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Bloch oscillations originate from the translational symmetry of crystals. These oscillations occur with a
fundamental period that a semiclassical wave packet takes to traverse a Brillouin-zone loop. We introduce a
new type of Bloch oscillations whose periodicity is an integer (« > 1) multiple of the fundamental period.
The period multiplier p is a topological invariant protected by the space groups of crystals, which include
more than just translational symmetries. For example, p divides n for crystals with an n-fold rotational or
screw symmetry; with a reflection, inversion or glide symmetry, u equals two. We identify the commonality
underlying all period-multiplied oscillations: the multiband Berry-Zak phases, which encode the holonomy of
adiabatic transport of Bloch functions in quasimomentum space, differ pairwise by integer multiples of 27 /.
For a class of multiband subspaces whose projected-position operators commute, period multiplication has a
complementary explanation through the real space distribution of Wannier functions. This complementarity
follows from a one-to-one correspondence between Berry-Zak phases and the centers of Wannier functions.
A Wannier description of period multiplication does not always exist, as we exemplify with band subspaces
with either a nonzero Chern number or Z, Kane-Mele topological order. In the former case, we present general
constraints between Berry-Zak phases and Chern numbers, as well as introduce a recipe to construct nontrivial
Chern bands—by splitting elementary band representations. To help identify band subspaces with 1 > 1, a general
theorem is presented that outputs Zak phases that are symmetry-protected to integer multiples of 27 /n, given the
point-group symmetry representation of any gapped band subspace. A cold-atomic experiment that has observed

period-multiplied Bloch oscillations is discussed, and directions are provided for future experiments.
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I. INTRODUCTION

The highly anticipated discovery of Bloch oscillations
in superlattices [1,2] was a crowning achievement of early
solid-state physics [3,4]. Bloch oscillations essentially rely
on the periodicity of crystal quasimomentum (k), as well as
the existence of an energy gap—both are basic features of a
quantum theory of solids. From a semiclassical perspective,
Bloch oscillations originate from the dynamics of a wave
packet formed from a single band. The fundamental period
(Tp) of this oscillation is the time taken by a wave packet in
traversing a loop across the Brillouin torus; by the acceleration
theorem [5], T = h|G|/|F|, with G the smallest reciprocal
vector parallel to a time-independent driving force F. Fun-
damental Bloch oscillations may equivalently be understood
as a coherent Bragg reflection originating from the discrete
translational symmetry of the lattice [6].

However, translational symmetry does not exhaust the
manifold symmetries of crystals, which are classified by 230
space groups in three spatial dimensions [7]. Occurring ubig-
uitously in crystals are the symmetries of rotations, reflections,
inversions, screw rotations, and glide reflections. All such
elements of a space group G (which are not purely lattice
translations) are nontrivial elements of the point group P of G.
For crystals with a nontrivial point group, we will demonstrate
how Bloch oscillations arise with an integer (1« € N) multiple
of the fundamental period Tp.
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This period multiplication occurs only in the dynamics of
multiband wave packets, i.e., wave packets that are linear
combinations [8] of (N > 1) independent Bloch waves at
each wave vector. To clarify, p characterizes a finite set
of bands (numbering N) that are separated from all other
bands by energy gaps—above and below—at each wave
vector (k) in the Brillouin torus.! One characteristic feature
of multiband dynamics is that the expectation value (O)(t)
of an observable O evolves quasiperiodically. That is to say,
all frequencies of the Fourier peaks are generated additively
by N frequencies; the generating frequencies are generically
incommensurate if the point group is trivial. Generally, the
smallest generating frequency that is expressible as 2w /(uTg),
with p a positive integer, defines the period multiplier u for
continuous-time Bloch oscillations.

Translational symmetry guarantees that 27/ Ty is always
a generating frequency, so @ is minimally one. A nontrivial
point-group element g may result in & > 1, for certain field
orientations relative to a crystallographic axis associated to g.
Generally, u divides the order (n) of g, where n is defined as
the smallest integer such that the repeated transformation g"
is a translation by an integer (p) multiple of a primitive lattice
vector (a). If u > 1, commensuration with 27/ Tp leads to
fewer-than-N independent generating frequencies.

u = 1. Bloch oscillations describe an alternating current in
the presence of a static electric field, owing to the periodicity

"We do not assume that these energy gaps are direct.
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of the band velocity (dE/dk) in k [6]. In contrast, u > 1 is
not generally explainable by the energy-momentum dispersion
[E(k)], but is intrinsically a geometric property of the band
wave functions—precisely, u can be formulated equivalently
as quantized differences in the Berry-Zak phases [9-11] of
wave functions. From this perspective, & may broadly be
applied to band systems of any particle statistics—bosonic or
fermionic. Applying u to bands of bosonic particles turns out
to be particularly fruitful—some of the most realistic experi-
ments to observe period-multiplied Bloch oscillations involve
bosonic cold atoms in optical lattices, as have been performed
by T. Li et al. in Ref. [12] and will be discussed in greater detail.

W is insensitive to slight variations of experimental parame-
ters that preserve the space group, as well as both energy gaps
(above and below). That is to say, u is a space-group-protected
topological invariant for a fixed number of bands.”

From a broader perspective, not all topological invariants
in band systems have been linked to definitive signatures in
transport experiments [13,14]. By “transport,” we mean to
induce dynamics in k-space by applying electromagnetic fields
(or generalized forces in cold-atomic systems). A celebrated
example is the Thouless-Kohmoto-Nightingale-den Nijs in-
variant [15], which is linked to a quantization of the Hall con-
ductance; this invariant is protected by the symmetry of charge
conservation, and has become the paradigm for a topological
phase of matter. Recently, a notion of space-group-protected
topological invariants has been formulated (by one of us) for
magnetotransport [16], which is measurable in the phase offset
of quantum oscillations [17]. In contrast, the present work
represents the first formulation of a space-group-protected
topological invariant (w) in electric transport.

II. SUMMARY AND ORGANIZATION

Letus summarize our key results and the organization of this
work. We consider two classes of Bloch oscillations, which are
geometrically distinguished by the direction of the field relative
to certain crystallographic axes. To summarize this geometric
distinction, we associate the first class of Bloch oscillations to
a || field, and the second to a L field; often we will employ L
versus || as subscripts on various quantities (e.g., ;) to remind
the reader of the different contexts.

The first class of Bloch oscillations occurs only for space
groups with a nonsymmorphic element (g), as exemplified
by screw rotations and glide reflections (in short, screws and
glides). A nonsymmorphic element involves a translation by
a rational fraction of a primitive lattice vector: pa/n; a lies
along the screw axis (for g a screw), or lies in the glide plane
(for g a glide). We may always choose a representative for g
such that 0 < p < n [7,19]. Figure 1(a) exemplifies a screw-
symmetric lattice with n =4 and p = 1. Period-multiplied
Bloch oscillations occur when we align the field parallel to
the reciprocal vector (G) dual to a. In all of our case studies,
G is also parallel to a.

The second class of Bloch oscillations is applicable to
any space group with a nontrivial point group P. Precisely,

’In the language of bundle theory [43,72,83], two vector bundles
having the same rank and symmetry—but different u—cannot be
isomorphic.

(© (d)

FIG. 1. (a) Screw-symmetric chain with lattice period a and four
sites per unit cell. (b) The corresponding energy bands [E (k)] are
fourfold connected. Each energy band can be labeled by one of four
symmetry eigenvalues [18], as indicated by the different characters
of the lines. (c) The unit cell of a honeycomb lattice contains two
sites at coordinates @ and w,. (d) Brillouin zone corresponding to
the honeycomb; the loop Cs (violet) intersects the C; .-invariant wave
vectors " and K.

we mean that the quotient group P = G/7T, of the space
group G with its translational subgroup 7, is not a trivial
group. Included are space groups with nonsymmorphic el-
ements (glides and screws, as discussed above), as well as
space groups with symmorphic elements (e.g., rotations and
reflections). For symmorphic g, a spatial origin exists for which
g involves no fractional translations (p = 0). In the second
class of Bloch oscillations, we align the field perpendicular
to the screw/rotational axis (for g a screw/rotation) or to the
glide/reflection plane (for g a glide/reflection).

Throughout this work, we will employ the same symbol g to
denote a space-group element that is not purely translational,
i.e., g represents a nontrivial element in . In most contexts, g
refers to a single symmetry (symmorphic or nonsymmorphic)
which should be deducible from the context. For any space
group G, P = G/T is isomorphic to a group comprising
isometries of a lattice that fix a point in space [ 19]. Point groups
are sometimes defined as point-fixing isometries. However,
for this work, a “point group” (P) should be understood
as the quotient group G/7 unless specified otherwise. For
nonsymmorphic space groups, it is possible that elements in
‘P (such as a screw or glide) do not preserve a spatial point.

With a || field, Bloch oscillations occur with period multi-
plier

n

ged(p, n)

with gcd = greatest common divisor; p = 4 for the lattice of
Fig. 1(a). There are two complementary perspectives—f{rom
real and quasimomentum spaces—to understand how period
multiplication occurs.

(A) In the real-space perspective, bands are represented by
exponentially localized Wannier functions with well-defined
average positions @ (henceforth referred to as Wannier cen-
ters). The nonsymmorphic symmetry g results in Wannier
functions coming in w plets per unit cell, and their cor-
responding Wannier centers are mapped by symmetry as
G- w—G-w + 27 /. Inother words, the translational period
between Wannier centers is 1/u times the Bravais lattice
period, hence the Bloch-oscillatory period is multiplied by 1,
as further elaborated in Sec. III B.

(B) In the quasimomentum space (k space) perspective, the
nonsymmorphic symmetry representations of energy bands
are permuted as k is advanced by the primitive reciprocal
vector G [18]. The failure of the representation of g to be
single-valued—known as monodromy—results in bands being

2 (D

024310-2



TOPOLOGICAL BLOCH OSCILLATIONS

PHYSICAL REVIEW B 98, 024310 (2018)

connected as a graph, as illustrated in Fig. 1(b). This mon-
odromy is also imprinted on the adiabatic transport of Bloch
functions within each connected component—specifically on
the geometric component of the adiabatic transport, which
encodes the multiband, non-Abelian holonomy [11] of non-
contractible Brillouin-zone loops [10,20]. The eigenvalues of
the holonomy matrix, as defined for transport over a single
fundamental period Tp, are known as the Zak phase factors
(€'?). One of our key results is that, owing to the monodromy
of symmetry representations, the set of ¢ has the translational
property: ¢— ¢ + 27 /). Only after 1 fundamental periods
do all pairwise Zak phase differences equal an integer multiple
of 2. This provides a complementary explanation for period
multiplication that we further develop in Sec. III C.

The similar translational properties in (A) and (B) are not
accidental, but reflect a one-to-one correspondence between
Wannier centers and Zak phases: G-w = ¢ for a multiband
subspace. Such a correspondence is already known for a single
band [10]; in subsequent work, Kingsmith and Vanderbilt
have shown that the sum of all Zak phases is related to
the fotal polarization of a multiband subspace [21]. Our
contribution—for nonsymmorphic space groups—is to relate
individual Zak phases to the polarization of individual Wannier
functions. Such correspondences will henceforth be referred to
as multiband Zak-Wannier relations.

Let us next consider Bloch-oscillatory phenomena under
a L field, with the corresponding period-multiplier 1 . In
two-dimensional crystals, w; > 1 occurs only for certain
multiband subspaces, which can be characterized from two
complementary perspectives.

(A’) In the real-space perspective, we are interested in
multiband subspaces whose Wannier functions are so strongly
localized (in 2D space) as to resemble point charges. Such
band subspaces are not generic for the following reason: while
the bare position operators (x and y) commute according to
basic quantum-mechanical principles, position operators that
are projected to a multiband subspace (by the operator P) do
not generally commute, no matter the space-time symmetry
of P. However, by combining a symmetry condition with a
condition on the tunneling strength between spatially separated
Wannier functions, we have identified a class of multiband
subspaces for which the projected-position operators Px P and
Py P commute to exponential accuracy. Such subspaces will
be referred to as “strong elementary band representations,”
and they are exhaustively identified by us for all 2D space
groups in Sec. IV B. Our nomenclature builds upon the theory
of elementary band representations (EBRs) [22-26], which are
representations of a space group on locally symmetric Wannier
functions that cannot be split into smaller representations on
locally symmetric Wannier functions. By “locally symmetric,”
we mean that for any spatial position r, all Wannier functions
centered on r form a representation of the site stabilizer of r
(i.e., the subgroup of the space group that preserves r).> The de-
scription “strong” alludes to the just-mentioned commutation,
which implies that Wannier functions are strongly localized.

