therefore, must be valid
regardless of that assumption. The dependence of l on λ and
H simply renormalizes Hc, preserving the dependence of all
variables on ε = 1 − H/Hc while yielding l = lc independent
of ε.

IV. LAGRANGIAN AND EQUATIONS OF MOTION

To solve the tunneling problem, we need the dynamical
equations for S̄(r, t ). In the absence of dissipation, they are
given by

h̄
∂S̄
∂t

= S̄ × Beff , Beff = −δH
δS̄

. (15)

Writing the components of the spin field in terms of the angles
in spherical coordinates gives

S̄x = S

a2
sin �(x, y) cos �(x, y), (16)

S̄y = S

a2
sin �(x, y) sin �(x, y), (17)

S̄z = S

a2
cos �(x, y). (18)

Noticing that h̄S̄z and � form a canonically conjugate pair of
the generalized momentum and generalized coordinate, it is
easy to see that Eq. (15) written in components of S̄ follows
from the Lagrangian

L = h̄S

∫
dxdy

a2
�̇(cos � + 1) − H. (19)

Here, 1 is added to cos � to make the first term zero at
infinity where cos � = −1. This adds a total time derivative
to the Lagrangian that does not affect the classical equations
of motion. It may, however, contribute a phase, S��, to the
amplitude of quantum transition if � changes by �� when
going from the initial to the final state. Note that the first
integrated quantity in Eq. (19) has a geometrical meaning [20]
of the surface area swept by the spin field in a closed path
around the south pole of the sphere of radius S̄.

024423-4



QUANTUM COLLAPSE OF A MAGNETIC SKYRMION PHYSICAL REVIEW B 98, 024423 (2018)

According to Eq. (4) for the skyrmion,

tan � = sy

sx

= tan(φ + γ ), �̇ = γ̇ , (20)

cos � + 1 = sz + 1 = 2λ2

λ2 + r2
. (21)

Substituting this into Eq. (19) and replacing H with E of
Eq. (5), one obtains

L = 4πS(h̄γ̇ − H )λ̄2l(H, λ̄) + 2πJS2

3λ̄2
+ 4πAS2λ̄ sin γ.

(22)

The equations of motion are

∂L
∂λ̄

= 0,
d

dt

∂L
∂γ̇

= ∂L
∂γ

. (23)

If one treats the logarithm as a constant l, the equations of
motion become

dλ̄

dτ
= cos γ,

λ̄
dγ

dτ
= − sin γ + κ

λ̄3
+ ω̄0λ̄, (24)

where we have introduced dimensionless time τ =
[AS/(2h̄l)]t . The minimum of the energy corresponds to a
stationary solution of the above equations with γ = γ1 = π/2
and λ = λ̄1 satisfying Eq. (9). Writing near the minimum

γ = π

2
+ δγ, λ̄ = λ̄1 + δλ̄, (25)

one obtains the following linearized equations:

dδλ̄

dτ
= −δγ, (26)

dδγ

dτ
= 1

λ̄1

(
4ω̄0 − 3

λ̄1

)
δλ̄ (27)

that describe harmonic oscillations of δγ and δλ̄ at a frequency

ω̄1 =
√

1

λ̄1

(
4ω̄0 − 3

λ̄1

)
. (28)

According to Eq. (9), λ̄1 → 1/ω̄0 at H → 0. In this limit,
ω̄1 → ω̄0 and ω̄1τ → (H/h̄)t , making the skyrmion size
oscillate in real time at the ESR frequency. As the magnetic
field increases, the oscillation frequency becomes smaller than
the ESR frequency H/h̄. It first increases with the field, but
then decreases and becomes zero at H = Hc, where the energy
minimum disappears.

