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Synchronized spin-photon coupling in a microwave cavity
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We study spin-photon coupling in a cavity in the presence of a relative phase shift between two ferromagnetic
resonance driving forces. We show that the anticrossing gap can be manipulated by varying the relative phase.
Increasing the phase difference leads to narrowing the anticrossing gap between two hybridized modes and
eventually phase-locked coupling when the relative phase equals π . The ferromagnetic resonance (FMR) and
cavity modes become phase locked and oscillate at the same frequency near the resonance frequency. The
characteristic FMR linewidth drop and transmission amplitude enhancement are demonstrated. The phase-
resolved spin-photon coupling can be used both for phase imaging and for controlling coupling parameters.
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I. INTRODUCTION

Strong interaction of light with matter in condensed-matter
systems paves a way for exploring a wide range of different
physical phenomena, for example, observation and manip-
ulation of matter by light on an atomic scale as well as
manipulation of the polariton [1] for quantum information
technology. Recently, strong coupling between the light and
the spin ensembles [2,3] has attracted great interest because
of its experimental realization by locating magnetic materials
with extremely low magnetic dissipation into high quality
microwave cavities [4–12]. Coherent couplings between a
single spin and the microwave cavity photons [13], magnons
and a superconducting qubit [14], as well as cavity photons and
magnons [9–12] have been reported. Indirect coupling between
spins, mediated by a cavity, have also been achieved [15–17].
In addition to widely used microwave transmission measure-
ments of magnon-photon coupling at room temperature, the
electrical detection method has been recently demonstrated by
Bai et al. [18]. Theoretically, the spin-photon coupling has
been formulated by means of scattering theory [19] as well
as the simple semiclassical model [18]. The relevance of the
classical picture to the quantum-mechanical picture has been
discussed elsewhere [20]. It was demonstrated that, although
the coupling does not affect the intrinsic Gilbert damping, the
FMR linewidth (�H ) always increases [18] when the FMR
frequency approaches the resonance.

To overcome the drawback of the FMR linewidth broad-
ening due to coupling-induced extrinsic damping [18] in the
strong-coupling regime we consider spin-photon coupling
when, in addition to the magnetic component of the microwave
field in the cavity, an additional local FMR driving force exists
with a relative phase shift (�). In Fig. 1 we show the schematic
of the system under study. In this setup the microwave signal
from a broadband microwave generator G is directed via a
coaxial cable to a rf power divider D [21,22], which coherently
splits the microwave into two beams. One of them then travels
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through a microwave phase shifter [21,22] � in path A to an
integrated [23] strip line on an insulator nonmagnetic layer.
A ferromagnetic insulator lies on top of the strip line. The
magnetic field, created by the microwave current in path A acts
locally on the ferromagnetic insulator magnetization [24,25].
The other beam remains undisturbed and travels in path B

through a coaxial cable to a microwave cavity resonator (the
blue box in Fig. 1). Thus, the magnetization effectively feels
two time-dependent magnetic fields, a local magnetic field hA

and the magnetic component of the microwave inside the cavity
hB. We assume that the magnitude hA = δhB, where δ can be
controlled by the divider. We show that for the coupling the
relative phase (�) between the two fields plays an essential
role in the FMR line shape. The spectrum of hybridized modes
(polaritons) depends on the relative phase �. Particularly, the
gap between two polariton modes can be tuned by �. More in-
terestingly, the phase-locked coupling regime can be achieved
by tuning the relative phase toπ . As consequences of the phase-
locked coupling, the FMR linewidth becomes very narrow, and
the output microwave power is remarkably enhanced.

II. THEORETICAL FORMALISM

The simple semiclassical picture describing spin-phonon
interaction in the cavity is based on the combination of a mi-
crowave LCR and Landau-Lifshitz-Gilbert (LLG) equations
[18,26]. The coupling of the magnetization dynamics with a
microwave is established via two classical coupling mecha-
nisms. One is known as the Faraday induction [27] which
induces a voltage in the LCR circuit due to the precessing
magnetization. The other is governed by Ampere’s law which
supplies magnetic fields acting on the magnetization.