Given that the Wannier centers (@) are uniquely defined as
simultaneous eigenvalues of both projected position operators,

3More details on EBRs are provided in Sec. IV B.

we further particularize (in Sec. IV B) to a subclass of strong
EBRs for which a nearest-neighbor pair of Wannier centers
(w1, W) satisfies |G- (w| — wy)| =27/, foru; > 1and
G a primitive reciprocal vector. 2w/ may be viewed as
the dynamical phase difference acquired by two Wannier
functions over one fundamental period, in the presence of

a field F that integrates to G = fOTB Fdt/h. Only after pu
fundamental periods do pairwise phase differences acquired
by Wannier functions return to an integer multiple of 2. For
illustration, we consider a two-band subspace which comprises
two s-orbitals centered on a honeycomb lattice, as illustrated
in Fig. 1(c). Since each honeycomb vertex is invariant under
threefold rotation (modulo lattice translations), |G-(w| —
w,)| = 2 /3, leads to period-tripled Bloch oscillations.

(B’) In the k-space perspective, [Px P, Py P] = 0 is equiv-
alent [27] to the condition that the multiband, non-Abelian
Berry curvature vanishes at each k. The k space analog of the
dynamical phase condition for Wannier functions is that the
geometric Zak phases ¢ [associated to g-symmetric k-space
loops, e.g., Cs illustrated in Fig. 1(d)] differ pairwise by integer
multiples 2/ ; in particular, one pair of Zak phases must
differ exactly by 27/, . One other key finding of this work is a
theorem in Sec. IV D that aids us in identifying band subspaces
whose Zak phases satisfy the just-mentioned conditions. For
any g-symmetric band subspace, this theorem inputs the
symmetry representations of g at g-invariant k points, and
outputs the Zak phases which are symmetry-protected to the
nth roots of unity. By a “symmetry-protected” quantity, we
mean a quantity (the Zak phase, in the present context) that is
invariant under deformations of the Hamiltonian that preserve
the symmetry g as well as both energy gaps (above and
below the N-band subspace). To recapitulate, the theorem
is a means to systematically calculate symmetry-protected
Zak phases, given the representation of Bloch functions at
high-symmetry wave vectors; these representations can easily
be determined from tight-binding models [20]. Differences in
Zak phases not only determine the period of Bloch oscillations
(as elaborated in Sec. IVB), but they are in principle also
measurable by generalized Ramsey interferometry in cold-
atom experiments [28,29]. A limited form of the present theo-
rem already exists for g being a spatial-inversion symmetry
[20]; this work provides the generalization to any space-
group symmetry, including rotations, reflections, screws and
glides.

In Sec. IVD3, we propose another Zak-Wannier relation
which underlies the similarities between (A’) and (B’). We
remark that Zak-Wannier relations have previously been for-
mulated for Wannier functions, which are maximally localized
[27] in one direction [10,20,21], but do not necessarily have
any symmetry. In comparison, Sec. IVD 3 describes a novel
symmetry-based Zak-Wannier relation for locally symmetric
Wannier functions that are localized in two independent direc-
tions, but such localization need not be maximal. A general for-
mulation of symmetry-based multiband Zak-Wannier relations
(with applications going beyond strong EBRs) is presented in
Sec. V.

Finally, we discuss the possibility of period multiplication
(in a L field) for band subspaces that have no symmetry-based
Zak-Wannier relation. These are topologically nontrivial band
subspaces with symmetry-protected Zak phases differing by
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2m/u,, but with no locally g-symmetric representation on
Wannier functions:

(C’) Time-reversal-asymmetric band subspaces—in
Wigner-Dyson symmetry [30-32] class A—are classified
by a Chern number; band subspaces with a nonzero Chern
number (in short, Chern bands) do not admit a representation
by Wannier functions [33]. Our case study of Chern bands in
Sec. VI demonstrates that quantum fluctuations—with respect
to the noncommuting projected position operators—can
produce a classically forbidden symmetry-protected Zak
phase [cf. Egs. (29)—(32)]. This suggests the possibility of a
classically forbidden period multiplier u, , for which we have
constructed a model as proof of principle (in Sec. VIB?2).
In constructing this model, we have utilized a novel recipe
to generally obtain Chern bands by splitting a multiband
EBR into multiple fewer-band subspaces. Our recipe provides
a direct roadmap toward model realizations and concrete
materializations of Chern bands.

(D’) Time-reversal-symmetric band subspaces—in Wigner-
Dyson symmetry class [30-32] All—are characterized by a Z,
Kane-Mele invariant [34]. The paradigmatic example of Z,
topological order is the Kane-Mele honeycomb model [35],
which realizes Bloch oscillations with multiplier u; = 3, as
we demonstrate in Sec. VIIL.

While the Chern and Kane-Mele invariants were first stud-
ied in the context of band insulators, these same invariants may
more generally be used to characterize band wave functions—
independent of the statistics of the particles that fill these
bands. Our proposal for Bloch oscillations does not apply to
band insulators [6], but may in principle apply to band metals.
Realistically, Bloch oscillations are measurable in cold-atomic
experiments: Sec. VIIIF describes an existing experimental
setup [12] that simulates Fig. 1(c) with bosonic 3’Rb atoms in
an optical honeycomb lattice. We further explain how reported
measurements [12] may be interpreted as period-tripled Bloch
oscillations, and provide directions for future cold-atomic
experiments. The experimental feasibility of period-multiplied
Bloch oscillations is discussed more generally in Sec. VIII,
where we address the validity of the adiabatic assumption, as
well as the effect of finite relaxation time.

We conclude in Sec. IX by summarizing the unifying themes
of this work, with additional elaboration on Zak-Wannier
relations and the role of hybrid Wannier functions [36]. An
outlook is provided for future investigations.

III. BLOCH OSCILLATIONS IN A || FIELD

A. Motivational example on a screw-symmetric chain

We begin with a Gedankenexperiment to motivate period
multiplication in a || field (F) that is aligned parallel to the
fractional translation of a nonsymmorphic symmetry. Consider
a one-dimensional chain with primitive lattice period a’, as
illustrated in Fig. 2(a). This chain is described by a translation-
invariant, single-particle Hamiltonian Hj; for simplicity we
assume only translational symmetry, so the eigenvalues of Hj
are nondegenerate at each k, as exemplified in Fig. 2(b). A field
applied parallel to the chain adds to the Hamiltonian a term
— Fz, with z the position operator along the chain. Adiabatic
evolution of a wave packet in a nondegenerate band results

(a) P () AE (© A €/Fa
| | | 1
Ll 148
1 1 k
02va'  2n/a
(d) (e) AE | (f A E/Fa
0 il -
_i ,// ‘: VA /
\ &/Fa

FIG. 2. Three 1D lattices with the following symmetries: [(a)—
(c)] trivial point group and a primitive translation period a’ = a/4,
[(d)—(f)] g4, symmetry, and [(g)—(i)] g1 symmetry. (a), (d), and
(g) illustrate the real-space distribution of Wannier functions (grey
spheres indicate s orbitals, red-blue dumbbells p, + ip, orbitals);
(b), (e), and (h) the corresponding energy bands [E (k)] at zero
field (F =0); and (c), (f), and (i) the ladderlike spectra (¢) of
P(Hy — Fz)P atnonzero field, in units of Fa. The Wannier functions
in (g) are Kramers degenerate, as indicated by two arrows per sphere;
each energy level in (i) is Kramers degenerate.

in Bloch oscillations with the fundamental oscillation period
2rh/(Fa').

Suppose we deform the straight lattice into the helix
of Fig. 1(a) with new lattice period a = 4a’. The standard
argument for Bloch oscillations (protected by translational
symmetry) would predict a quarter reduction of the oscillation
period to T = 2/ /(Fa). However, we propose that the os-
cillation period persists at 2 7i/(Fa') = 4Tg, owing to a new
kind of Bloch oscillation that is protected by a nonsymmorphic
symmetry of the deformed lattice, as we explain in the next
section.

B. Bloch oscillations with u; > 1 from the perspective
of Wannier functions

The persistence of the oscillation period in the Gedanken-
experiment may be understood from the following symme-
try analysis. Any symmetry (g) of a space group (G) is
composed of a component ¢ that leaves the spatial origin
invariant, as well as a translation by ¢; notationally, g = (g|?).
A nonsymmorphic symmetry is a symmetry that involves a
translation by a rational fraction of a primitive lattice vector;
such a symmetry may be represented in a particular coordinate
system as g, , = (§.|pae;/n) with0 < p < n [7,19]. This is
exemplified in Fig. 1(a) by a screw, which is the composition
of a fourfold rotation about the crystal-axis with a translation
by a/4 along it; notationally, g, , = (C4 lae;/4) withn =4
and p = 1, where C,, ; denotes an n-fold rotation about the jth
coordinate axis (with unit vector e;).

Let us consider a low-energy, N-band subspace that is ener-
getically separated from other bands, and comprises N Bloch
functions {yr j,k}j.vzl at each k. In the adiabatic approximation
[37], field-induced dynamics within this low-energy subspace
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is described by the effective Hamiltonian

N
H=P(Hy— F2)P, with P=Y "> [, ) (¥l (2
k

j=1

a projector to the N-band subspace, where ), is a short-hand
for a sum over the Brillouin zone. The eigenstates of H are
Wannier functions which are exponentially localized in z, and
long-lived in the sense of a resonance [37]; the corresponding
spectrum is well-known to have the structure of a Wannier-
Stark ladder [3,4] owing to translational symmetry, i.e., for
any eigenvalue ¢, there exists another at ¢ + Fa due to the
invariance of P and H, under z—z — a.

From this perspective, it is quite natural that g, ,, which
involves a fractional translation, generates a ladder with a
fractional spacing:

& — e+ Fap/n. 3)

In the g4 -symmetric example of Fig. 1(a), we therefore find
that adjacent levels are separated by Fa/4, as illustrated in
Fig. 2(c).

Let us then consider the quantum expectation value of an
observable (O)(t), for a generic state that linearly combines
the eigenfunctions of . The generically allowable frequencies
in (O)(t) are, up to a proportionality constant of 7, equal to
pairwise differences in the eigenvalues of . In particular,
the smallest energy difference between adjacent (i.e., nearest-
neighbor) levels in the spectrum of H determines the smallest
frequency in (O)(t); in the example of Fig. 1(a), the nearest-
neighbor spacing of Fa/4 determines that 27 /(4Tp) is the
smallest allowable frequency, leading to period-quadrupled,
continuous-time Bloch oscillations (cf. Sec. I).

Generally, for any g, ,-symmetric lattice, we would like
to determine the period multiplier for continuous-time Bloch
oscillations, as defined in Sec. I. By combining Eq. (3) and
Bezout’s identity [38], we obtain that the nearest-neighbor
spacing within one ladder is simply Fa/u, with u) defined
in Eq. (1) and identified with the period multiplier.*

Thus far, we have only discussed examples with the minimal
number of Wannier functions allowable by g, ,-symmetry
alone—namely, ;; Wannier functions per unit cell. In general,
the total number (N) of Wannier functions per unit cell
may exceed p; we may further show that N is always an
integer multiple (J) of ), see Ref. [39]. In the absence
of any other symmetry beyond g, ,, there would then be
J nondegenerate ladders in the spectrum of . A simple
example of N =4, uy =2, J = 2 is illustrated in Fig. 2(d),
with two s- and two d orbitals in the primitive unit cell of
a g4-symmetric lattice; then, the Fourier peaks of (O)(r)
lie at frequencies generated additively by 27 /(x| Tg) and the
frequency offset Ay /() Tp)] between the two ladders, as
illustrated in Fig. 2(f); these two generators are generically
incommensurate.

“To further motivate the form of the period multiplier, we may con-
sider that the same g4 ; = (C4 ;|ae,/4)-symmetric lattice in Fig. 1(a)
is also invariant under g;} (Olae,) = (C;L'Z |3ae./4), which is an order
four symmetry with p = 3. However, j = 4 independent of whether
(n,p)=(4,1)or=(4,3).