Close to the critical field, one has

ω̄1 = 31/221/12ε1/4

2κ1/3
. (29)

Note again the independence of the reduced frequency ω̄1 of l.
The real-time frequency of the small oscillations of skyrmion
size near the energy minimum for ε � 1 is

ωε = 31/221/12ε1/4

2κ1/3

( |A|S
2h̄l

)
. (30)

V. QUANTUM COLLAPSE OF A SKYRMION

In this problem, it is important to notice that quantum
decay of a skyrmion does not require a direct transition to the
uniformly magnetized state. Instead, it involves underbarrier
contraction of the skyrmion via quantum tunneling from λ1 to
λt (see Fig. 4), without changing its exchange energy. After
that, the skyrmion collapses classically, with its exchange
energy emitted in the form of spin waves [25]. Thus, to obtain
the rate of the quantum decay of a skyrmion, one has to study
the quantum transition λ1 → λt .

At H close to Hc, one has λ̄ = λ̄1 + δλ̄, γ = π
2 + δγ , with

δγ satisfying Eq. (26). Switching to the imaginary time, u =
it, ū = iτ , one obtains from the equations of motion (24) the
following equation for δλ:

d2δλ̄

dū2
= 1

8κ
[2|δ̄t |(δλ̄) + 3(δλ̄)3]. (31)

It is easy to see that this equation corresponds to the condition
of constant total energy (5) for the motion in imaginary time,
which describes quantum tunneling of λ from λ1 to λt , see
Fig. 4. By subtracting E(λ1), this energy can be made zero:

E

JS2
= 4π

3κ

[
3ε1/2

21/64κ1/3
δλ̄2 + 2κ

λ̄5
c

δλ̄3 + λ̄c

2
δγ 2

]
(32)

= π

21/33κ5/3

[
|δ̄t |(δλ̄)2 + (δλ̄)3 − 4κ

(
dδλ̄

dū

)2
]

= 0.

(33)

Choosing reduced variables,

δλ̄ = δλ

|δt | , ū′ = |δt |1/2

2κ1/2
ū. (34)

Equation (31) can be written as(
dδλ̄

dū′

)2

= (δλ̄)2 + (δλ̄)3. (35)

The solution is

δλ̄ = −1

cosh2(ū′/2)
, (36)

that is,

δλ = δt

cosh2(ωiu)
, ωi = ωε

2
= 31/221/12ε1/4

4κ1/3

( |A|S
2h̄l

)
.

(37)

It corresponds to the instanton (bounce trajectory in the
imaginary time) that goes from λ1 at u = −∞ to λt at u = 0
and back to λt at u = +∞, see Fig. 4. Note that dλ/du is zero
at u = ±∞ and on approaching λt at u = 0. According to the
equations of motion, γ = π/2 at u = ±∞ and u = 0, and it
is complex along the bounce trajectory under the barrier.

The tunneling rate is

� = AeB, (38)

where A ≈ ωε/(2π ) is the attempt frequency given by
Eq. (30) and B is the action integrated over the bounce,
B = (i/h̄)

∫
dtL, which gives the WKB exponent for the

tunneling [7,20]. In the absence of dissipation, the equations of
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motion conserve energy. Adding a constant, E(π/2, λ1), to the
Lagrangian to have E = 0 at the energy minimum and along
the bounce trajectory, one has

B = i

h̄

∫
dt (4πh̄Slγ̇ λ2). (39)

For the instanton at ε � 1, one has γ = π/2 + δγ with
δγ satisfying the first of equations (26), so that dδγ /dū =
−i(d2δλ/dū2). This gives

B = 4πSli

∫ +∞

−∞
dū

dγ

dū
λ2 = 4πSl

∫ +∞

−∞
dū

d2λ

dū2
λ2, (40)

where for the moment we treated l as a constant. Integrating
by parts, and using the condition dλ/du = 0 at the boundaries
of the integration, one obtains for the integral in Eq. (40),∫ +∞

−∞
dū

d2λ

dū2
λ2 = −2

∫ +∞

−∞
dū

(
dλ

dū

)2

λ

= −4λc

∫ |δt |

0
d|δλ|

(
d|δλ|
dū

)

= −4λc

∫ |δt |

0
d|δλ| 1

(4κ )1/2
[|δt |(|δλ|)2 − (|δλ|)3]1/2

= −21/1231/248

5
κ2/3ε5/4. (41)

This gives

B = −21/12192π

31/65
Sl

(
J

A

)2/3

ε5/4 ≈ −106 Sl

(
J

A

)2/3

ε5/4.