We consider the ferromagnetic insulator lying on the x̂-ẑ
plane with an in-plane magnetic easy axis pointing in the
ẑ direction due to crystal anisotropy, dipolar and external
magnetic fields. The LCR circuit in the picture illustrates the
theoretical model of the electromagnetic field in the cavity. The
LCR circuit equation of two crossed coils parallel to the x̂ and
ŷ directions in which the microwave current jB(t) is driven by
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FIG. 1. Schematic of the system. The microwave signal is gener-
ated in “G”. The generated signal is divided into “A” and “B” in rf
power divider “D”. The signal A travels through phase shifter “�”
to a shorted strip line. The other signal travels directly to the cavity
through path B. The microwave in the cavity is modeled by the LCR

circuit, and YIG represents yttrium iron garnet, a typical magnetic
insulator.

the rf voltage is

Lj̇B + RjB + (1/C)
∫

jBdt = VF , (1)

where L, C, and R are the inductor, the capacitor, and the
resistor, respectively. The driving voltage VF is induced by
precessing magnetization according to Faraday induction,

V F
x (t) = KcLṁy, V F

y (t) = −KcLṁx. (2)

The magnetization precession in the magnetic sample is gov-
erned by the LLG equation [28],

ṁ = −m × γ H + αm × ṁ, (3)

where m = M/Ms is the magnetization direction in ferromag-
netic insulator with Ms being the saturation magnetization. α is
the intrinsic Gilbert damping parameter. H = H0 + hA + hB

is the effective magnetic field with H0 = H0ẑ being the sum
of external magnetic, anisotropy, and dipolar fields aligned
in the ẑ direction. hB = he−iωt and hA = δhBe−i� are the
magnetic fields from paths B and A, respectively. � is the
phase shift between them, and δ is the ratio between their
amplitudes, which can be controlled in experiment [21,22].
Using the linearized form of the magnetization direction m �
ẑ + m⊥e−iωt the LLG equation becomes

m+(ω − ωr + iαω) + (1 + δei�)ωmh+ = 0, (4)

where m+ = mx + imy, h+ = hx + ihy, ωm = γMs , and
ωr � γH0 with γ being the gyromagnetic ratio. The linearized
equation of motion, i.e., Eq. (1) gives the other constraint and
leads to

	

(
m+
h+

)
= 0,

with

	 ≡
(

ω − ωr + iαω ωm(1 + δei�)

ω2K2 ω2 + 2iβωωc − ω2
c

)
, (5)

FIG. 2. The dispersion relation of polariton modes, i.e., the FMR
mode coupled to the microwave mode for different values of δ and
relative phase �. The inset shows the gap between two polariton
modes ωg as a function of the phase shift at ωr = ωc.

where Ampere’s law,

hB
x = KmjB

y , hB
y = −KmjB

x (6)

has been applied. Here jB
x,y represent the current components

in the circuit. Parameters Kc and Km are coupling parameters.
K � √

KcKm, the cavity frequency is ωc = 1/
√

LC, and β =
R/(2Lωc) is the cavity mode damping. By solving Eq. (5)
(det 	 = 0) at a given magnetic field, we obtain the complex
eigenfrequencies of ω. The two solutions of ω with positive real
components correspond to the determine resonant frequencies,
whereas their imaginary parts describe the damping of the
corresponding modes.

III. RESULTS AND DISCUSSION

In Fig. 2 we plot the dispersion spectrum Re[ω(ωr )] (nor-
malized by ωc) for different values of phase-shift �. The dotted
lines correspond to the cavity mode and Kittel’s mode in the ab-
sence of spin-photon coupling. We set equal damping for FMR
and LCR as α = β = 0.002, ωm = 0.075ωc, and the coupling
parameter is K = 0.01 [29] with ωc/2π = 10.5 GHz.

We now discuss the behaviors resulting from the different
values of the free parameters δ and �. First, the blue dashed-
dotted lines in Fig. 2 are the spectra (normalized by ωc) in
the case when no second path exists. This corresponds to the
usual spin-photon coupling with the characteristic anticrossing
of two modes [18]. Here, the gap between two modes at
FMR resonance (ωr = ωc) is proportional to the coupling
constant K and in the strong-coupling regime (K > α,β) can
be approximated to be ωg1 ≡ ωg(δ = 0) = K

√
2ωmωc [29].

Besides this widely studied regime, we adopt two sets of
parameters: (i) � = 0, δ = 2 and (ii) � = π, δ = 2.