In contrast, for half-integer-spin systems that respect time-
reversal and glide (g2,1) symmetries, the Kramers degeneracy
of each rung [as illustrated in Figs. 2(g)-2(i)] ensures there
is only one generating frequency 2 /(14 Tp) with ) = 2] in
the Fourier spectrum. The above two examples with J > 1
demonstrate that: (a) a nonsymmorphic symmetry g, , guar-
antees that 27 /(u Tg) is always a generating frequency, but
(b) the presence of other independent generating frequencies
depends on symmetries other than g, ,. A general symmetry-
based criterion to determine the degeneracy of Wannier-Stark
ladders, for arbitrary J, is presented in Appendix A 3.

C. Bloch oscillations with p > 1 from the perspective
of Bloch functions

One subtlety in the above proof is that the position operator
only has a well-defined action on spatially localized states
(precisely, functions in the domain of z) [40]. However, a
natural basis to describe band subspaces are spatially extended
Bloch functions v} x, owing to their forming a representation
of translational symmetry. We are therefore motivated to derive
period multiplication from a complementary perspective with
Bloch functions as initial states.

Let us then consider the time evolution of Bloch functions
that are initially restricted to a single wave vector ko; let
{y j,kn};v:l span the low-energy subspace at wave vector k.
In the adiabatic limit, the time-evolution propagator is the
unitary generated by H over one fundamental Bloch period;
this propagator can be expressed in the basis of {y j,ko}lj\’: | as
the time-ordered exponential (denoted by exp)

Ty
U(Tp) = W[i (F A(k(1)) — Qf(k(f)))df/h} 4)
0

with the non-Abelian Berry connection [9,11]

Aj (k) = (uj ik |ujr i) cenns (5)
and the energy matrix
€ (k) = (ujrle™™ Hoe™ |ujo k)cen; (6)

u;jx is the cell-periodic component of ¥, and (f|g)
denotes the inner product over one unit cell.

Subsequently, we will exploit symmetry to deduce spectral
constraints on the propagator over one fundamental period
[cf. Eq. (4)]. Therefore it is useful to have a definition of
period multiplication for the stroboscopic time evolution of
the quantum expectation value {(O)(t = jTp)}jcz., of a
translation-invariant observable O; this definition would be
different but closely analogous to our previous definition for
continuous-time evolution (cf. Secs. I and IIIB).

Definition 1. Fourier transform {{O)(t = jTs)}ez.,, and
identify the Fourier peak lying at the smallest rational multiple
of the fundamental frequency 27/ Tp. The rational multiplier
is of the form 1/p, with p a positive integer that is defined as
the period multiplier for stroboscopic Bloch oscillations.

Defining {e"‘/’f};"=1 as the eigenvalues of U(Tg), pairwise
differences in the adiabatic phase (¢; — ¢;) manifest as
Fourier peaks in the stroboscopic time evolution. The goal
of this section is to prove that the spectrum has a ladderlike
structure: ¢— ¢ + 2 /). That is, for every ¢;, there exists a
@j = @; + 2/ mod 2m. For a state initialized as a Bloch
function, stroboscopic Bloch oscillations therefore occur with

cell
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multiplier . This complements our previous result for the
adiabatic time evolution of a spatially localized initial state, for
which continuous Bloch oscillations occur with multiplier 1.

What s the origin of this ladder structure? A clue to its origin
arises from the following observation: the ladder structure
exists even in the purely geometric component of the adiabatic
propagator, but not in the purely dynamical component. To
elaborate, let us define VV as equal to U (T ) with a zero energy
matrix; YWisan N x N matrix representation of holonomy, and
is expressible as a path-ordered exponential (also denoted exp)
of the non-Abelian Berry connection [9,11],

G
w =m[i/ A(k)dk], 7
0

with G = fOTB Fdt/h a primitive reciprocal vector. Defining
{e!?7}_, as the eigenvalues of W, then the Zak phases ¢;
satisfy the same translational property: ¢—¢ + 27 /1.

Let us explain this ladder for the screw-symmetric (g4.1)
four-band subspace illustrated in Figs. 1(a) and 1(b); N =
= 4. Since (g4,1 )* is a lattice translation that is represented
on Bloch functions as e ~¥¢ the eigenvalues of g4 fall into four
k-dependent branches: {i/e~"**/*}_,. When k is advanced by
a primitive reciprocal period G, the representation indexed by
j is permuted to j — 1 in the reduced-zone scheme; only after
four periods does the representation recur: j — 4=j, implying
that bands are connected minimally in sets of four, as illustrated
in Fig. 1(b). This symmetry permutation during adiabatic
transport is imprinted on WV, which encodes how the wave
function evolves as a function of k; note that the connection
[cf. Eq. (5)] involves derivatives of the cell-periodic function
with respect to k. Precisely, W is equivalent (modulo a band-
independent phase) to a u cycle, i.e., W cyclically permutes
all w basis vectors. The ladder structure arises because such
a permutation matrix has eigenvalues {e**"//m1}! .

It is instructive to compare the Zak phase ladder to the
Wannier-Stark ladder described in Sec. III B. A comparison can
be made by utilizing the known spectral equivalence between
the projected position operator Pz P and —i In W: [20] namely,
for any eigenvalue @w; of Pz P, there exists a Zak phase such
that ¢; = Gw; mod 2m. This equivalence shows that the
ladder structures of ¢ and Pz P are complementary—the latter
is a simple consequence of Wannier functions being related
by a nonsymmorphic symmetry (cf. Sec. IIIB). The above
spectral equivalence is the first appearance of a multiband
Zak-Wannier relation, which is a one-to-one correspondence
between Zak phases (defined modulo 257 ) and Wannier centers
(defined modulo lattice translations).

The ladder structure of ¢ persists when dynamical con-
tributions are included, i.e., the adiabatic phase ¢ (inclusive
of geometric and dynamical contributions) also has a ladder
structure, as proven in Appendix A. Let us first consider the
simplest cases with the minimal number of bands allowable by
&n,p and time-reversal symmetries: N = | bands for integer-
spin representations [as exemplified by the fourfold-screw-
symmetric chain in Figs. 1(a) and 1(b)], or N = 2 bands
for half-integer-spin representations [exemplified by a glide-
symmetric chain with the hourglass dispersion of Fig. 2(c)]. In
these cases, {¢; }9’:1 and {¢; }?’:1 differ only by a constant offset
(modulo 2m). The general structure of the eigenvalues and

eigenvectors of U(T) for possibly more than one connected
component, is detailed in Appendix A.

We remark that a ladderlike structure (with p = 2) for the
Zak phase ¢ has been previously noted in a glide-symmetric
generalization of the Su-Schrieffer-Heeger model [41], how-
ever it was not appreciated therein that the complete adiabatic
phase ¢ would have the same ladder structure. The proposed
realization of this “two-leg” Su-Schrieffer-Heeger model by
ultracold atoms [41] offers an experimental test of period-
doubled Bloch oscillations.

D. Generalization to three dimensions

The above discussion is simply generalized to higher-
dimensional Bravais lattices with a nonsymmorphic symmetry
8n,p = (&ulpa/n) (we remind the reader of the definitions of
&n,p» &n» P, 1, a in Table III). Stroboscopic Bloch oscillations
with p > 1 occur if (i) the force is directed parallel to a prim-
itive reciprocal vector G dual to a, and (ii) the initial state is a
linear combination of Bloch functions with g, ,-invariant wave
vectors, i.e., wave vectors which satisfy g,ko = ko modulo
reciprocal vectors. For screw (respectively, glide) symmetry,
the g, ,-invariant wave vectors form a line (respectively, a
plane) in the 3D Brillouin-zone (BZ).

IV. BLOCH OSCILLATIONS IN A 1 FIELD

A. Motivational example on a honeycomb lattice

Let us begin with the conceptually simplest example of
period-multiplied Bloch oscillations in a L field; this exam-
ple has been realized experimentally with ultracold atoms
in optical lattices, as we elaborate in Sec. VIIIF. In real
space, the band subspace is represented by spatially localized
Wannier functions (s orbitals, for simplicity) centered on the
honeycomb lattice, as illustrated in Fig. 1(c). Denoting the
coordinates of two nearest-neighbor Wannier centers as @
and @,, all other Wannier centers are obtained by lattice
translations. The spatial distribution of all Wannier centers is
invariant under the space group G = p6m, whose point group
is generated by a sixfold rotation and a reflection.

We align afield F perpendicular to the rotational axis (hence
the name L field) and parallel to a primitive reciprocal vector
G; we assume that the field induces transport that is adiabatic
with respect to the above-mentioned band subspace.’ Let us
demonstrate that this band subspace realizes threefold period
multiplication. Field-induced dynamics of Wannier functions
can heuristically be modelled by the dynamics of point charges
on the honeycomb lattice; we will justify this heuristic model
in the next section. The field couples to a point charge with
coordinate @ as a scalar potential —F-w, and the dynamical
phase acquired by this charge over one fundamental Bloch
period is — foT” F-wdt = —G-w. In particular, due to @,
and @, being related by a sixfold rotation, the dynamical
phase difference acquired by nearest-neighbor point charges
over Tp is G-(w| — w,) = 2w /3 mod 27. Only after three
fundamental periods do all pairwise phase differences become

A justification of the adiabatic approximation is provided in
Sec. VIITA.
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integer multiples of 2m, hence returning the point charges
to their initial state (modulo a global phase) at time zero.
The previously mentioned ultracold-atomic experiment has
measured this threefold multiplication, as we elaborate further
in Sec. VIIIF.

To what extent is this classical description by point charges
valid? This description is classical in the sense that the
coordinates of Wannier centers are simultaneous eigenvalues
of the projected position operators PxP and PyP, with
P projecting to the above-mentioned band subspace. It is
not a priori obvious that these two operators commute. A
famous counterexample where strong quantum fluctuations
(with respect to Px P and Py P) are topologically quantized
is a band subspace with a nonzero Chern number [15], as we
further explore in Sec. VI. Since such Chern bands break time-
reversal symmetry, one may hope that imposing time-reversal
symmetry guarantees the above commutation. This expectation
is correct for single-band subspaces, if we further impose
a spatial point group symmetry—that of spatial inversion
[27]. In general, no symmetry enforces [Px P, PyP] = 0 for
multiband subspaces such as that of Fig. 1(c); we remind the
reader that period-multiplied Bloch oscillations only occur in
multiband subspaces. We are therefore motivated to formulate
criteria—going beyond group-theoretic criteria—that identify
multiband subspaces with commuting projected position op-
erators, i.e., subspaces whose dynamics can be described by
classical point charges. Such subspaces are referred to as
strong elementary band representations (strong EBRs). Then
by imposing symmetry restrictions on the positions of these
point charges (just as sixfold symmetry related w; and @,
within one unit cell in the above example), we identify a
subclass of strong EBRs which exhibit period multiplication.
This program is carried out exhaustively for the 2D space
groups (known as wallpaper groups) in Sec. IV B.

Spatially extended functions such as Bloch functions repre-
sent the opposite extreme to classical point charges. Yet period
multiplication may also be understood from the complemen-
tary perspective of adiabatic transport of Bloch functions. In
the honeycomb example, we consider transport along the bent
loop Cs, as illustrated in Fig. 1(d); this loop was chosen to
exploit the point group symmetry of the honeycomb: half the

loop is mapped to the other half by threefold rotation. The
analog of two nearest-neighbor Wannier functions acquiring a
dynamical phase difference of 27 /3 is that the Bloch functions
acquire a geometric Zak phase difference of 277/3 along Cs.
This is elaborated in Sec. IVD, where we also present a
general theorem that identifies symmetry-protected Zak phases
in space-group-symmetric band subspaces.

The culmination of this analogy between real- and k-
space perspectives is our derivation of a one-to-one cor-
respondence between symmetry-protected Zak phases and
symmetry-protected Wannier centers. Such multiband Zak-
Wannier relations are developed in Sec. IV C-IV D 3 for strong
EBRs, and more generally for band representations in Sec. V.

B. Bloch oscillations with £, > 1 from the perspective
of Wannier functions

To simplify the presentation in the remainder of this work,
we specialize to a field that is perpendicular to a rotational axis
or a reflection plane. Both rotations and reflections involve
no fractional lattice translations (p = 0), and are classified as
symmorphic symmetries. Hence, we may just as well drop the
second subscript in g, , (the definitions of g, ,, p and n are
summarized in Table III). Essentially the same physics occurs
for a field that is perpendicular to a nonsymmorphic screw axis
or glide plane.®

Our motivational example on a honeycomb lattice belongs
to a broader class of band subspaces which form a represen-
tation of a space group G on Wannier functions (in short,
a Wannier representation of G). The Wannier functions are
centered on a 2D lattice (illustrated in Fig. 3), where each lattice
site (@) is invariant under an order-n point group symmetry
(gn) that is tabulated in Table 1. For example, the honeycomb
lattice has the space group G = p6m and the point group

®As explained in the previous section, the nontrivial effect of
nonsymmorphic symmetries originates from the monodromy of
symmetry representations as k is advanced by a reciprocal vector
G|; G is parallel to the screw axis or glide plane. This monodromy
does not affect adiabatic transport that is induced by a field lying
perpendicular to Gy.

