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Quenches near Ising quantum criticality as a challenge for artificial neural networks
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The near-critical unitary dynamics of quantum Ising spin chains in transversal and longitudinal magnetic fields
is studied using an artificial neural network representation of the wave function. A focus is set on strong spatial
correlations which build up in the system following a quench into the vicinity of the quantum critical point. We
compare correlations obtained by optimizing the parameters of the network states with analytical solutions in
integrable cases and time-dependent density matrix renormalization group (tDMRG) simulations, as well as with
predictions from a semiclassical discrete truncated Wigner analysis. While the semiclassical approach yields quan-
titatively correct results only at very short times and near zero transverse fields, the neural-network representation
is applicable in a much wider regime. However, for quenches close to the quantum critical point the representation
becomes inefficient. For nonintegrable models we show that in regimes where tDMRG is limited to short times
due to extensive entanglement growth, also the neural-network parametrization converges only at short times.
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I. INTRODUCTION

Simulating the dynamics of interacting quantum many-
body systems out of equilibrium is, in general, a hard problem
for classical computers due to the exponential scaling of the
Hilbert space dimension with the number of particles. Only
in a limited number of cases can the quantum dynamics
be solved analytically. Such exact solutions exist mostly in
one spatial dimension, such as for the transverse-field Ising
model (TFIM) [1–3]. For one-dimensional (1D) systems, also
matrix-product-state (MPS) representations of quantum states
have proven successful, including the time-dependent density
matrix renormalization group (tDMRG) and related methods
[4–9]. Other widely developed methods include nonequilib-
rium dynamical mean field theory (DMFT) [10] and the
time-dependent variational Monte Carlo method [11–13]. The
tDMRG approach makes use of the fact that, for short-range
interactions, an initially unentangled state develops entangle-
ment only gradually and can thus be represented in an efficient
way. However, for long times or spatial dimensions larger
than one (d > 1), efficient and widely applicable numerical
methods for calculating the dynamics are essentially absent,
in particular in cases where entanglement entropies scale with
the volume of the system [5,14].

A key to devising such methods is to know how to efficiently
represent the quantum states under consideration. Recently,
it has been proposed to represent quantum states by means
of artificial neural networks (ANNs) [15–17]. This idea was
further studied in [18–25], and relations to tensor network
states have been pointed out [26–29]. In its most basic
form, the method is built on a restricted-Boltzmann-machine-
type network structure with complex weights and biases to
parametrize many-body quantum states. It has been proposed
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to efficiently describe ground states as well as quantum many-
body dynamics also in d > 1 dimensions with an efficiency
exceeding that of state-of-the-art MPS techniques [15].

Here we focus on the dynamics after quenches in the vicinity
of the quantum critical point of the 1D quantum Ising chain,
to study the capabilities of the ANN method in describing the
development of strongly correlated states. Our results reveal
that the method in this particular situation is subject to similar
limitations as the tDMRG approach, requiring an effort which
grows with the dimension of the Hilbert space. Nevertheless,
the finding that the ANN approach correctly captures the short-
time dynamics beyond what can be reached by perturbative
expansions or with semiclassical methods fosters the hope that
the method will provide predictions in higher dimensions not
accessible to tDMRG.

Comparing, furthermore, the ANN approach with results
obtained within a semiclassical discrete truncated Wigner
approximation (dTWA) we find that the fully quantum ANN
description needs to reach high precision to perform better
than the classical statistical computation. In order to assess
the limitations and capabilities of the approximate numerical
techniques, we make use of analytical solutions for the TFIM.
We also examine situations with an additional longitudinal
magnetic field, in which exact diagonalization and tDMRG
provide the benchmark.

The TFIM features a quantum phase transition where
volume-law growth of entanglement is expected at long times,
making it inaccessible to MPS-based methods. We find that
while the semiclassical method fails to accurately capture
the unitary dynamics except at very short times and near
zero transverse field, the ANN approach reproduces the exact
results for a considerably wider range of parameters and
evolution times. However, when the system is quenched into
the vicinity of the quantum critical point where strong long-
range correlations and entanglement build up, a large number
of network parameters is needed to obtain converged results,
which renders the approach inefficient, in contrast to what
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FIG. 1. (a) Setup of the ANN consisting of one visible and
one hidden layer connected via weights Wi,j between each pair of
variables from different layers and bias ai (visible) or bj (hidden) for
each variable. (b) Quench protocol in the TFIM for sudden quenches
from the deep paramagnetic regime (large hx,i) to different distances
from the QCP within the paramagnetic and into the ferromagnetic
phase, where the ground-state configurations are depicted by the spins
at the top.

has been proposed to be the case for ANN representations
of ground states even with strong entanglement [18]. Also,
although yielding qualitatively correct results at short times,
the numerical precision achievable with the ANN appears to
fall behind what is possible with tDMRG using comparable
computational resources.