In Fig. 2 the red dashed curve shows the spectrum in case
(i), and the solid black curve is for case (ii). In the case
where no phase shift is introduced, i.e., case (i), the coupling
increases. Moreover, as shown in the inset of Fig. 2, tuning
the relative phase (with fixed δ) changes the size of the gap
in the range of the coupling bandwidth [the range of FMR
frequencies, projected by the two vertical dotted lines with
ωg0 ≡ ωg(δ = 2,� = 0) = K

√
6ωmωc where the polariton
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FIG. 3. The dashed lines stand for the dispersion relation of the coupled modes. The colored area shows the transmission amplitude defined
in Eq. (7) for (a) δ = 0, (b) δ = 2, � = 0, and (c) δ = 2, � = π .

modes occur]. The relative phase shift causes different features
in the spin-photon coupling spectrum. In the spectrum, for � =
0 the frequency of the FMR mode decreases with increasing
frequency of the cavity mode at ωr < ωc and increases at
ωr > ωc. Such a behavior reverses at � = π : Due to the
phase shift, the FMR mode frequency increases at ωr < ωc

and decreases at ωr > ωc. As a consequence, a gap is opened
due to the coupling in the � = 0 case, and for 0 � � � π

it decreases with increasing �. The frequencies of the two
modes get “pulled” [30] toward each other (see the inset of
Fig. 2) and eventually lead to synchronization at � = π where
the two modes start to share the same frequency (ωc + ωr )/2.
Note that, although the studies of synchronization usually refer
to the nonlinear system [30,31], the synchronization has also
been demonstrated in the purely linear systems [32–36]. Our
study here thus provides a different version of synchronization
in linear system. The dependence of the gap on � at ωr = ωc

can be approximately expressed by ωg(�) = ωg0| cos(�/2)|.
The physical picture of phase-locked coupling in the present

system is the following: A localized magnetic moment “feels”
the effective magnetic field from two microwave sources and
changes its direction which generates a voltage in the LCR

circuit due to the Faraday induction. This voltage causes a
current in the circuit, which, in turn, produces a magnetic field
due to Ampere’s law and exerts a torque on the magnetization.
When there is no phase shift between hA and hB (� = 0),
energy exchange takes place between microwaves in the cavity
and oscillating magnetization where one drives the other. In the
case of two driving forces with opposite phases (� = π ), the
energy loss due to damping of the magnetization precession
is compensated by the torque coming from hA. As a result,
instead of performing as a dissipation channel in the usual
case [18], the ferromagnetic insulator under � = π absorbs
energy from the hA field and behaves as a pumping source of
the hB field, leading to an enhancement of the hB field.

To study the signal power enhancement, we calculate the
transmission amplitude using input-output formalism from
Eq. (5) [18,24,37],

	

(
m+
h+

)
=

(
0

ω2h+
0

)
,

and

S21 = �h+/h+
0 = �

ω2(ω + iαω − ωr )

det 	
, (7)

where h+
0 is the input magnetic field driving the system and

� = 2β characterizes the cavity/cable impedance mismatch

[18]. In Fig. 3 we plot the spectrum of the coupled system where
the dashed line is Re[ω(ωr)] and the colored area represents the
transmission amplitude. In Fig. 3(a) we show the transmission
amplitude when δ = 0 where the usual anticrossing features
in the strong-coupling regime are observed. Figure 3(b) shows
the results with increased coupling (δ = 2) but without phase
shift (� = 0). The phase-locking case is shown in Fig. 3(c)
where the transmission amplitude—proportional to transmis-
sion power—is lower at FMR frequencies far from resonance
and increases dramatically when ωr approaches ωc. Figure 4
shows the transmission amplitude evolution as a function of
ω at different fixed values of FMR frequency ωr . At FMR
frequencies outside the synchronization regime, i.e., |ωr −
ωc| � ωg0, the transmission amplitude is almost not affected
by the FMR, and the transmission is determined solely by the
cavity mode and is equal to that of the empty cavity. Tuning
the FMR frequency towards the resonance of the cavity mode
|ωr − ωc| � ωg0, the transmission amplitude increases and
reaches its maximum (black solid curve in Fig. 4) at resonance
ωr = ωc.