TABLE 1. Data of Fig. 3; cf. Table III for summary of symbols; we follow standard notation to denote point groups [44]; for both P and
‘P isomorphic point groups are listed. For the point group elements g,, &, we denote a 277 /n rotation about an axis perpendicular to the plane
by C,, a reflection that inverts the coordinate a by M,, a reflection that maps (x, y)—(y, x) by M, ,, and a glide composed of M, with half
a lattice translation by g,. h € P/P,, is a symmetry that relates distinct g,-invariant Wyckoff positions. Wyckoft positions (@) are labeled as
Mg, with multiplicity M > 1, and g a label for points in the unit cell (following the notation of the International Tables for Crystallography

[42]).

G w 8n Pou heP/Py hat
pmg (2&, va 26) (C27 C27 Mr) (CZ, C2s Cv) (gyv 8y gy) (2, 27 2)
44 (2a, 2b) (G, Gy) (G, ) (8xs &) 2.2
cmm 4c C, C, M, 2
p4 2c C2 Cz C4 2
p4m 2c Cz sz C4 2
pag (2a, 2b, 4c) (C4, Coy Misy) (C4, Coy, Cy) (8x, Cs, C4) 2,2,2)
p31m 2b C3 C3 Mx 3
po (2b,3¢) (G5, 6) (G5, 6) (Cs, Co) (3.2)
pom (2b, 3c) (G5, Cy) (Cav, Co) (Cs, Co) (3.2)
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FIG. 3. Examples of strong elementary band representations
(EBRs), which manifest period-multiplied Bloch oscillations; the
corresponding period multipliers are listed in Table 1. Each EBR is
specified by a wallpaper group (first column), a Wyckoff position
(second column, left), and the symmetry representation of Wannier
functions centered on this Wyckoff position. Each Wannier func-
tion is illustrated as a blob over the real-space Wigner-Seitz unit
cell (second column, right). The shape of the blob indicates the

P =~ Cs, (= denotes a group isomorphism); the latter is gen-
erated by a sixfold rotation and a reflection. Each honeycomb
vertex is invariant under a threefold rotation g3 = Cs ;.

We shall further particularize to band subspaces whose
Wannier functions are locally symmetric. Such band subspaces
are known as band representations (BRs) and have been
introduced in Sec. II; here we would provide a more precise
formulation. Central to the formulation of BRs is the notion
of a Wyckoff position. Given a space group G, a Wyckoff
position @w is simply a point in space with an associated
symmetry: the subgroup of G that preserves @ . This subgroup
is defined as the stabilizer of w and denoted by P,, C G; each
g € P, has a trivial action on w: gow = w. Any stabilizer
is by construction a point group, however it need not be
isomorphic to the point group P = G /7T of G. For example,
if w is a generic position, then P, is the trivial group. In
the motivational example of Sec. IV A illustrated in Fig. 1(c),
a honeycomb vertex w; (denoted as 2b in the International
Tables for Crystallography [42]) is invariant under threefold
rotation and reflection (as indicated by the dotted line in the
corresponding entry of Fig. 3)—these symmetries generate
the point group P, =~ Cs3,, which is a subgroup of the point
group P =~ Cg, of G = p6m. In comparison, the center of the
honeycomb plaquette has a stabilizer that is isomorphic to P.
To recapitulate,

Definition 2. A Wyckoff position w of a d-dimensional
space group G is defined as a point in R? with an associated
stabilizer P, C P; for points in R¢ obtained by action of G
on w (denoted gow for g € G), the corresponding stabilizers
are conjugate to P, . For symmetries 1 € P /P, that do not
stabilize w, how is called a different representative of @ .

A useful characterization of a Wyckoff position is its mul-
tiplicity, which counts the number of distinct but symmetry-
related positions in the primitive unit cell.”

Definition 3. If gow — w is a Bravais lattice vector for all
g € G, then we say that w has unit multiplicity. Generally,
the multiplicity M,, of a Wyckoff position @ (with associated
space group G, point group P of space group, and stabilizer
Pw)isequal to My, = |P|/|Pyl.

Here, |H| denotes the order of a group H. For the hon-
eycomb example, M, = 2 because @ is mapped onto the
different representative w, by Cg¢ € P/P,. We are ready to
define a BR:

"The multiplicity M,, used in the International Table for Crystal-
lography [42] differs from our definition for unit cells that are not
primitive, e.g. cm and cmm. In Appendix C2, we are more explicit
about this difference and its implication on u |

local symmetry of the Wannier function: circles stand for fourfold
rotations, triangles for threefold rotations, and ellipses either for
twofold rotations or reflections; same-colored blobs are related by
lattice translations, different-colored blobs by point-group operations.
Dotted (respectively, long-dashed) lines indicate mirror-invariant
(respectively, glide-invariant) lines. In the corresponding Brillouin
zones (third column), we illustrate the loops (C,, violet lines) and the
gn-invariant wave vectors (I" and K, violet dots).
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Definition 4. A band representation (BR) of G is a Wannier
representation of G that satisfies a local symmetry condition:
for each Wyckoff position @, all Wannier functions centered
at w form a unitary, finite-dimensional representation (V,,) of
the stabilizer P, .

V& shall be referred to as the on-site representation of
Pw. In the honeycomb example, the single s-like Wannier
function centered on @w; forms a trivial representation (E)
of C3,, hence this example may be identified as a BR of
G = p6bm with the identifying data (w =2b,V, = E). A
BR of G is fully specified by the data {(w, Vy )}, for all
symmetry-unrelated w. An equivalent [43] definition of BRs
(by induced representations) is also available in the literature
[22-24]. In general, not all Wannier representations of G are
BRs of G; a counter-example is the Kane-Mele model explored
in Sec. VIL

All illustrated band subspaces in Fig. 3 are BRs that exhibit
period-multipied Bloch oscillations (with a multiplier ;; > 1
that divides ») in their atomic limit.

Definition 5. Suppose a BR of a space group G is specified
by the data {(@, V )}« . The atomic limit of this BR (in short,
atomic BR) is defined as a G-symmetric separation of all its
Wannier centers, i.e., the separations |g o w — g’ o w'|—>00
for all g, g’ € G and for any pair of Wannier centers @, w’,
while fixing ratios of (distinct) Wannier separations.®

There is a less general but operationally useful definition of
an atomic BR. This definition applies only to BRs {(@, V, )}
that are energy bands of a tight-binding Hamiltonian; it is
further supposed that the tight-binding basis functions are
centered on {w },. Then the atomic limit of a BR, defined with
respect to this set of @, is obtained by symmetrically tuning
all tight-binding matrix elements (i.e., hopping amplitudes)
between different @w to zero. Since large Wannier separations
imply exponentially weak hopping amplitudes, we expect
that both definitions should coincide within a tight-binding
formalism. From the perspective of transport experiments, the
atomic BR well approximates dynamics under a field F if
the characteristic hopping strength (or characteristic energy
splitting within the BR) is much smaller than Fa, with a
a lattice constant; this is elaborated in Sec. VIIIE. We will
demonstrate (in Sec. IV C) that the atomic BR is a realistic
approximation of cold atoms trapped in optical lattices (with
deep, well-separated troughs) [12]. In principle, the atomic
EBR may also be a good description of some organic solids
[45.46].

Let us first expand upon the heuristic discussion of
continuous-time Bloch oscillations for the honeycomb lattice
in Sec. IVA. This discussion applies more generally to all
BRs illustrated in Fig. 3. We assume that each of these
BRs is a low-energy band subspace of a translation-invariant
Hamiltonian Hy; this subspace is projected by the operator
P=>r Zyzl Pj g, where R is summed over the Bravais
lattice, and P; g is the projection operator to Wannier functions
centeredat @ ; + R, with j =1, ..., M, labeling all different

8In electronic solids where the Fermi level lies in a spectral gap,
atomic BRs may be identified with the colloquially coined “atomic
insulator.” In this work, we do not consider insulators in the context
of Bloch oscillations.

Wannier centers within one primitive unit cell. For the honey-
comb lattice illustrated in Fig. 1(c), P; o projects onto a single
s-orbital centered at site w ; for j =1, 2.

In the presence of a field, we assume that dynamics is
adiabatic within the low-energy subspace projected by P.
In the atomic limit, Wannier functions centered on different
coordinates are decoupled, hence the adiabatic propagator
factorizes multiplicatively as

UatomiC(TB) — ¢ iEoTs/h Z eiG,,szj Pj,R~ ®)
iR

E, is the degenerate energy of the spectrally flattened bands;
this flattening originates from the absence of hybridization
between spatially separated, exponentially localized Wannier
functions [6]. The reciprocal vector G, = fOTB F(t)dt/h is
chosen for g,-symmetric lattices as

G,=8K,—K,, )

where K, is a g,-invariant wave vector on the boundary of the
first BZ.

All BRs in Fig. 3 satisfy that nearest-neighbor, g,-invariant
Wannier centers (@ j/, @ ;) are unrelated by a lattice transla-
tion, but are instead related by a point-group transformation A
(possibly composed with a lattice translation). % is necessarily
distinct from g,, since each of w ;; and @ ; is g,-invariant;
formally, wesay h € P /Py, withg, € Pg,.Inthehoneycomb
example, we have already noticed that a sixfold rotation (/)
relates nearest-neighbor Wannier centers. For all lattices in
Fig. 3, the dynamical phase difference acquired over one
fundamental period [cf. Eq. (8)], for a h-related Wannier pair,
equals

2
G, (w; —w;)| = il mod 27, (x. > 1) divides n.
XL
(10)

More generally, for any pair of Wannier functions separated
byw;,+R—wj,

eiXLG,,(‘w',-JerBJv/) — 1’ (10/)

for all lattice vectors R. y; = 3 for the honeycomb lattice; the
data {g,, h, x. } for the other lattices in Fig. 3 is tabulated in
Table I.

Example of x, = 2. Consider G = pmg, w = 2a and
gn = C,; (Table I): the two C; .-symmetric Wannier functions
per unit cell (cf. Fig. 3) are mapped onto each other by a glide
(h = g,) which inverts the y coordinate and translates by half a
lattice constant in the x direction; the two Wannier centers are
therefore separated by half a lattice constant in the x direction,
thus x, = 2.

The combination of Eq. (8) and Eq. (10’) implies that
stroboscopic expectation values (O)(jTg) of an observable O
only have Fourier peaks at integer multiples of 27 /(x . Tg).
We have thus established an identity between, x,, a prop-
erty of the real space Wyckoff positions of bands, and 1,
the period multiplier in the stroboscopic Bloch oscillations
(cf. Definition 1):

For atomic BRs, x, = u,. (1
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We have claimed that Fig. 3 represents a subclass of BRs which
satisfy Eqgs. (8)—(10") (and hence realize period-multiplied
Bloch oscillations). Equations (8) and (10') hold because of
three characteristic properties of this subclass. These prop-
erties will be stated and exemplified in the subsequent three
sections (Sec. IVB 1 to Sec. IV B 3), before we prove that they
sufficiently lead to Egs. (8)—(10’) (cf. Sec. IVB4).

1. First property: Elementary band representations

The first characteristic is that the BRs are elementary.

Definition 6. An elementary band representation (EBR) of
G is a BR of G that cannot be split into smaller BRs of G.
An EBR is specified by a single Wyckoff position @, as well
as a unitary irreducible representation V,, of the stabilizer P,,
[47]. A BR that is not elementary is defined to be composite.

For an EBR of G with data (w, V,) and associated
multiplicity M, of @, the total number of Wannier functions
in one primitive unit cell is equal to N = M, dim V,;; this
is equivalently the number of independent Bloch functions at
each wave vector. EBRs may be viewed as the building blocks
of composite BRs (i.e., nonelementary BRs), in analogy with
how irreducible representations of finite groups are the building
blocks of reducible representation.’