II. MODEL AND NUMERICAL METHODS

A. 1D Ising model in longitudinal and transverse fields

We consider the dynamics of a periodic chain of N spins
governed by the quantum Ising model in a longitudinal field
hz and transverse field hx , with Hamiltonian

H = −
N∑

i=1

σ z
i σ z

(i+1)modN − hx

N∑
i=1

σx
i − hz

N∑
i=1

σ z
i , (1)

defined in terms of the Pauli matrices σα
i . For hz = 0 this

model reduces to the transverse-field Ising model (TFIM). The
TFIM is integrable as it can be mapped to free fermions and
thus allows for comparisons with exact analytical solutions for
both ground states and unitary time evolution after a parameter
quench [1–3,30]. The spin system undergoes a quantum phase
transition at hx,c = ±1, from a ferromagnetic (0 < |hx | < 1)
to a paramagnetic (|hx | > 1) phase, as depicted in Fig. 1(b).
For hz �= 0 the model is no longer integrable and does not
show a quantum phase transition as the Z2 symmetry is broken
explicitly [31]. Some more properties of the quantum Ising
model are reviewed in Appendices A and B.

B. Artificial-neural-network approach

The quantum state of N Ising spins can be expressed
in terms of the 2N complex coefficients cv , specifying the
amplitudes with respect to the basis states |v〉 = |v1, . . . , vN 〉
(vi ∈ {−1,+1}), i.e., |�〉 = ∑

v cv|v〉. In Ref. [15], the repre-
sentation

cv =
∑
{h}

e
∑

i,j viWi,j hj +
∑

i aivi+
∑

j bj hj (2)

of these coefficients in terms of a set of complex parameters
Wi,j , ai , bj , with i = 1, . . . , N , j = 1, . . . ,M , has been
proposed, which is reminiscent of the ANN structure of a re-
stricted Boltzmann machine [32]. This involves an exponential
bilinear form of the N visible, i.e., physical, spins or neurons
vi and of the M hidden or auxiliary classical spin variables
(neurons) hj ∈ {−1,+1} [not to be confused with the magnetic
fields hx , hz appearing in Eq. (1)]. The exponential is summed
over the hidden spin configurations. In the following we choose
M = αN with integer α. In the two-layer neural network, only
connections between the visible and the hidden but not within
the layers are allowed; cf. Fig. 1(a).

To find representations of the form (2) for ground and unitar-
ily evolving states of the model (1) a variational determination
of the complex synaptic weights Wi,j and biases ai and bj has
been proposed in [15]. This can be interpreted as reinforcement
learning of the ANN and is accomplished by means of a
stochastic reconfiguration procedure. This can be achieved in
a numerically efficient way as the sum in the representation
(2) can be performed analytically and the configurations {v} of
the visible spins can be sampled using Markov-chain Monte
Carlo methods. For further details of the ANN approach see
Appendix C and Ref. [15].

Note that the number of network parameters M + N + MN

scales linearly in the system size N and reduces to 1 + α + M

if translationally invariant solutions are considered [15,33].
Hence, the representation scales polynomially in the size of
the system. In this respect the method is efficient and similar
in spirit to variational Monte Carlo and MPS-based methods
[5,34,35]. It has been discussed in the context of complexity
theory [23] and exact ANN representations of specific classes
of states have been found, including topological cluster and
2D toric-code states [19,21,23], as well as tensor network and
chiral states [26–29,36].

C. Discrete truncated Wigner approximation

The dTWA is a semiclassical simulation method for the
dynamics of systems defined on a discrete phase space, such
as the Ising model defined in Eq. (1) [37–40]. It allows
calculating the dynamics by sampling initial states from a
positive-definite discrete Wigner function evolved by means
of classical equations of motion for the spins. By averaging
the resulting observables at a given evolution time over a
large set of initial-state samples, one finds a semiclassical
approximation to the exact unitary evolution (see Appendix
D for further details).