(42)

Independent check of the scaling of the WKB expo-
nent with J/A and ε comes from noticing that for smooth
potentials, B scales as −U/(h̄ωm), where ωm is a frequency
of small oscillations of the skyrmion size at the bottom of
the inverted potential [20]. A simple calculation shows that
in our problem ωm = ωε . This frequency plays an important
role in the tunneling problem [37]; the crossover from thermal
overbarrier collapse of the skyrmion to thermally assisted
quantum tunneling occurs at a temperature Tc = h̄ωm. Below
that temperature, the skyrmion tunnels under the barrier from
the energy levels E < U to which it is thermally activated.

To further check the above analytical results obtained by ap-
proximating the logarithm in the Zeeman energy by a constant,
we also solved the problem without making such an assumption
by considering the Lagrangian L = 4πSh̄γ̇ λ̄2l(H, λ̄) − E

with

E = 4πSHλ̄2l(H, λ̄) − 2πJS2

3λ̄2
− 4πAS2λ̄ sin γ (43)

and finding the WKB exponent numerically with l(H, λ̄) given
by Eq. (A3).

The dynamics of the skyrmion near the collapse field, ε =
1 − H/Hc � 1, corresponds toγ = π/2 + δγ with |δγ | � 1.
This gives sin γ = 1 − δγ 2/2,

E = 4πSHλ̄2l(H, λ̄) − 2πJS2

3λ̄2
− 4πAS2λ̄ + 2πAS2λ̄δγ 2.

(44)

From the second of equations (23), one obtains

δγ = − h̄

ASλ̄

d

dt
[λ̄2l(H, λ̄)]. (45)

Substitution into the energy gives

E = 4πSHλ̄2l(H, λ̄) − 2πJS2

3λ̄2

− 4πAS2λ̄ + 2πh̄2

Aλ̄

[
d(λ̄2l)

dt

]2

, (46)

where the last term can be interpreted as the kinetic energy of
the skyrmion.

Parameters λ1, λm, and λt should now be determined
numerically by finding the minimum λ1, the maximum λm,
and the tunneling point λt of the stationary energy in Fig. 1
given by

E0 = 4πSHλ̄2l(H, λ̄) − 2πJS2

3λ̄2
− 4πAS2λ̄. (47)

The critical parameters Hc and λc should also be determined
numerically from the condition that first and the second
derivatives of E0 are zero. For the tunneling problem, one
should consider E0 at H = Hc(1 − ε), with small ε.

Along the instanton trajectory, E = E(λ1). This gives
(u = it)

d(λ̄2l)

du
= − 1

h̄

(
Aλ̄

2π

)1/2√
E0(λ) − E0(λ1) (48)

with the minus sign determined by the fact that λ2 decreases
when going from λ1 to λt . For the WKB exponent, one has

B = 4πSi

∫ +∞

−∞
dt

dδγ

dt
λ̄2l = −4πSi

∫ +∞

−∞
dtδγ

d(λ̄2l)

dt

= −4πSi

∫
d(λ̄2l)δγ = 4πh̄i

Aλ̄c

∫
d(λ̄2l)

d(λ̄2l)

dt

= 2

(
2π

Aλ̄c

)1/2 ∫
d(λ̄2l)

√
E0(λ̄) − E0(λ̄1)

= −4

(
2π

Aλ̄c

)1/2 ∫ λ̄1

λ̄t

dλ̄

[
d(λ̄2l)

dλ̄

]√
E0(λ̄) − E0(λ̄1)

= −4

(
2π

Aλ̄c

)1/2[
d(λ̄2l)

dλ̄

]
λ̄=λc

∫ λ̄1

λ̄t

dλ̄

√
E0(λ̄) − E0(λ̄1).