Example of an EBR in a reflection-asymmetric checker-
board lattice. We consider an EBR of the space group G = p4
and Wyckoff position w = 2¢ (Table I). The real space unit
cell contains M,, = 2 s-like Wannier functions (or simply, s
orbitals) centered at w | (red blobs in the corresponding row of
Fig. 3) and @, (blue blobs). These two centers are individually
invariant under g» = C,;; w; and w, are mutually related
by h = C4, € P/Ps. This implies that the s orbitals are
individually C; . -invariant and are mapped onto each other
(or each others translate) by Cy ;.

2. Second property: Strong band representations

A second characteristic of the subclass is that their Wannier
functions are strongly localized.

Definition 7. Let a BR of space group G be specified by
the data {(w, V5 )}» and P be the projection operator for
this BR. This BR is strong if G enforces that PxP and
PyP commute in the atomic limit (defined with respect to
{w}4 in Definition 5). Equivalently [27], a BR is strong if G
enforces that the non-Abelian Berry curvature F*” (k), defined
as o, A% (k) — o, AY(k) + i[AY(k), A* (k)] [cf. A in Eq. (5)],
vanishes in the atomic limit.

The above definition applies to both elementary and com-
posite BRs. A BR that is not strong is defined to be weak.
In Sec. IVBS5, we propose a sufficient symmetry criterion to
identify strong BRs.

3. Third property: Conditions on the Wyckoff position

The third and last characteristic of the subclass are a set of
conditions on the Wyckoff position w. (i) g, € Py : g, is an
on-site symmetry of order n > 1. Such @ is also referred to as
nongeneric Wyckoff position. (ii) M, > 1 : the multiplicity

°It should be clarified, though, that an EBR is not an irreducible
representation of a space group [24].

of the Wyckoff position is greater than one. (iii) At least
two different representatives (w ;, @ ;-) of w lie on spatially
separated g,-invariant points for g, a rotation (respectively,
g»>-invariant lines for g, a reflection), which are not related by
lattice translations.

Condition (ii) rules out 1D space groups. All three condi-
tions are only satisfied for Wyckoff positions in nine out of
seventeen wallpaper groups, which are all illustrated in Fig. 3
and summarized in Table I. If g, is a mirror, twofold or fourfold
rotational symmetry (n = 2,4), there exists an additional
mirror, glide, twofold or fourfold rotational symmetry which
resultsin x; = 2;if g, is a threefold rotational symmetry (n =
3), a mirror or sixfold rotational symmetry signifies x; = 3;
no case exists with g, being Cg , or glide. One may verify that
in the previous reflection-asymmetric checkerboard example
(Sec.IV B 1), conditions (i)—(iii) are satisfied, therefore Egs. (9)
and (10) hold forn =2 and x, = 2.

4. The three properties sufficiently lead to Eqs. (8)-(10’)

Composite BRs are less favored to realize period-multiplied
Bloch oscillations due to the following reason: a composite
BR may split into multiple EBRs which have different on-
site energies in the atomic limit—this would invalidate the
factorization of Eq. (8). Let us presently focus on the Bloch-
oscillatory phenomena of EBRs, and postpone a discussion of
composite BRs to Sec. V.

In the atomic limit of a strong EBR, its Wannier functions
simultaneously diagonalize PxP and PyP; in this sense
do Wannier functions resemble classical point charges that
simultaneously diagonalize x and y. The spectrum of PrP
is generated from @ by action of G. Further utilizing the
exponential localization [33,48] of these Wannier functions,
together with the spectral-flattening of bands in the atomic
limit, we derive Eq. (8).

In Appendix C 2, we prove that (i)—(iii) (in Sec. IV B 3) are
necessary and sufficient conditions on the Wyckoff position w
such that Egs. (10) and (10’) are satisfied. This completes the
proof.

5. Sufficient symmetry criterion for strong BRs

Let us propose a sufficient symmetry criterion to identify
strong BRs. Equivalently stated, it is a sufficient symmetry
criterion for the vanishing of the non-Abelian curvature F*”
for band representations in their atomic limit.

It is tempting to believe that EBRs, being in some sense the
simplest types of gapped subspaces, should al// have vanishing
curvature in the atomic limit. We provide a counter-example in
Fig. 4(b), which illustrates p, and p, orbitals on each vertex of
ahoneycomb lattice. Under application of an in-plane field, the
p orbitals on each vertex generically hybridize and split away
from the honeycomb vertex; this reflects the noncommutativity
of PxP and PyP. This exemplifies an EBR that is weak, as
we further elaborate in the Example below.

This motivates a precise symmetry criterion that distin-
guishes between BRs which are elementary versus composite
(not elementary), and strong versus weak (not strong); a Venn
diagram is illustrated in Fig. 4(a). To clarify, an EBR consists
of a single-particle Hilbert space spanned by Bloch functions
at each k; the Hilbert space of a composite BR, which consists
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FIG. 4. (a) Venn diagram of the possible types of band represen-
tations (BRs) of wallpaper groups: strong (red background) vs weak
(purple), elementary (plain) vs composite (dotted). (b)—(e) illustrate
the real-space unit cells of four BRs; these four examples represent
three of the four categories in (a). The Wigner-Seitz unit cell is
delineated by a solid white line, and mirror-invariant lines are dashed.
Wannier functions are illustrated schematically as circular blobs (for
s-like orbitals) and crosslike blobs (for p, and p, orbitals). The center
of (d) illustrates three Wannier functions (s, p, p,) localized on the
same site. For the BRs illustrated in (d) and (e), their corresponding
symmetry eigenvalues (at high-symmetry wave vectors) and Zak
phase factors are summarized in Table II with the same labels: (d)
and (e).

of two EBRs is the direct sum of the Hilbert spaces of the
individual EBRs at each k. We will further refer to such a
composite BR as being obtained by ‘“stacking” of the two
EBRs. Examples of stacking are illustrated in Figs. 4(c)—4(e).

We propose a sufficient criterion for 2D strong BRs, which
utilizes the simplification of

[PxP, PyP1"™™ 8" N [P, px P g, PiryPirl.  (12)
J.R

owing to the exponential-localization of Wannier functions.
The right-hand side of Eq. (12) vanishes for P; g of rank one;
this is the case for all examples shown in Fig. 3, including
the reflection-asymmetric checkerboard example introduced
in Sec. IVB 1. However, for P; g of rank larger than one, this
need not be the case, as has been exemplified by the p, and
py orbitals in a honeycomb lattice. A sufficient condition for
commutativity of the locally projected position operators is
that the on-site symmetry (P, 1) enforces

Pir(r-vj)) Pjr=(w; +R) -v; Pjg, (13)

for at least one unit vector v; in the 2D plane; generally, v; is
allowed to depend on the Wannier center labeled by j. The
advantage of formulating Eq. (13) is that Eq. (13) follows
directly from matrix-element selection rules that are detailed
in Appendix B in full generality. To give a flavor of the more
general result, we offer one application of these rules to identify
a strong and a weak EBR.

Example of a strong and weak EBR. Let us consider EBRs
for which symmetry enforces that

P rxPjr = PjryPjr =0, (14)

for a spatial origin that is fixed to the Wannier center; these
EBRs are necessarily strong, since Eq. (13) is satisfied trivially.
A casein point is a two-band EBR (of the wallpaper group G =
p4m), which comprises pairs of p, and p, orbitals centered
on the vertices of a square lattice. Each pair transforms in

a two-dimensional irreducible vector-representation (X) of
the on-site symmetry group Cu,, which is generated by a
fourfold rotation and a mirror symmetry. Moreover, the two-
dimensional position operator r = (x, y) also transforms in the
vector representation X. Applying a matrix-element selection
rule [44], Eq. (14) is satisfied if X*®X®X, with X* the
complex-conjugate representation of X, does not contain the
trivial representation. Indeed, from X* = X and inspection of
the character table for Cy, [44], we derive that X*QX®X =
4X, which proves the claim. On the other hand, for pairs of p,
and p, orbitals centered on the vertices of a honeycomb lattice
(wallpaper group G = pbm), the on-site symmetry group
(C3y) is generated by a threefold rotation and a reflection. For X
that is the vector, irreducible representation of C3,,, X*Q@X®X
contains the trivial representation, hence Eq. (14) is generically
not satisfied. Further arguments in Appendix B 4 demonstrate
that P; gxP; g and P; gy P; g generically do not commute,
hence this is an example of a weak EBR.

Other than the selection rules detailed in Appendix B, we
are not aware of any other group-theoretic rules that ensure
the commutativity of P; gx P; g and P; gy P;j g. Therefore it
is possible to adopt an operationally more useful definition of a
strong BR: a BR of a space group G is strong if the symmetries
in G enforce that Eq. (13) is satisfied for all Wannier centers.
We believe this definition is equivalent to that in Definition 7.

C. Zak phases of strong, atomic EBRs

Period-multiplied Bloch oscillations for strong, atomic
EBRs can alternatively be described by quantized differences
in Zak phases. This dual perspective exists owing to a multi-
band Zak-Wannier relation that we propose here. This relation
describes, for the first time, a one-to-one correspondence
between Zak phases and the centers of Wannier functions
(which are localized in all spatial directions). For further
motivation, differences in Zak phases are directly measurable
in cold-atomic experiments [12,29].

Let us first review how Zak phases appear in adiabatic
transport [10]. We consider the adiabatic transport of a Bloch
function ¥ g, (the definition of K, may be recalled from
Table III) along an arbitrary loop C that wraps around the
Brillouin torus in the direction of a primitive reciprocal vector
G|[C]. The geometric component (W) of the adiabatic propa-
gator [cf. Eq. (4)] is expressible as a path-ordered exponential
(denoted exp) of the non-Abelian Berry connection A [cf.
Eq. (59)][9,11]:

WIC] :m[if A(k) - dk]. (15)
C

This is a simple generalization of Eq. (7) to loops in higher-
dimensional k space. W, also known as the Wilson loop
or holonomy matrix, is related to the projected position
operator as

s, o501  Pre-ak1v,.x)
=8(ky — K, — G)WIC]} ; (16)

we prove this equality in Appendix D.
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Applying Eq. (16) and the defining properties of strong,
atomic EBRs, we prove in Appendix D 2 that

For strong, atomic EBRs with data (w, V),
¢$;/[C1=G-w;mod2x, j=1,...,N, 17

where {e/?/}Y_, are the eigenvalues of W[C], and @ ; (the
Wannier centers) lie on different representatives of the Wyckoft
position @ . The above Zak-Wannier relation applies to strong,
atomic of EBRs of any (magnetic) space group, and in any
spatial dimension d. The Zak phase ¢;[C] is independent of
continuous deformations of the path C in k space. Precisely,
¢;[C] depends only on G (which specifies the homotopy class
of loops in the Brillouin torus) but not on specific local-in-k
details of the trajectory. This robustness of ¢; exemplifies a
more general statement in bundle theory: that the holonomy of
vector bundles with zero non-Abelian curvature depends only
on the homotopy class of the loop [49].

We are ready to rederive stroboscopic Bloch oscillations for
the strong, atomic EBRs which satisfy conditions (i)—(iii) in
Sec. IVB 3. Owing to the triviality of the dynamical phase in
the atomic limit, it is sufficient to consider the geometric Zak
phase. In particular, we consider the Zak phases for special
loops C for which G[(] satisfies Eq. (9). Combining Eq. (17)
with Egs. (10) and (10'), we derive that all Zak phase factors
are nth roots of unity; in particular, a pair of Zak phases differ
by i—i with u; = x4 > 1. Only after u, fundamental periods
do all pairwise Zak-phase differences equal an integer multiple
of 2, which completes the rederivation.

Application of Zak-Wannier relation to strong, atomic EBR
on the honeycomb lattice. The example introduced in Sec. IV A
is a strong, atomic EBR of wallpaper group G = p6bm, with
Wyckoff position 2b and a trivial on-site representation (one
s orbital per honeycomb vertex). Let us utilize Eq. (17) to
determine the Zak phases for the bent loop C; [cf. Fig. 1(d)],
i.e., we input the Wannier centers w; and w, illustrated in
Fig. 1(c)] and the reciprocal vector G [Fig. 1(d)]. For any
choice of real-space origin that is threefold symmetric (e.g., the
center of the honeycomb plaquette), ¢; »[C3] are integer multi-
ples of 27t /3. For any choice of origin (symmetric or generic),
|¢1[C3] — ¢2[C3]| = 2mr/3. This quantized difference in Zak
phase is responsible for the threefold period multiplication
that was alternatively derived in Sec. V A. The nonuniqueness
of individual Zak phases is discussed from a more general
perspective in point (ii) of Sec. IVD 1. The invariance of
¢; (under continuous deformations of the loop) implies that
@;[C2] = ¢;[C3], where C; is the straight loop drawn in Fig. 3.
It is remarkable that |¢;[C2] — ¢2[C2]| = 2.06(3)7 /3 has been
measured[12] for a cold-atomic realization of this EBR, as
elaborated in Sec. VIIIF—we view this as evidence that the
atomic EBR, despite being an idealization, can nevertheless be
a useful description of experimental systems.