III. RESULTS

A. Quenches in the TFIM

In our analysis we assume the system to be initially in the
ground state deep in the paramagnetic phase, hx,i = 100 and
hz,i = 0, and quench to a range of points (hx,f , hz,f ) in the
parameter space of (1); cf. Fig. 1(b). At a given evolution time
after the quench we evaluate the spin-spin correlation function

Czz
d (t ) =〈

σ z
0 σ z

d

〉
. (3)

The absolute value of the correlation function typically shows
an exponential decay for short distances d between the spins.
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FIG. 2. (a) Correlation length ξ (t ) at a fixed time t = 1 as a function of the transverse field hx,f after a sudden quench from
(hx,i = 100, hz,i = 0) with hz,f = 0 within the paramagnetic and into the ferromagnetic phase. The results of the ANN approach for different α

are compared with the dTWA calculations and the exact solutions. (b) Time dependence of the exact correlation function Czz
d (t ) after quenches

from the deep paramagnetic phase to several hx,f . The correlation length in (a) is calculated by fitting an exponential function to the short-distance
decay of the absolute value of Czz

d . (c) Time evolution of the correlation function Czz
d (t ) after a sudden quench to (hx,f = 1, hz,f = 0) for a

spin chain with N = 10 sites (upper plot) and to (hx,f = 2, hz,f = 0) for a spin chain with N = 42 sites (lower plot).

We extract a correlation length ξ by fitting |Czz
d (t )| with an

exponential function exp(−d/ξ ) at small d < 3.
We begin by choosing a zero longitudinal field hz,f and

compare the results of the ANN and dTWA methods to exact
analytical results for Czz

d (t ). Restricting ourselves first to small
systems of N = 10 spins, Monte Carlo sampling of v is not
necessary in the ANN weight updating step which ensures that
effects arising from a finite sample size do not constrain the
performance. For such small systems, we can furthermore in-
crease the number M = αN of hidden spins up to a size where
the number of network parameters exceeds the dimension of
Hilbert space and thus an exact ANN representation of the state
should be possible. In this way we can explore the degree to
which the full set of basis states is necessary in representing
the system’s state.

Our results are presented in Fig. 2. Panel (a) shows the
correlation length at a fixed time t = 1 as a function of
hx,f . Figure 2(b) illustrates the d dependence of Czz

d (t ) for
a selection of hx,f and times t , and panel (c) shows the
correlation function at two different distances d and final fields
hx,f as functions of time after the quench. Note that the results
for hx,f = 2 in Fig. 2(c) are for a larger system of N = 42
spins.

As can be seen in Fig. 2(a), for quenches into the vicinity
of the quantum critical points (QCPs), hx,f � ±1, we observe
the buildup of long-range correlations, resulting in strongly
increased correlation lengths ξ [2,3]. While the system pos-
sesses a quantum critical point at hx = ±1, i.e., undergoes
a quantum phase transition in the ground state, ξ (t ) is not
expected to diverge there. The saturation of the dynamically
evolving correlation length is closely related to the fact that the
one-dimensional system does not dispose of phase transitions
at nonzero temperatures [30].

In the vicinity of hx,f = ±1 the ANN approach, when
choosing a small number of hidden spins (α = 1), yields
correlations which deviate clearly from the exact result shown
as a black solid line. Away from these critical values, the
obtained results, however, match well with the exact correla-
tions. Increasing the number of hidden spins, we find that the

accuracy improves, whereas perfect agreement is only obtained
for α > 6. Note that then, the number of network parameters
is 1 + α + M > 67 and thus of the order of the Hilbert space
dimension after symmetrization, dH = 108. Around hx,f = 0,
the ANN representation is well controlled as can be shown by
means of a perturbative expansion in terms of classical spin
networks [41].

The time evolution of Czz
d (t ) shown in Fig. 2(c), for a quench

to hx,f = 1 and d = 1, 2, corroborates the above findings
concerning the dependence on α. At very short times (t � 0.5),
the ANN method gives accurate results already for α = 1, even
for quenches to criticality. For large spin chains (N = 42),
α = 1 is still sufficient to capture the exact dynamics in regimes
of small correlation lengths (hx,f = 2 is shown). For such large
system sizes, the weight-updating procedure requires Monte
Carlo sampling of the visible neurons. This turns out to have no
effect other than adding statistical noise to the numerical result,
which can be controlled by increasing the size of the Monte
Carlo samples. By increasing the number of weights up to
α = 6 in the regime of large correlation length, i.e., close to the
QCPs, we cannot obtain converged results, which in fact hints
at an exponential scaling of the number of required network
parameters with N . Hence, in these cases, the method appears
to be of no advantage as compared to exact diagonalization
(see Appendix E).

Turning to the dTWA method we find that it qualitatively
reproduces the exact results while, in general, it shows rather
large deviations except at short times (t � 0.5) and around
hx,f = 0. This is due to the fact that quantum effects are not
captured by the semiclassical approximation. Note, however,
that for quenches very close to the QCPs at hx,f = ±1, the
dTWA provides in general a better estimate of the correlation
length than ANN representations with α = 1 or α = 2 (see
Appendix A).