(49)

The last step is taken by keeping in mind that λ is close to λc

at ε � 1.
The limits of integration in Eq. (49), as well as the integral,

must be computed numerically. However, the scaling of B

on J/A and ε can be seen right away by noticing that the
integral (49) is of order |λ̄1 − λ̄t |

√
U . This immediately gives

B ∝ Slc(J/A)

(
J

A

)2/3

ε5/4 (50)

with lc(J/A) being the value of the log at the critical field, thus
confirming the result of Eq. (42). The numerically obtained
dependence of the WKB exponent on parameters is shown in
Fig. 5.
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FIG. 5. Numerically computed dependence of the WKB exponent
on J/A (top) and ε (bottom). Its scaling with parameters confirms the
scaling obtained by other methods.

The agreement of all approaches with each other provides
good confidence in the results.

VI. DISCUSSION

In the classical field theory, skyrmions are topologically
protected. The violation of scale invariance by the atomic
lattice makes small classical skyrmions collapse within a
microscopic time. The combined effect of the DMI and the
external magnetic field can stabilize skyrmions above a critical
size λc. The quantum contraction of the skyrmion studied
above conserves the topological charge. Consequently, the
skyrmion that emerges on the other side of the energy barrier
with λt < λc is the same BP skyrmion but of a smaller size and
smaller magnetic moment. The change in the magnetic moment
of the skyrmion that accompanies its quantum contraction
is possible solely due to the DMI because it is the only
interaction present in the problem that violates commutation
of the Hamiltonian with Sz. This explains the presence of
the power of A in the denominator of the expression for
the WKB exponent, Eqs. (42) and (50). At A → 0, one has
B → −∞, resulting in the exponential smallness of �, that is,
the quantum tunneling of a skyrmion in our model is driven
by the DMI. After the skyrmion contracts below λc due to
quantum tunneling, it continues to contract towards λ = 0 in
real time, radiating its energy into magnons [25]. At the last

stage of the collapse, when the skyrmion reaches the atomic
size, it disappears with its topological charge jumping from
Q = 1 to Q = 0.

Not very close to Hc, the probability of quantum under-
barrier contraction of the skyrmion, followed by its collapse,
would generally be exponentially small owing to the large
numerical factor in Eq. (42). It reflects the fact that even
the smallest skyrmion would be rather macroscopic, that
is, the action associated with it is large compared to h̄.
Indeed, the magnetic moment of a skyrmion of size λ ≈ λc

would typically be in excess of 100μB . Quantum dynamics of
systems comprised of a large number of degrees of freedom,
such as, e.g., nano-SQUIDs and magnetic nanoparticles, have
been observed in the past. Comparison with theory for such
systems has been often hampered by the difficulty of preparing
identical objects that exhibit tunneling. For example, quantum
depinning of flux lines or 2D vortices in superconductors and
of domain walls in ferromagnets depends on the local pinning
potential that usually is widely distributed in magnitude. The
studies of spin tunneling in single-domain magnetic particles
always faced the inability of experimentalists to prepare an
array of identical nanoparticles. It received serious attention
only after the discovery of resonant spin tunneling in magnetic
molecules. Similar studies in superconductors are even more
difficult as they require measurements of individual nano-
SQUIDs.

The advantage of small skyrmions for the studies of
macroscopic quantum tunneling is that, similar to crystals of
magnetic molecules, they can form an array of identical small
magnetic objects. For, e.g., J ∼ 1000 K and A/J ∼ 0.02,
the critical collapse field Hc should be around one tesla
while the critical size of the skyrmion λc should be on the
order of four lattice spacings. As has been discussed above,
the frequency of small oscillations of the skyrmion near the
energy minimum should be generally in the ESR range and,
therefore, easily observable. This frequency also determines
the pre-exponential factor in the expression for the tunneling
rate given by Eq. (38) as well as the crossover to thermally
assisted quantum tunneling as the temperature is lowered.