D. Relating symmetry-protected Zak phases to point group
representations and Wannier centers

What may be said about adiabatic transport of strong EBRs
[which satisfy conditions (i)—(iii) in Sec. IV B3] when we
deviate from the idealized atomic limit? Due to tunneling
between finitely separated Wannier functions, energy bands (at

zero field) would no longer be flat and degenerate. A nontrivial
energy-momentum dispersion would introduce a dynamical
correction to the time-evolution propagator [cf. Eq. (8)],
and ultimately disrupts period-multiplied Bloch oscillations.
The nature of this disruption is elaborated and quantified in
Sec. VIIIE.

In spite of this disruption, we will demonstrate that a sharp
signature persists in the geometric component [cf. Eq. (15)]
of the adiabatic evolution. To recapitulate the main result of
Sec. IVC, we have derived the spectrum of the Wilson loop
WIC] for the above-stated EBRs in their atomic limit: the
eigenvalues of W[C] are fixed to nth roots of unity, and are
insensitive to continuous deformations of the loop C. For finite
Wannier separations, we will demonstrate that the eigenvalues
of W[C] remain fixed to nth roots of unity, if we impose an
additional symmetry restriction on C: namely, C must intersect
two distinct g,-invariant wave vectors (the BZ center I' and
K ), such that half of the loop is mapped to the other half
by g,. Such symmetry-restricted loops will be denoted by an
additional subscript: C,. Note that the reciprocal lattice vector
G|[C,] automatically satisfies Eq. (9). Various examples of C,
(with g, an n-fold rotation) are illustrated in the last column
of Fig. 3.

The robustness of the Zak phases (over C,) is justified by
a theorem, which will first be presented in Sec. IVD 1. In
Sec. IVD 3, we will apply the theorem to answer the question
that has been posed here.

1. Theorem on symmetry-protected Zak phases

Briefly stated, the theorem inputs the g,-symmetry rep-
resentation of the N-dimensional gapped subspace at g,-
invariant wave vectors, and outputs eigenvalues of WI[C,]
that are robustly fixed to nth roots of unity. Specifically, the
input are the eigenvalues of the matrix representation at the
two g,-invariant wave vectors K =I" or = K,,, which are
intersected by C,.

To elaborate, a symmetry g, = (8,|t) acts on Bloch
functions Y (r) as &, ¥k (r) = ¥ (g, 'r — t); for half-integer-
spin representations, there is an additional action on the spinor
component of the Bloch function [19,44]. For an N-band
subspace, the N x N matrix representation of g, on the
cell-periodic component of ¥ is derived from the above action
to be

lon (K15 = e F™uj 5.k |8altj K )een,  (18)

where F' = 0 (respectively, = 1) for integer-spin (respectively,
half-integer-spin) representations; we remind the reader of the
definitions of g, ¢ in Table III. All eigenvalues of p,(K) are
nth roots of unity, owing to the assumed periodicity of v/; x in
reciprocal translations, as well as §” = ¢/f™ (composed with
a lattice translation if g, is nonsymmorphic). The output of
the theorem is a (possibly empty) subset of the WV spectrum
whose elements are also nth roots of unity. This subset is
robust to perturbations of the Hamiltonian H, that preserve the
spectral gap as well as the symmetries of discrete translations
and g,—in short, we say that the subset is g,-protected.
Before we state the theorem, let us define m;(K) €
{0, ..., N} as the number of eigenvalues of p,(K) that equal
e?™il/n for K e {T", K,}. We denote by k, € {I", K,} the
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TABLE II. (a)—(f) label various case studies of gapped band subspaces: (a)—(e) refer to band representations with integer-spin on-site
representations. The wallpaper groups and Wyckoff positions for (a)—(e) are, respectively, (p4, 2¢), (pbm, 2b), (p6, 3c) (illustrated in Fig. 3),
and (p4m, la)®(p4m,2c), (pbm, 1la)®(pbm, 2b) [illustrated in Figs. 4(d) and 4(e)], where @ refers to the stacking of the corresponding
subspaces. (f) describes a two-band subspace in the inversion-symmetric Kane-Mele model; this two-band subspace is splittable into two
one-band subspaces S} and S|, as explained in Sec. VIIL. Second, third, fifth, and sixth columns: for each case study, we display the eigenvalues
o (p,)] of the matrix representations (p,) of g, symmetry at g,-invariant wave vectors (I" and one of X, K, M); p, in (d) represents reflection
symmetry, which inverts x but not y. Fourth and seventh columns: we display the g,-protected Zak phase factors 6 ()], which diagonalize
the Wilson loop W for a k-space loop C,. We use @ = e*"/3, @ = e=2*/3_ while p,, W, and C, are defined in Table III.

(@) o (pa(I)) o (pa(M)) & (WICaD) o (p2(T)) o (p2(X)) aWICD)
{1, -1} {i, —i} Y {1,1} {1,-1} {1,-1}
(b) o (p3(I)) o (p3(K)) & (WICs]) o (p2(T)) o (p2(X)) a(WICD
{1,1} {w, ®} (v, @} {1,-1) {1,-1} 0
(©) o (p3(I) o (p3(K)) a(WICGs]) o (p2(T)) o (p2(X)) a(WICD
{1, 0, ®} {1, 0, ®} Y {1,1,1} {1,-1,-1) {1,-1,-1}
(d) o (p4(I)) o (pa(M)) & (WICaD) o (p(I")) o (px(X)) a(WICGD
{1, 1, -1, {1,i.i, Y {1, 1,1, {1, 1,1, {1, 1, -1}
i, —i} —i, —i} Y 1, -1} -1, -1, -1}
(e) o (ps(I) o (p3(K)) & (WICs]) o (p2(T)) o (p2(X)) & (WIC])
{1,1,1} {1, w, &} {1, w, &} {1,1, -1} {1,1,-1) {1}
® o (ps(IN) o (p3(K)) & (WICs]) o (p2(T)) o (p2(M)) & (WIC])
S’ {1 {@} {@) {1 {=1 {=1
St {w} (@} {0} (=1} {n {=1

wave vector at which p,(k,) has the largest degeneracy
my,(k,)] among all symmetry eigenvalues. That is, for
I, €10, ...,n — 1}, we define m,, (k) as the degeneracy that
satisfies m;, (k,)>m;(K) for all [ and for both K € {I", K, }.
The other g,-invariant wave vector that is not k, is labeled
as k.

Theorem. It r/[C,] = m;(ky) + my (ki) — N > 0O for any
of l =0,...,n — 1, there exist exactly r;[C,] number of Zak
phases that are g, -protected to ¢[C, ] = £2x (I — L,)/n, where
+ and — respectively applies for k, = I" and K,,.

Application of theorem to strong EBR on the honeycomb
lattice. Let us return to the example introduced in Sec. IV A.
We will apply our theorem to calculate the Zak phases for
the loops C3 and C,, as illustrated in the last rows of Fig. 3.
From Table II(b), we obtain the required input for the theorem:
the eigenvalues of the matrix representations (p,;n = 2, 3) at
gn-invariant wave vectors: I', K, and M.

Let us first evaluate the Zak phases for the bent loop Cs,
which is restricted by threefold rotational symmetry: gz =
Cs.. p3(I') is the identity matrix, while p3(K) has eigenval-
ues e271/3 Hence mo(I") = 2, m1(I') = 0, mo(I') = 0 and
mo(K) =0, m(K) =1, my(K) = 1. The highest degener-
acy is attained at k, = TI" for [, = 0; k; = K. Applying the
theorem, we deduce the degeneracies of the Cj; ,-protected
Zak phases: ro[C3] =0+ 2 — 2 = 0 (for ¢p[C3] = 0), r1[C3] =
14+2-2=1 (for ¢[C3]=2n/3), n[Ci]l=14+2-2=1
(for ¢[C3] = 47 /3); this result is summarized in the column
‘6 (WI[C3])’ of Table II(b). The same Zak phases were obtained
consistently through a Zak-Wannier relation that is explained
in Sec. IVC.

Next, we evaluate the Zak phases for the straight loop C,,
which is restricted by twofold rotational symmetry: g» = C5 .
The eigenvalues of p, (atboth I" and M) are 1, which implies
that my(I') = m(I') = mo(M) = m;(M) = 1. We may pick

k.,=T and [, =0; in all cases, r;[C;]<0, i.e., there are
no C, -protected Zak phases. It is instructive to compare
this result with our conclusion [derived in Sec. IV C] that
|¢p1[Ca] — $2[Cr]| = 27 /3; the latter result is strictly valid only
in the atomic limit. For finite Wannier separations, the present
analysis shows there is no symmetry-based reason for the
robustness of |¢1[C2] — $2[Ca]].

The proof of the theorem is sketched in Sec. IVD2 and
detailed in Appendix E 1. Several remarks are in order.

(i) Let us define 2 /&, as the smallest absolute difference
between two g,-protected Zak phases; £, is a positive integer
that divides n. Where there exists none or only one g, -protected
Zak phase, we set &, = 1, which simply reflects the 27 am-
biguity in the definition of a phase. £, = 3 in the honeycomb
example just above. Since £, is invariant under symmetry-
and gap-preserving deformations of the Hamiltonian, it may
be viewed as a g,-protected topological invariant.

For N-band subspaces whose energy function E(k) is N-
fold degenerate at each k along C,, the adiabatic propagator
[cf. Eq. (4)] equals e~ EoTs/"MWC, ] [cf. Eq. (15)], where E,
is proportional to the average of E (k) over C,. For such band
subspaces, we may identify &, with the period multiplier | of
stroboscopic Bloch oscillations, as defined in Definition 1, i.e.,

& = p for energy-degenerate subspaces.  (19)

(ii) In claiming that a g,-protected Zak phase is an nth
root of unity, we have presupposed a natural choice for the
spatial origin—that it lies at a g,-invariant point. As is evident
from Eq. (16), a translation of the origin by §r modifies the
Zak phases by a j-independent phase: ¢;—¢; + G,-ér; in
particular, a different choice of a g,-invariant origin modifies
¢; by an integer multiple of 27/n, but does not change
the number of g,-protected Zak phases. Moreover, since
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differences of Zak phases are origin-independent, so is & ;
we explain in Sec. VIII how differences in Zak phases can be
experimentally measured.

(iii) For band subspaces for which the largest symmetry
degeneracy my (k.)] is not unique, the multiple possible
choices for (I, k,) all lead to the same g,,-protected Zak phases.

(iv) This mapping of symmetry to holonomy eigenvalues
includes the known case of n = 2 [20], and further extends
it to n = 3, 4. The inclusion of other point group symmetry
may result in additional symmetry-protected Zak phases that
are not covered by this theorem [50]. Alternatively stated, if
a magnetic space group has g, symmetry, the above theorem
sets a lower bound on the number of symmetry-protected Zak
phases.

(v) The theorem does not just apply to EBRs, but more
generally to any gapped subspace that is invariant under G.
As exemplified in Sec. V below, g,-protected Zak phases also
occur for composite BRs. The theorem also applies to gapped
topologically nontrivial subspaces, such as subspaces with no
representation on Wannier functions (Sec. VI), or BRs which
have certain restrictions for the allowed symmetries in the
stabilizers (P ) of the Wannier centers (Sec. VII). The theorem
also applies to energy subspaces that are gapped over C, but
not necessarily over the full Brillouin torus, e.g., there may
exist point degeneracies (Dirac points) in the energy spectrum
away from C,.

(vi) The noncontractible loop C, does not need to intersect
the Brillouin center; the theorem also applies to C, that
intersects any two, inequivalent g, -invariant wave vectors, with
the constraint that half the loop is mapped to the other half
by .

We derive two corollaries from the theorem, which we prove
in Appendix E2.