B. TFIM in a longitudinal field

Having considered only the integrable TFIM so far, we
now turn to the nonintegrable case by adding a longitudinal
field hz,f > 0. The initial fields are the same as above,
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FIG. 3. (a) Exact correlation length ξe(t ) for N = 10 spins as a function of time after a sudden quench from (hx,i = 100, hz,i = 0) to
hz,f = 2 and different values of hx,f . (b), (c), (d) Deviations �ξ (t ) = |ξs − ξe| of simulation results ξs (t ) from the exact result. The ANN
calculation is not limited by Monte Carlo sampling errors. See also Appendix B for more final values hz,f .

(hx,i = 100, hz,i = 0). Since no analytical solutions are avail-
able in this case, we resort to exact numerical diagonalization
for small systems and to the tDMRG.

Figure 3(a) shows the exact time evolution of the correlation
length after a sudden quench to hz,f = 2 and different values of
hx,f (N = 10). The same dynamics is evaluated using the ANN
approach with α = 1, α = 10 and the dTWA, where the devia-
tion �ξ (t ) = |ξs − ξe| of the correlation length ξs (t ) resulting
from the different approaches as compared to the exact result
ξe(t ) is shown in Figs. 3(b), 3(c) and 3(d), respectively. The
ANN results are close to the exact calculations already for α =
1 in regimes of small correlation length, namely for |hx,f | � 1
and |hx,f | � 1. Only for quenches to intermediate hx,f , where
the correlation length becomes large, deviations can be found
for times t > 0.5, while the first oscillation in the correlation
length is captured perfectly even here. For α = 10 only small
deviations can be found anywhere. In this case, the 111 weight
parameters exceed the Hilbert space dimension dH = 108,
indicating that in certain parameter regimes the number of
network parameters needed to achieve full convergence scales
exponentially with the system size. The dTWA [Fig. 3(d)]
shows similar deviations �ξ (t ) in a wider regime, coinciding
with the exact results mainly at short times.

An important question concerns the predictive power of the
ANN approach in regimes where MPS-based approaches such
as tDMRG are limited to short times due to an extensively
growing entanglement entropy. As a representative case, we
show, in Fig. 4(a), the correlation function after a quench to
(hx,f = 0.5, hz,f = 1) for a spin chain with N = 42 sites,
where the ANN approach for α = 1 and α = 2 is compared
to converged tDMRG results for bond dimension D = 128
and approximate data for D = 5. Clearly, deviations appear
for times t � 1, while the qualitative behavior is captured for
longer times. Increasing α from 1 (44 network parameters) to 2
(87 parameters) does not improve the convergence significantly
and supposedly a much larger α would be necessary for con-
vergence, which is not reachable with the given computational
setup within a reasonable computing time. This is also seen
in Fig. 8 in Appendix E showing results for α = 6. Thus,
using comparable computational resources, we find the ANN
approach to fall behind the performance of tDMRG with
respect to attainable times.

We note that for D = 128, the number of variational
parameters (2D2) in the MPS vastly exceeds the number
of parameters in the ANN approach (1 + α + M). For bond
dimension D = 5, the tDMRG variational ansatz has 50

parameters, resulting in a quality similar to that of the ANN.
Figure 4(b) shows the von Neumann entanglement entropy
[SvN = −Tr(ρAlogρA), with half-chain reduced density ma-
trix ρA] obtained by means of tDMRG with different bond
dimensions D, as a function of time after the same quench
as before. Deviations appear at late times, showing that also
tDMRG struggles due to the linearly growing entanglement
entropy, which in turn requires an exponentially growing bond
dimension.
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FIG. 4. (a) Time evolution of the correlation function
Czz

d (t ) after a sudden quench from (hx,i = 100, hz,i = 0) to
(hx,f = 0.5, hz,f = 1) in a system with N = 42 sites. The ANN
approach for α = 1 and α = 2 is compared to tDMRG calculations
with bond dimensions D = 128 and D = 5. See also Fig. 8 in
Appendix E for quenches described with a larger α � 6. (b) The von
Neumann entanglement entropy SvN as a function of time after the
same quench as in (a). The entanglement entropy is calculated using
tDMRG with different bond dimensions. The deviations at late times
show that in this regime tDMRG breaks down after long times due
to the growing entanglement.
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FIG. 5. Correlation length at a fixed time (a); time evolution of the von Neumann entanglement entropy (b) after a sudden quench from
(hx,i = 100, hz,i = 0) to different distances ε from the quantum critical point in the TFIM with hz,f = 0. In the region of large correlation
lengths, large α are needed in the ANN approach to capture the exact solution. In the same region also volume-law entanglement is found.