In this paper, we neglected the dipole-dipole interaction
(DDI) between the spins, as has been done for other tunneling
problems in magnets. It is justified by the weakness of the DDI
compared to all other interactions in the range of parameters
used for the smallest skyrmions we are interested in. Incorpo-
ration of the DDI into our quantum tunneling model presents
a challenge that we do not know how to address at this time.
Another effect neglected by us is the effect of dissipation of
the skyrmion motion on the probability of quantum collapse.
In magnetic systems, the effect of dissipation on the tunneling
of the magnetic moment is typically weak. It can be studied
along the lines of Caldeira-Leggett aproach [20]. The mea-
sure of the dissipation in magnetic materials is provided by
the Landau-Lifshitz-Gilbert parameter, which determines the
FMR width and is usually small. For that reason, similar to the
case of molecular magnets, it is unlikely that dissipation can
significantly change our conclusions.

To observe quantum tunneling on a time scale of a typical
experiment, the WKB exponent should be in the ballpark
of 25–30. This can be achieved by applying the field close
to Hc as was done in experiments with individual magnetic
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particles in the past. According to Eq. (42) for A/J ∼ 0.02, it
requires ε ∼ 0.02, that is, the field tuned within 100G from the
critical field, which is easily achievable. The onset of thermally
assisted quantum tunneling must occur at Tc = h̄ωm, which
for the above parameters is in the ballpark of 1 K. The above
numbers are given for a 2D monolayer of spins. Since the
action is proportional to the number of layers, N , the WKB
exponent in a multilayered film would change as B → NB.
Correspondingly, a smaller ε, that is, a field closer to the
collapse field will be required to observe quantum collapse
of a skyrmion in thicker films. However, the temperature of
the crossover from thermal overbarrier collapse to thermally
assisted quantum collapse will remain the same.

We conclude with a notion that the calculations presented
here can be easily adjusted to other models and concrete
materials chosen for experimental studies. Observation of
the quantum collapse of a skyrmion, while challenging since
it requires low temperatures and fine tuning of the field,
appears to be within experimental reach and may even be
less demanding than other MQT experiments performed to
date. Here, we have not addressed the problem of quantum
creation of skyrmions or skyrmion-antiskyrmion pairs. The
corresponding exchange barrier could be reduced by, e.g., a
magnetic tip approaching the film. The formalism developed in
this paper can be extended to this and other problems involving
quantum tunneling and creation of skyrmions.
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APPENDIX A: SKYRMION ENERGY ON A SPIN LATTICE

Numerical minimization of the skyrmion energy was per-
formed on a 500 × 500 lattice using the method of Ref. [38]
that consists in successive rotations of spins at lattice sites
i in the direction of the effective field Heff,i = −δH/δSi

with the probability α and overrelaxation (i.e., flipping spins
around Heff,i) with the probability 1 − α. The first operaton
reduces the energy of the system while the second serves to
better explore the phase space of the system via conservative
pseudodynamics, with α playing the role of the relaxation
constant. The fastest energy minimization towards the deepest
minimum is achieved for α � 1. We use α = 0.01.

The skyrmion size λ can be extracted from the numerical
data as [25]

λ2
m = m − 1

2mπ
a2

∑
i

(siz + 1)m, (A1)

where it is assumed that siz = −1 in the background and
siz = 1 at the center of the skyrmion. For the BP skyrmions
with sz given by Eq. (4), one has λm = λ for any m. In
this paper, we used λeff = λ4 to represent the numerically
computed skyrmion size.