To analyze the second characteristic feature of the phase-
locked coupling, namely, the FMR linewidth drop, we solve
Eq. (5) to obtain ωr as a function of ω. In contrast to the
solution for ω, here we have only one solution. The real part
of ωr (ω) gives the FMR spectrum whereas the imaginary part
gives the linewidth �H = Im[ωr (ω)]/Re[ωr (ω)]. It has been
demonstrated, that in the coupled cavity FMR system, the FMR
linewidth is modified by the coupling [18]. In Fig. 5 we plot the
normalized FMR linewidth as a function of ω. The dotted curve
shows that in the absence of spin-photon coupling the linewidth
is constant and determined by the damping constant α. In the

FIG. 4. The transmission amplitude in the phase-locked regime
as a function of ω at different values of the FMR frequency.
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FIG. 5. Normalized FMR linewidth �H as a function of ω.

presence of spin-photon coupling but in the absence of beam A

(δ = 0) the normalized linewidth is broadened by the coupling
around the resonance (blue dot-dashed line in Fig. 5) [18], and
the broadening is even larger for (i) (� = 0, δ = 2), shown by
the red dashed curve. In the case when a relative phase-shift
� = π is introduced, the linewidth decreases (black solid curve
in Fig. 5) near the resonance frequency as expected for the
phase-locked coupling.

In contrast to δ = 0 discussed in Ref. [18] where the FMR
linewidth always increases as the FMR approaches the resonant
coupling condition, no matter whether α < β or α > β, here
both transmission coefficient and FMR linewidth depend on the
interplay between dampings of the two oscillators and coupling
strength. At the resonance (ω = ωc), the FMR linewidth can
be expressed as

�H = 2αβ + K2(ωm/ωc)[δ cos(�) + 1]

2β − δK2(ωm/ωc) sin(�)
, (8)

which reduces to

�H = α + (1 − δ)
K2(ωm/ωc)

2β
, (9)

at � = π . It turns out that for δ < 1 the FMR linewidth
increases in the presence of spin-photon coupling due to
the coupling-induced damping enhancement [18]. However,
for δ > 1, the second driving force exerts an antidamp-
ing torque, which compensates the intrinsic damping and
coupling-induced FMR linewidth broadening. For a very small
damping and strong coupling, instability is reached when the
phase-shifted driving force is very strong and the effective
linewidth becomes negative. In this case, the magnetization
dynamics may become very complicated and possibly leads
to magnetization reversal. A systematic study of complicated
dynamic phases in this regime would be useful but beyond
the scope of the linearized equations used in this paper. One
can find the condition of stability in such a way that the FMR

linewidth is positive, that is, the phase-shifted driving force
cannot exceed the critical strength to fully compensate the
intrinsic and coupling-induced dampings. This condition leads
to (for δ = 2) αβ = K2ωm/2ωc. Thus, large cavity damping
can be compensated by low Gilbert damping. Although the cal-
culations here are performed with equal damping parameters,
the synchronization behavior is the same for other damping
parameters satisfying the �H > 0 condition, where �H is
defined in Eq. (8) at resonant FMR frequency.

IV. SUMMARY

To summarize, we study the spin-photon coupling in a
cavity in the presence of two FMR driving forces with a relative
phase shift between them. We show that the anticrossing
gap between the two cavity-FMR hybridized modes can be
controlled by the phase shift. Increasing the phase shift leads
to a reduction of the gap and the phase-locked spectrum when
the relative phase equals π . In this regime the two modes
start to oscillate at the same frequency in the |ωr − ωc| � ωg,0

range. The FMR linewidth drop and power enhancement are
demonstrated.

A technical challenge for the experimental realization of
the proposed synchronized coupling is to isolate the local field
hA from the cavity so that it will not introduce any unexpected
influence on the cavity. This might be possible if the magnetic
insulator film is capped by microwave absorbing and metallic
shielding layers [38]. We note that in the proposed setup the
cavity quality could be severely reduced when it is loaded by
a strip line. However, the change in cavity damping due to
the reduced quality factor is not essential, and the predicted
phenomenon will survive as long as �H > 0 is satisfied.
Another option is to use an open cavity [9] where one path
travels through a phase shifter to a waveguide attached to a
ferromagnetic insulator film [39], whereas the other goes to
a horn antenna, exposed to the magnetic insulator. In that
case the effect of the magnetic field from the horn antenna
on the waveguide mode can be shielded by the covering part
(enclosing the waveguide overlapping area on the opposite side
of the magnetic insulator).
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