Corollaries. (I) Since m;(ks)<my, (k,), a necessary but
insufficient condition for the existence of g,-protected Zak
phases is that m; (k.) > N/2. (II) All N Zak phases are g,-
protected if and only if m;, (k) = N, or equivalently, p, (k) is
proportional to the identity. In particular, for N = 1 (a single
band), the lone Zak phase is always g,-protected.

Application of corollaries to strong EBR on the honeycomb
lattice. Let us return to the motivational example of Sec. IV A
and demonstrate the utility of the above corollaries. For the
loop Cs, my, (k) =2 = N implies that all Zak phases ¢[Cs]
are Cj; -protected [corollary (ID]; while for Co, my, (k.) =
1 = N/2 implies that no Zak phase ¢[C,] is C, .-protected
[corollary (I)].

2. Intuition behind the theorem

To prove the theorem, we would first relate VV to the matrix
representations p,(K). Observe that C, is decomposable into
the two g,-related paths: C} and C2, such that (a) C! has base
point K, and end point I, and (b) C> = —g,oC!, with the
minus sign indicating a reversal in orientation. Analogously,
we may decompose WI[C,] into two Wilson lines:

WIC,] = W[eZIW[C!] = puK)W[C] pa(DW[CL],
(20)

where in the last equality we employed the symmetry trans-
formation of Wilson lines [20,50]. Equation (20) manifests the

Wilson loop as the product of two generically noncommuting
unitaries (each of order n). Exploiting the U (N ) gauge freedom
in the gapped subspace, we may simultaneously diagonalize
both p, in Eq. (20); in this basis, we may view W[C,l] as a basis
transformation between the eigenbases of p,. The g,-protected
eigenvalues of W[C, ] are precisely those eigenvalues which are
independent of W[C!].

Equation (20) is a useful intermediate relation to prove
the theorem. In the simple case where p,(I") = A,y (Iy
is the N x N unit matrix), we may always choose k, =T.
Then Eq. (20) implies that W[C,] = A,0,(K ) is completely
fixed by symmetry, where A, is the complex-conjugate of
Ay. The same conclusion may be obtained from the theo-
rem: since m;, (I') = N, all Zak phases are g,-protected, i.e.,
r[C,] = my(K,) for all [. Similarly, if p,(K,) = A1y, then
W[C,%]W[Cn]W[C,{]T = A,p0,(I)! is again fixed by symmetry
and has the same eigenvalues as WI[C,] because W[C,{] is
unitary. That all Zak phases of WI[C,] are g,-protected, is
another application of the theorem.

In the case where neither p,, (I") nor p, (K, ) equals to A, 1y,
then not all of the eigenvalues of W[C, ] are g,-protected, ac-
cording to corollary (I). g,-protected eigenvalues exist if and
only if the maximally degenerate eigenspace of p, (k,) (with
eigenvalue e>"//") robustly intersects any of the eigenspaces
of p,(ky), as shown in Appendix E 1.

3. Application of the theorem to strong EBRs: Symmetry-based
Zak-Wannier relation

Let us apply the theorem to the strong EBRs of wallpaper
groups which satisfy conditions (i)—(iii) in Sec. IV B 3; these
are the EBRs that manifest period multiplication (in their
atomic limit). Our goal is to answer the question that motivated
Sec. IVD (cf. first paragraph of Sec. IVD). We will show
that for this subclass of strong EBRs, a signature of their
nontriviality persists away from the atomic limit—in the
symmetry-protection of their Zak phases.

This result follows from a one-to-one correspondence be-
tween g,-symmetric Wannier centers (defined modulo lattice
translations) and g,-protected Zak phases (defined modulo
2m). For strong EBRs, which satisfy conditions (i)—(iii),

¢ilC.1=G,-w; mod2m; j=1,..., M. 2D

As a reminder, “g,-protected” quantities are invariant under
continuous deformations of the M,,-band subspace that pre-
serve the energy gaps (above and below) and the symmetries
of g, and discrete translations. Like Eq. (17), Eq. (21) is a
multiband Zak-Wannier relation for Wannier functions that
are localized in two independent directions. However, Eq. (21)
extends Eq. (17) to the more realistic regime of finite Wannier
separations. Moreover, while Eq. (17) holds for any BZ loop,
Eq. (21) only holds for loops C,, which satisfy the symmetry
restriction described at the end of Sec. IV D.!?

We will first provide a heuristic argument for Eq. (21),
and postpone a proof to the next paragraph. Let us consider
a strong EBR [satisfying conditions (i)—(iii)] in the atomic

9There exists a continuous family of loops satisfying the same
symmetry restriction.
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limit, where Eq. (17) was proven to hold. We then perform
the thought experiment of contracting all Wannier separa-
tions while preserving the wallpaper group; in particular, the
symmetries of g, and discrete translations are preserved. Let
us suppose that the Zak phases of all strong EBRs are g,-
protected (as will be proven below using our theorem). Since
all g,-protected quantities are invariant under contraction, the
left-hand side of Eq. (17) is invariant. The right-hand side of
Eq. (17), givenby G,-w ;, is also invariant, since g,-symmetry
remains a symmetry of each Wannier center throughout the
contraction.!! We conclude that, owing to the g,-protection of
the Zak phase and the g, symmetry of the Wannier center,
both sides of Eq. (17) retain their values regardless of the
separation of Wannier centers; this is exactly the meaning
of Eq. (21). This argument emphasizes the essential role of
symmetry in (nonatomic) Zak-Wannier relations; Eq. (21)
is therefore termed a symmetry-based Zak-Wannier relation.
Such symmetry-based relations are studied in a broader context
in Sec. V.

Proof of Eq. (21). For the strong EBRs of wallpaper groups
which satisfy conditions (i)—(iii) in Sec. IV B 3 (their Wyckoff
positions are listed in Table I), the on-site symmetry representa-
tion (V) of P, is one dimensional, i.e., V,, (g, ) is just a phase
factor. This is because all but one of the stabilizers P, listed in
Table I only admit one-dimensional irreducible representations
Vw; the sole exception (G = pbm, w = 2b, P, = C3,) has
one two-dimensional irreducible (vector) representation; how-
ever, the corresponding EBR is weak, as proven in Appendix
B 4. Note that the present discussion excludes half-integer-spin
EBRs of magnetic wallpaper groups, which include time-
reversal symmetry. The representation of g, on cell-periodic
functions at I" is simply a direct sum of V,;(g,)—one direct
summand for each of the M, Wannier centers @ ; in one
unit cell. To prove this, we linearly combine the M,, Wannier
functions of one unit cell, and their Bravais lattice translates,
to obtain a set of M, Bloch functions:

1 .
Vik=—=) e*FW, g, (22)
J W ; J

with R a Bravais lattice vector and ) the volume of the
Brillouin zone. Note that each Wannier function is weighted
by the coefficient /X ®+@1) where R 4+ @ is the coordi-
nate of the Wannier center. Then by applying the symmetry
operation g, on the cell-periodic component of these Bloch
functions at k = I'" and K,,, we derive the M, x M, matrix
representations [cf. Eq. (18)]:

lon(D)]j 0 = 8,5 Ver (&n),

[on (K )] j = 8.t Ver (80" .
iG,

(23)

The additional phase factor ¢'“»®J in the second line is
nontrivial whenever g, maps a Wannier center @ ; to a Wannier
center g, @ ; in a distinct unit cell; this induces an additional
phase factor e/é*(@i=8:¥,) due to the plane-wave coefficients
in Eq. (22). This phase is trivial for k = I", but for k = K,

gnKn'(wj - gnwj) = (gnKn - Kn)'wj = Gn C W,

""Under a scaling of the lattice period as a — Aa, G, — G, /2,
and w; - AW

where in the last equality we applied Eq. (9). Inserting Eq. (23)
for p, into Eq. (20), we derive the desired result. The theorem
in Sec. IVD 1 further implies that all M,, Zak phases are g,,-
protected. |

V. SYMMETRY-BASED ZAK-WANNIER RELATIONS
FOR BAND REPRESENTATIONS

A. Motivational example: Composite band representations
of 1D space groups

In the previous Sec. IV, we have identified a class of strong
EBRs which manifest period-multiplied Bloch oscillations;
this multiplication can be explained through the adiabatic
transport of either Bloch or Wannier functions—this com-
plementarity is summed up in a Zak-Wannier relation [cf.
Eq. (21)]. In this section, we investigate the Bloch oscillations
and Zak-Wannier relations of a broader class of BRs which
include the composite (i.e., nonelementary) BRs.

Precisely, acomposite band representation (CBR) is defined
as a stack of multiple EBRs, and may therefore be specified by
specifying the data that labels all EBRs labeled by v, namely
the Wyckoff position w"” and the corresponding irreducible
representation V" of the on-site symmetry group P, (e.g.,
Table I). It is possible that w" for different v are equal.

Let us illustrate these notions for the simplest nontrivial
space group in 1D; the point group is generated solely by
spatial inversion (g;), an order-two symmetry. There are only
four inequivalent EBRs, as exemplified by s (i.e., inversion-
even) and p (inversion-odd) orbitals localized on either of the
two inequivalent inversion centers o', w?; w!, and @? are
separated by half of the lattice period a. Fixing the spatial
origin to z !, the inversion eigenvalues at high-symmetry wave
vectors (0 and 7 /a) are derived from Eq. (23) to be

(w, orbital)  02(0) poa(/a)
(@!,s) +1 +1
(@', p) —1 —1
(@?,s) +1 —1
(w?, p) —1 +1

for the four inequivalent EBRs. The possible two-band CBRs
are obtained from stacking any two of the four EBRs. We
illustrate in Fig. 5(a) the stacking of s and p on the same

— &R x— & —— [
2l (]
DX O XX X—
w! w?
(b)
(e)

(© a
group with inversion symmetry. Crosses denote inversion-symmetric
points (w!?). s (p) orbitals are illustrated by red (blue) blobs; the
rotational symmetry. Wannier functions are centered on the centers
and vertices of square plaquettes. (e) Brillouin zone corresponding to

(@)
FIG. 5. [(a)—(c)] Composite band representations of a 1D space
s — p hybrid orbital is colored pink. (d) A square lattice with fourfold
the square lattice, with C, loop indicated in violet.
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w =w!, (b) s and 5 on the same @ = w!, and (c) s and

p on the different !, w?.

These three simple examples already give a good repre-
sentation of the possible Bloch oscillations and Zak-Wannier
relations for CBRs. In Fig. 5(a), s (colored red) and p (blue)
orbitals may mutually hybridize (pink) and split equidistantly
away from w!, hence none of the Wannier centers are g2
fixed. Neither are the Zak phases [20], as one may confirm
from application of corollary (I) on the inversion eigenvalues
02(0), p2(r/a) = 1. The Wannier centers and Zak phases
in Figs. 5(b) and 5(c) are g,-fixed, but only in case (c) is
the Zak phase difference of 7 equal to G,(w? — @) (hence
€L =x1=2).

In Sec. IV, we found for certain atomic BRs that symmetry-
protected Zak phase differences of 2 /&, (with &, > 1) lead
to Bloch oscillations with multiplier £, . However, the atomic
limit of case (c) does not necessarily exhibit period doubling,
because the s and p orbitals, being unrelated by symmetry, do
not necessarily have the same on-site energies: E; and E), (cf.
the beginning of Sec. IV B 1); recall that period multiplication
in a L field requires that bands are energy-degenerate at all
k [cf. remark (i) in Sec. IV D 1]. Nevertheless, since only one
parameter needs to be tuned for E; = E, it is plausible that
this degeneracy may arise experimentally—especially in the
well-controlled setting of ultracold atoms in optical lattices, as
elaborated in Sec. VIIIF. Furthermore, if the deviation from
degeneracy |E; — E,|is small compared to the Wannier-Stark
ladder spacing Fa, then the Bloch-oscillatory behavior is
essentially indistinguishable from that of period doubling (as
elaborated in Sec. VIII E). For these reasons, we are motivated
to identify band subspaces with £, > 1.

In principle, the theorem of Sec. IVD 1 should allow us to
compute &, for any band subspace, and £, > 1 is expressible
as a condition on the symmetry eigenvalues at high-symmetry
wave vectors. In practice, knowing the symmetry eigenvalues
(or constraints thereof) does not directly indicate how one
would physically realize this band subspace, e.g., in a tight-
binding model or in experiments. On the other hand, if we
knew that a £, > 1 band subspace is a CBR of a space
group, then the Wannier functions of this CBR naturally form
a localized basis for a tight-binding model. It is therefore
desirable to first establish a Zak-Wannier relation for CBRs
(cf. Sec. V B), so that one may translate £, > 1 to a condition
on the tight-binding Wannier centers (cf. Sec. V C).