The numerical solution allows one to compute different
contributions to the equilibrium skyrmion energy, as well as
λeff , for different values of the applied field H . Also, one
can infer a more general information by plotting the energy

FIG. 6. Numerically computed exchange, DMI, and Zeeman
energies of the Q = 1 skyrmion on a 500 × 500 lattice with S = 1.
Good agreement with analytical theory is seen, especially for smaller
skyrmions that are of interest for the tunneling problem.

contributions in the parametric form vs λeff . The Zeeman en-
ergy versus λeff is defined as EZ = −H�Mskyrmion(λeff ) with
the skyrmion magnetic moment �Mskyrmion = ∑

i (siz + 1),
first computed numerically as a function of H and then
represented parametrically via λeff . The results are represented
in Fig. 6.

One can see that for λeff below ten lattice spacings, the
exchange energy of the skyrmion is close to the ground-state
energy, 4πJS2, of the BP skyrmion. This is an indication that
such small skyrmions are close to the BP shape on the scale
r � λ that dominates the exchange and the DMI energies. The
latter is due to the fact that these energies contain spatial
derivatives of the spin field. Any deformation of the BP
shape on the scale r � λ would make the exchange energy
higher. According to Fig. 6, as λeff increases, the exchange
energy slowly departs from 4πJ , indicating more significant
deformations of the skyrmion shape. Since the quantum col-
lapse problem is relevant for skyrmions of size well below 10a,
the BP shape must be a good approximation for the exchange
and DMI energies of such skyrmions.

For the Zeeman energy, the situation is somewhat different.
Since it does not contain the derivatives of the spin field, it is
sensitive to the shape of the skyrmion tail at r � λ for which
Zeeman interaction becomes the dominant one. The scaling of
the numerically computed Zeeman energy with the skyrmion
size, see Fig. 6, shows the λ2

eff trend with some logarithmic
contribution. Proportionality to λ2

eff is related to the fact that
the magnetic moment of the skyrmion is roughly proportional
to the area inside which the spin field undergoes a significant
rotation. The logarithm comes from the magnetic moment of
the tale accumulated over a large area. Substitution of Eq. (4)
into the last term of Eq. (2) gives for the Zeeman energy of the
skyrmion EZ = 4πHS(λ/a)2 ln(rmax/λ), where rmax � λ is
the upper limit of integration on r determined by the size of
the system, L, or the cutoff due to the magnetic field, δH =
a
√

JS/H , whichever is smaller. In practice, one always has
δH � L.
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For a skyrmion of size λ � δH , a more rigorous approach
can be developed if one explicitly takes into account the
screening of the skyrmion profile by the magnetic field at r �
λ, where the problem can be linearized near sz = −1. Splicing
the asymptotic solution for λ � r with the BP solution, Eq. (4),
for r � δH and computing the integral over r yields

EZ = 4πHS

(
λ

a

)2(
ln

δH

λ
− γ + ln 2 − 1

2

)

� 4πHS

(
λ

a

)2

ln
0.681δH

λ
, (A2)

where γ = 0.5772 is the Euler constant. This formula requires
a strong inequality λ � δH that is difficult to fulfill in practice.
To extend the applicability range, one can add a constant to

the argument of the logarithm so that the resulting formula fits
most satisfactorily the Zeeman energy computed numerically
on the lattice, see Fig. 6. The best fit is provided by

EZ = 4πHS

(
λ

a

)2

ln

(
1.5 + 0.68

δH

λ

)
. (A3)

In the continuous model, we used for numerical work
the value of log given by the above formula, l =
ln (1.5 + 0.68δH /λ). At the critical (collapse) field, using
Eq. (6), one obtains l = ln [1.5 + (1.06/l)(J/A)1/3]. One can
fit Hc of Eq. (6) to the numerical data taking into account the
dependence of the logarithm on A and considering 1.5 and
1.06/l as fitting parameters. The best values of the latter used
in Fig. 3 are 1.4 and 0.14.
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