APPENDIX A: TRANSVERSE-FIELD ISING MODEL

The one-dimensional transverse field Ising model (TFIM)
with N spin- 1

2 sites is described by the Hamiltonian

H = − J

N∑
i=1

σ z
i σ z

(i+1)modN − hx

N∑
i=1

σx
i , (A1)

with the Pauli matrices σα
i , and we choose J = 1 without loss

of generality. This model is integrable, since it can be mapped
onto noninteracting fermions, from which spectrum and energy
eigenstates can be calculated analytically [1–3]. The model
shows a quantum phase transition at hc = ±1 between a
paramagnetic (|hx | > 1) and a ferromagnetic (|hx | < 1) phase.
This quantum phase transition is quantified by a gapless
dispersion relation [2,3,30]. It has been shown that for sudden
quenches from a large transverse field into the vicinity of the
quantum critical point, as we are considering them in the main
text, the correlation length shows the behavior of a generalized
Gibbs ensemble (GGE), so it increases for smaller distances
from the quantum critical point [2,3,30].

Figure 5(a) shows this behavior of the correlation length
at a fixed time t = 1 after quenches within the paramagnetic
phase for a spin chain with N = 10 sites, where the distance
ε = (hx,f − hc )/hc from the quantum critical point is
plotted on a logarithmic scale. Simulation results of the
artificial-neural-network (ANN) approach and the discrete
truncated Wigner approximation (dTWA) are compared with
the exact solution of the model. The correlation length is here
extracted from the equal-time correlation function Czz

d (t ) by
fitting an exponential function to the short distance decay
of Czz

d ∝ exp (−dξ−1) for small d. The solid line shows the
GGE behavior, which is given by [2,3]

ξGGE(ε) = 1

ln[2(εhc + hc )]
. (A2)

The exact solution describes the GGE behavior well except
for the region around ε = 10−1. Here, the exact solution is not
yet saturated and a longer evolution time is needed until it is
converged onto the GGE curve. Since we are only considering
systems with N = 10 sites here, the correlation length does
not saturate before finite-size effects appear, so the GGE curve
is never reached completely. As already discussed in the main
text, the ANN approach needs larger α to capture the exact

solution in the regime of large correlation lengths, while it
works very well even for α = 1 at small correlation lengths.
This behavior can also be observed in Fig. 5(a). It can also
be seen that the dTWA is closer to the exact solution in the
vicinity of the quantum critical point, but gets worse when the
transverse field increases, as discussed in the main text.

Figure 5(b) shows the time evolution of the von Neumann
entanglement entropy, which we calculate using tDMRG.
There one can see that for hx,f < 2 the entropy grows linearly
with time, while it stays constant for hx,f � 2. To better see
this linear growth, the tDMRG calculations are done for a chain
with N = 40 sites, so that finite-size effects do not appear on
this time scale. Here one can directly see that in the regime
where large α are necessary in the ANN approach, not only the
correlation length is large, but also volume-law entanglement
is found. This volume-law entanglement also limits tDMRG
calculations in this regime for large spin chains and longer
times, so that the ANN approach is limited in the same regime
as the tDMRG calculations in the TFIM.

If we quench the transverse field to hx,f < 0, we again
find a gapless dispersion relation at hc,2 = −1, where the gap
now closes at the edge of the Brillouin zone, while it closes
in the middle for hc = 1. Hence, we find another quantum
phase transition between a paramagnetic (hx,f < −1) and a
ferromagnetic (hx,f > −1) phase. In this regime, the nearest-
neighbor correlation function gets negative. The correlation
length can then be extracted from the absolute value of the
correlation function in the same way as before, which results
in the symmetric curve around hx,f = 0 plotted in Fig. 2(a).

APPENDIX B: ISING MODEL IN TRANSVERSE AND
LONGITUDINAL FIELDS

If a longitudinal field hz is added to the TFIM, the Hamil-
tonian becomes

H = − J

N∑
i=1

σ z
i σ z

(i+1)modN − hx

N∑
i=1

σx
i − hz

N∑
i=1

σ z
i , (B1)

and the model is not integrable anymore. Again we can choose
J = 1 without loss of generality and we again find a param-
agnetic phase for large hx and small hz and a ferromagnetic
phase for small hx . The difference to the TFIM is now that
there is no quantum phase transition between the phases, since
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the ground state in the ferromagnetic regime is not degenerate
anymore due to the longitudinal field and hence there is no
spontaneous symmetry breaking between the phases [31].

Considering now quenches from (hx,i = 100, hz,i = 0) to
different hx,f and hz,f , the spin dynamics show Rabi oscilla-
tions due to the interaction of hx and hz. These oscillations can
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FIG. 6. Time evolution of correlation length and von Neumann entropy after sudden quenches from (hx,i = 100, hz,i = 0) to different
values of hx,f with hz,f = 0 (a), hz,f = 1 (b), hz,f = 2 (c), and hz,f = 3 (d). The ANN approach with α = 1 and α = 10 as well as the dTWA
are compared with exact results. Panel (e) shows the time evolution of the von Neumann entanglement entropy extracted from the tDMRG
calculations for hz,f = 1, hz,f = 2, and hz,f = 3. The entanglement entropy is also plotted as contours in the color plot of the exact correlation
length in (a), (b), (c), and (d). There one can directly see that large entanglement entropy and volume-law entanglement can be found in the
same regimes as large correlation lengths.
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also be found in the correlation length extracted from the equal-
time correlation function Czz

d (t ) in the same way as discussed
earlier. The time evolution of the correlation length is plotted in
Fig. 6 for quenches to different hx,f with hz,f = 0 (a), hz,f = 1
(b), hz,f = 2 (c), and hz,f = 3 (d). We compare the simulation
results with exact diagonalization calculations, since the model
is not analytically solvable anymore. We can observe in all
plots that the ANN approach shows fluctuations for α = 1 at
times t > 0.5 in the regime where the correlation lengths get
large at shorter times. For α = 10, the method can capture
the exact solution quite well; only small deviations appear at
very late times. It is interesting to see that even for α = 1
the first oscillation is always captured perfectly; it only breaks
down at later oscillations. For hz,f = 0 deviations in the α = 1
calculations only appear in the regime of large correlation
length, where the simulations reach too large values. This is
directly at the quantum phase transition at hx,f = 1, where also
volume-law entanglement can be found.

In Fig. 6(e) the time evolution of the von Neumann entan-
glement entropy is shown for hz,f = 1, hz,f = 2, and hz,f = 3,
which is calculated using tDMRG. Here we can see that the
entanglement entropy gets large approximately in the same
regime as the correlation length, which is also where deviations
in the ANN approach for small α can be found.

The dTWA also captures the oscillations in the correlation
length, but at later times deviations can be found for all
hx,f . The maximum values of the correlation length are never
reached in these calculations and deviations are found even at
shorter times than in the ANN approach.

APPENDIX C: ARTIFICIAL-NEURAL-NETWORK
APPROACH

The recently introduced ANN approach is based on repre-
senting a quantum state in terms of the weights in a restricted
Boltzmann machine [15]. Using the setup introduced in the
main text with the M × N complex connecting weights Wi,j

between the N visible and M hidden neurons, as well as N

visible biases ai and M hidden biases bj , the wave function
|�〉 of a quantum spin state can be written as

|�〉 =
∑

v

cv (W )|v〉, (C1)

with

cv (W ) =
∑

hj ∈{±1}
exp

⎛
⎝ N∑

i=1

M∑
j=1

viWi,jhj (C2)

+
N∑

i=1

aivi +
M∑

j=1

bjhj

⎞
⎠ (C3)

= exp

(
N∑

i=1

aivi

)
M∏

j=1

2cosh

(
bj +

N∑
i=1

viWi,j

)
, (C4)

where W = (a1, . . . , aN , b1, . . . , bM,W1,1, . . . ,WN,M ) is the
vector of all weight variables.

In a general restricted Boltzmann machine with real
weights, the expression for cv (W ) would correspond to the
probability assigned to a configuration of visible variables

[32], but since we have complex weights here, also cv (W ) is
complex and does not describe a probability. Instead its square
corresponds to the probability of the configuration v, as cv (W )
is the prefactor of the product state |v〉 in the wave function.

With this representation, the ground-state wave function of a
quantum spin- 1

2 system can be found using an iterative scheme
based on a stochastic reconfiguration method [42,43]. The
weight parameters W at iteration step p + 1 can be calculated
using the vector of forces F and the covariance matrix S [15],

W (p + 1) =W (p) − γ S−1(p)F (p), (C5)

with Skk′ = 〈O∗
kOk′ 〉 − 〈O∗

k 〉〈Ok′ 〉, (C6)

Fk (p) = 〈ElocO∗
k 〉 − 〈Eloc〉〈O∗

k 〉, (C7)

with an iteration step size γ and the star denoting complex
conjugation. To calculate the inverse of S in a stable way, a
regularization method is used [15]. The local energy Eloc and
the variational derivative Ok are defined as

Eloc(v) = 〈v|H|�〉
cv

, (C8)

Ok (v) = 1

cv

∂Wk
cv. (C9)

Here, the Hamiltonian H of the quantum spin system under
consideration enters into the algorithm. The expectation values
are generally calculated as

〈O〉 = 〈�|O|�〉 (C10)

=
∑
v,ṽ

〈v|O|ṽ〉cṽcv, (C11)

where the summations run over all states in the Hilbert space,
which are 2N states for an N -site spin system.

Since such a large number of states cannot be taken into
account for large spin systems, it is more convenient to use only
a subset of states, which is generated by a Markov chain set up
by sampling |cv|2 using a Metropolis-Hastings algorithm [15].
The Markov chain is created starting from a random initial state
vk by flipping a random spin to get a new configuration ṽ. The
new configuration is accepted with probability A(vk → ṽ) =
min(1, |cṽ/cvk |2). If accepted, the configuration is updated,
vk+1 = ṽ; if rejected, the state stays the same, vk+1 = vk . This
way, the Markov chain is set up in an iterative scheme and in
the end creates a subset of states with large coefficients |cv|2.
Since these states have high contributions to the expectation
values, this gives a reasonable approximation, since states with
smaller contributions can be neglected. This technique is used
routinely in variational Monte Carlo and is known to be stable
and efficient.

For small system sizes, as considered in the main text, this
sampling procedure is not necessary, since the expectation
values can be calculated exactly due to the small dimension
of the Hilbert space.

The iteration scheme to find the ground state can be
interpreted as an effective imaginary-time evolution and in
an analogous way an iteration scheme to approximate the
real-time evolution of the quantum spin system can be derived
using a time-dependent variational Monte Carlo approach
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[11–13,15]. The equations of motion for the weight parameters
W again depend on the vector of forces F and the covariance
matrix S, which are defined in the same way as above and give

Ẇ (t ) = − iS−1(t )F (t ). (C12)

These can be easily integrated numerically. Here, S−1 denotes
the Moore-Penrose pseudoinverse of S, which is not necessar-
ily invertible since it is not guaranteed to have full rank. To get
stable results even for large spin systems and in the vicinity
of a quantum critical point, we found that the pseudoinverse
needs to be combined with the regularization method used in
the ground-state calculation.

Given this, the simulations of the dynamics after sudden
quenches as considered in the main text can be calculated
by starting with random weights, converging to the initial
ground state, and calculating the time evolution starting from
the ground-state weights using the parameters after the quench.

By introducing symmetries into the ANN setup, the number
of weight parameters can be reduced. In the case of spin chains
with periodic boundary conditions, as discussed in the main
text, we find translation invariance. To include this into the
ANN approach, we shift all visible variables by a factor d

around the ring and force the new configuration to have the
same weight parameters as the old configuration. Doing so
reduces the number of weight parameters from M + N + MN

to M + M
N

+ 1 [15,33].

APPENDIX D: DISCRETE TRUNCATED WIGNER
APPROXIMATION

The dTWA is based on sampling an initial spin state from
a Wigner function on a discrete phase space and classically
evolving it in time. By repeating this, one can create lots of
trajectories and by averaging the outcoming observables, their
time evolution can be approximated semiclassically [37,39].

A discrete phase space of a quantum spin- 1
2 system is

based on a 2 × 2 dimensional finite mathematical field, which
consists of three sets of parallel lines. As in a continuous
phase space, with each set of parallel lines one operator is
associated and each line is identified with an eigenvalue of the
corresponding operator [44]. For a spin- 1

2 system we associate
the spin operators, which are the Pauli operators σx , σy , and
σ z, with the sets of parallel lines, and each line is identified with
either the +1 or −1 eigenvalue, as illustrated in Fig. 7. For each
point α = (a1, a2) in the phase space, a phase point operator
Aα can be defined, which maps each point in the Hilbert space
onto a point in phase space. Here, a convenient choice for the
phase point operators is [37,44]

Aα = 1
2 [(−1)a1σx + (−1)a1+a2σy + (−1)a2σ z + 1], (D1)

which is consistent with the association of the spin operator
eigenvalues in Fig. 7.

By mapping the density operator ρ onto the phase space,
the Wigner function is defined as

Wα = 1
2 Tr(ρAα ), (D2)

which is a quasiprobability distribution over the phase space.
This means it gives a probability for each point in phase
space and shows properties of a probability distribution, but
it might have negative values [44–46]. By combining two

sx = 1 sx = −1

sz = 1

sz = −1

sy = 1

sy = −1

a1

a2

FIG. 7. Discrete quantum phase space for a spin- 1
2 system

spanned by two variables a1, a2. The colored lines denote the three
sets of parallel lines in the (2 × 2)-dimensional finite mathematical
field. With each set a spin operator σα , α ∈ {x, y, z}, is associated
and each line is identified with one eigenvalue of the corresponding
operator.

phase spaces with different phase point operators, all eight
possible orientations of the discrete spin can be captured and
a quasiprobability for each orientation is given [37,39].

From the Wigner function on the discrete phase space,
initial spin states can be sampled by creating one phase
space for each site and sampling the orientation of the
corresponding spin. This is only possible if the Wigner
function is non-negative, which limits the flexibility of the
simulation method. The time evolution of the sampled spin
state can then be approximated by treating the quantum spins
as classical spins si and evolving them in time individually
using classical equations of motion [37],

ṡα
i ={

sα
i ,H

}
, (D3)

with α ∈ {x, y, z} and i ∈ {1, . . . , N} for an N-site spin
system. The brackets denote the Poisson bracket, which for
two classical spins is defined as{

sα
i , s

β

j

} =2δij

∑
γ

εαβγ s
γ

i . (D4)

In the dTWA, R classical trajectories are calculated, where
the initial state is sampled from the Wigner function for
each trajectory individually. The observables resulting from
the trajectories are then averaged to approximate quantum
dynamics in a semiclassical way, since a classical time
evolution is used, but quantum fluctuations come into the
system by sampling the initial states.

In the main text, sudden quenches in the transverse-field
Ising model are considered. The quenches are chosen to
start from a large initial transverse field hx,i = 100, which is
sufficiently large to create a fully x-polarized ground state, for
which the Wigner function is non-negative, making it possible
to calculate the dTWA for the considered quenches. To reach
more accurate results, we improved the method by trying
higher orders in the approximation of the equations of motion
[39]. For this we observed that taking only the next order into
account leads to numerical instabilities, so that even higher
orders would be necessary.
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FIG. 8. Time evolution of the correlation function Czz
d (t ) after a sudden quench from (hx,i = 100, hz,i = 0) to (hx,f = 1, hz,f = 0) in a

spin chain with N = 12 (a) and N = 42 (b) sites. The correlation function is shown for distances d = 1 (solid lines), d = 2 (dashed lines), and
d = 3 (dotted lines) between the considered spins. The number of weight parameters in the ANN approach is increased to see that α = 15 is
necessary to capture the exact dynamics for N = 12, while full convergence cannot be reached for N = 42 within suitable computation time.

APPENDIX E: ADDITIONAL RESULTS FOR SYSTEMS
WITH MANY SPINS

In the main text we mostly considered small spin chains
with N = 10 sites. For these systems we found that in the
ANN approach the number of weight parameters needs to be
as large as the dimension of the Hilbert space to represent the
exact dynamics in regimes of large correlations. To see how the
necessary number of weight parameters depends on the system
size, we consider the quench from (hx,i = 100, hz,i = 0) to
(hx,f = 1, hz,f = 0) and compare the ANN and dTWA simu-
lations to exact solutions for spin chains with N = 12 and N =
42 sites. For N = 12, the number of weight parameters can still
be increased until the Hilbert space dimension is reached, while
this is not possible anymore for N = 42. Also the Monte Carlo
sampling needs to be used for the N = 42 calculations, since
a summation over all configurations is not possible.

We have already shown in the main text that even for
N = 42, α = 1 is sufficient for quenches into regimes of
small correlations, but larger α is needed in regimes of larger
correlations even if a longitudinal field is added. For the quench

we are considering here, we found in the main text that α = 6 is
necessary for N = 10 sites. Figure 8 shows the time evolution
of the correlation function for N = 12 (a) and N = 42 (b).
There we find that for N = 12, α = 15 is necessary to capture
the exact dynamics, which corresponds to 1 + α + M = 196
weight parameters. This is again of the order of the Hilbert
space dimension after symmetrization (dH = 352), as we also
found it for N = 10 sites. This suggests that the necessary
number of weight parameters scales exponentially with the
system size.

In Fig. 8(b), we increase α as far as possible within suitable
computation time for N = 42 sites. One can see the conver-
gence to the exact dynamics with increasing α, but for α = 6
the result is still far away from the exact solution. The small
fluctuations in the ANN calculations are caused by the finite
Monte Carlo sampling. A much larger α would be necessary
here. This directly shows the limitations of the ANN approach
for large spin systems in regimes of large correlations due to
the exponential scaling of α with system size, while we have
shown in the main text that the method works perfectly fine for
large spin systems and small α in regimes of small correlations.
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