B. Definition and application of the symmetry-based
Zak-Wannier relation

In this section, we would formulate generalized Zak-
Wannier relations for CBRs. Generally, a Zak-Wannier relation
is a one-to-one correspondence between Zak phases and
Wannier centers. Wannier functions {W,, R}n | can always be
viewed as Fourier transforms of Bloch functions {1, x}"_,,
which are analytic in k. Wannier functions only exist for
band subspaces with vanishing Chern number [33], and these
functions are exponentially localized in real space due to the
analyticity of the Bloch functions [48].

There remains, however, an ambiguity in the definition
of Wannier functions, owing to an arbitrariness in how we
choose Bloch functions at each k; we refer to the freedom in

performing unitary transformations

N
Wn,k — Z wm,ksm,n(k)a with S(k) € U(N) (24)

m=1

and analytic in the wave vector k, as a gauge ambiguity
[27]. Consequently, individual Wannier centers @w (defined
as the quantum expectation value of the position operator
wrt. the Wannier functions) are gauge dependent; the sum
of Wannier centers, however, is uniquely defined modulo a
Bravais lattice vector [21]. On the other hand, Zak phases are
gauge-invariant modulo 2z [20]. To have any correspondence
between Zak phases and Wannier centers in multiband
subspaces, it is therefore necessary that restrictions are
imposed on the gauge so that an individual Wannier center
is not completely arbitrary. Ideally, these gauge restrictions
would be physically motivated. For example, if we impose
that Wannier functions are maximally localized in 1D real
space (equivalently, that they are eigenstates of the 1D
projected position operator) [27], their Wannier centers
indeed have a one-to-one correspondence with Zak phases
[20]. To formulate a novel Zak-Wannier relation between
gn-protected Zak phases and the centers of Wannier functions
that are localized over 2D real space, we propose that gauge
restrictions by symmetry affords us a Zak-Wannier relation.

Let us state the Zak-Wannier relations first, then subse-
quently elaborate on the gauge restrictions, examples and
proofs. Not all CBRs satisfy a Zak-Wannier relation. Let us
consider a class of CBRs (each characterized by the data
{(w", V")}, of the constituent EBRs) that satisfy: (a) all
Wyckoff positions w ¥ of the constituent EBRs are g, -invariant,
i.e., gy € Py for all v. (b) A symmetry condition on the
little groups in k-space: all the Bloch functions—at wave
vector k, = I" or K,, (or both)—transform under the same 1D
representation of g,,.

These CBRs satisfy the Zak-Wannier relation

¢ . [C]=G,w" (25)

which holds for all v, all integers j, running from 1 to
the multiplicity M, of w"’, and all «, from 1 to dim V"
(¢,Cn, Gy, w , M, are all deﬁned in Table III). Equation (25)
especially says that the Zak phases ¢} , areindependent of o,
i.e., the minimal degeneracy of ¢J“ is d1m VV. The degeneracy
is greater in cases where ¢ are equal for different v or j,.

The decomposition of a CBR into its constituent EBRSs is
not always unique [51]. This is another manifestation of the
gauge ambiguity of Wannier and Bloch functions [cf. Eq. (24)];
choosing a different gauge, we might decompose the same
subspace into a different set of EBRs. However, Eq. (25) is
agnostic to this arbitrariness, i.e., we will see that the proof
is equally valid for any choice of decomposition. On the
other hand, we remind the reader that Zak phases are gauge
invariant modulo 277 [20]. The combined implication is that the
Zak-Wannier relation (25) applies to any decomposition into
EBRs.

The gauge ambiguity is actually larger than was alluded to in
the previous paragraph. Where previously we only considered
decomposing a CBR into multiple EBRs, actually the same
CBR can be split into multiple subspaces that are not EBRs.
Indeed, if we begin with a decomposition into EBRs and then
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perform an arbitrary unitary transformation [cf. Eq. (24)] that
mixes together different EBRs—the resultant set of Wannier
functions are generically asymmetric, and do not lie on g,-
invariant Wyckoff positions. From the perspective of numer-
ically constructing Wannier functions by Fourier transforma-
tion of Bloch functions (obtained from tight-binding models
or an ab initio calculations), asymmetric Wannier functions
are the norm, rather than the exception; one typically has to
do more work to construct symmetric Wannier functions [52].
To recapitulate, the Zak-Wannier correspondence of Eq. (25)
applies to a g,-symmetric gauge for the Wannier functions,
which we now carefully define.

Definition 8. An N-band subspace (N>1) satisfies a
symmetry-based Zak-Wannier relation, if it is a direct sum
of EBRs with the following properties: (a) the Wannier
functions of each EBR lie on g,-invariant Wyckoff positions
w, i.e., g, € Py. In total there are N Wannier functions
which are not related by lattice translations, and correspond-
ingly N translation-inequivalent Wannier centers {w j}ﬁy:l. (b)
There is a one-to-one correspondence between these Wannier
centers (defined modulo lattice translations) and the Zak
phases (defined modulo 27): G-w; = ¢; mod 27 for all
j =1, ..., N.This correspondence holds for all N Zak phases
that encode the N-band holonomy of a loop that wraps the
Brillouin torus in the direction of G, a primitive reciprocal
vector.

Equation (25) is an example of a symmetry-based Zak-
Wannier relation. In comparison, a previously known multi-
band Zak-Wannier relation [20,21,53] is based on the gauge
condition of maximal localization in one spatial direction [27];
this condition is agnostic to the symmetry of the band subspace.
The multiband Zak-Wannier relation discussed in Sec. IIIC
is of the maximal-localization type, since eigenstates of the
projected position operator Pz P are maximally localized in
the z direction [27].

Proof of Eq. (25). Let us consider a CBR which satisfies
(a) and (b). If p, (k) is proportional to the identity [condition
(b)], then Eq. (20) implies that W[C, ] is unitarily equivalent
to o (K,)pn (D) (cf. p,, W in Table III). The representation
on of g, for the CBR is a direct sum of representations p, of
g for the EBRs labeled by v. If condition (a) holds, then p, is
given by [cf. Eq. (23)]

Loy (DI = 85,01V (80)]a .- 06

Loy (KIS = 85,0,V (8], p,8 O 7,

where the integer indices /,, j, run from 1 to the multiplicity

of w" and o, B, run from 1 to dim V". Applying the unitarity
of V¥(gn),

Loy (K)og (NP = 8; 1,8,56 %0, (27)

which is unitarily equivalent to WIC, ]. Further applying that
unitarily equivalent matrices have the same spectrum, we
derive Eq. (25). |

Example of symmetry-based Zak-Wannier relation. We
consider a lattice that is composed of a triangular and a
honeycomb sublattice; the N = 3 s orbitals per unit cell are
localized at the C _-invariant Wyckoff positions w ' = 1a (tri-
angular sublattice), w? = 2band w% = Cg,0w? (honeycomb
sublattice), illustrated in Fig. 4(e) by a green, red and blue

blob, respectively. Table II(e) summarizes the representations
of C3; (p3) at high-symmetry wave vectors: the maximal
degeneracy is my, (k,) =3 at k, =T for the eigenvalue 1
(I, = 0),i.e., p3(I") is the identity matrix (cf. m;, [, in Table III).
Therefore, (a,b) apply and Eq. (25) provides the follow-
ing C3,Z—ﬁxedZakphases:¢]1.][C3] = G-wg,l =0, ¢12.][C3] =
G- w?=27/3and ¢3 [C3] = G-w} = —27/3, where G is a
reciprocal vector directed along the horizontal axis, as shown
in Fig. 2(d). Taking differences of these Zak phases, we also
find that &, = 3.

1. Symmetry-based Zak-Wannier relations for subspaces
with a single Wyckoff position

Let us particularize Sec. VB to a subclass of CBRs which
satisfy conditions (a) and (b), for which we can rephrase
condition (b) as a condition on the on-site symmetries. The
additional conditions are (¢) w" = w for all v and w has
unit multiplicity, and (d) w" = w for all v and w satisfies
conditions (i-iii) in Sec. IVB 3. Note that condition (a) of
Sec. VB and (i) of Sec. IV B 3 are equivalent.

For CBRs satisfying (a)—(c), we find that (b)—a condition
on the symmetry representations in k space—is equivalent
to the following condition on symmetry representations in
real space: (b') VV(g,) is proportional to the identity with
proportionality constant independent of v, i.e., all Wannier
functions transform under the same 1D representation of g,
(which is an on-site symmetry).

This equivalence implies that the Zak-Wannier relation
[Eq. (25)] holds, in a special case, for CBRs satisfying (a),
(b)), and (¢).

For the class of CBRs that satisfy (a) and (c), we would
now prove that conditions (b) and (b’) are equivalent. Given
(b') and Eq. (23), we derive that p,(I") is proportional to
the identity, hence (b) is satisfied. Let us further show that
(b) implies (b’). First, condition (c) implies that j, is an
unnecessary index, which we henceforth neglect, and that
e/6n®" = /6 does not depend on v. If k, = I, combining
condition (b) with Eq. (23) gives [V"(g,)]%f = Axba, B,
for some A, € U(1) that is independent of v, hence (b’) is
satisfied. For k, = K,,, combining (b) with Eq. (23) imposes
[V"(g,,)]““ﬁv = e’iG""”A*S%,ﬁv for all v, hence (b) holds.

For CBRs satisfying (a), (b), and (d), we find that necessarily
k. =T in condition (b); (b) with k, = T is also equivalent to
(b'). Let us show this. The set {e"G"'w-fv}A‘/{”zl has at least two
distinct elements; this is due to Eq. (10) which holds because of
conditions (i)—(iii) of Sec. IVB 3, as proven in Appendix C 1.
Consequently, p!(K,) in Eq. (23) cannot be proportional to
the identity, hence (b) cannot be satisfied with k, = K,,. The
equivalence of (b) and (b) with k, = T can be derived in close
analogy with the previous paragraph.

For CBRs which satisfy (a),(c) or (a),(d), the on-site repre-
sentation is reducible, i.e., V = @, V", and corollaries (I) and
(II) in Sec. IV D simplify to: (I) the necessary condition for
the existence of g, -protected Zak phases is that v, > dim V/2,
where v, < dim V is the dimension of the maximal eigenspace
of V(g,). (I') All Zak phases are symmetry-protected if and
only if V(g,) is proportional to the identity (v, = dim V).
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2. Symmetry-based Zak-Wannier relations for elementary
band representations

Definition 8 also applies to N-band subspaces, which are
themselves EBRs, in which case the “direct sum of EBRs”
should be interpreted trivially.

The statements in Sec. VB and Sec. VB 1 also apply to
EBRs if we simply substitute “CBR” with “EBR” and remove
the unnecessary index v. The class of EBRs that satisfy such
a modified symmetry-based Zak-Wannier relation include the
strong EBRs discussed in Sec. IVD3 [cf. Eq. (21)], as well as
strong EBRs with unit-multiplicity Wyckoff positions. Note
that all single-band EBRs fall into the latter category.

3. Band representations without symmetry-based
Zak-Wannier relations

To juxtapose against the CBRs considered in Secs. V B and
VB 1, we remind the reader of Fig. 5(a), which describes a
CBR that is a stack of two single-band EBRs. Single-band
EBRs individually have symmetry-protected Zak phases and
satisfy a symmetry-based Zak-Wannier relation according to
Sec. VB2, whereas the two-band CBR does not.

The general criterion for a two-band CBR to have
symmetry-protected Zak phases (which is necessary for the
existence of a Zak-Wannier relation) is as follows: consider
a two-band CBR that is made from stacking two single-band
EBRs (w', V'), and (w?, V?)]. This two-band subspace does
not have g,-protected Zak phases (as defined for parallel
transport within two bands), if the subspace can be split into
two single-band subspaces (S;, S,), whose single-band Zak
phases (defined individually for each of Sj, S,) are distinct
from those of (w', V!) and (w2, V?).

C. Application of symmetry-based Zak-Wannier relation to
identify subspaces with £, > 1

Combining the condition &, > 1 with the Zak-Wannier
relation (25), we derive that

v v 27
Lmwl=5 el (28)
for at least one set of {v, V', j,, j,}. v=1" and j,#j, label
two g,-invariant Wannier centers which are related by a
point-group symmetry other than g,; this case was essentially
described in Sec. IV B and can be generalized to strong CBRs.

The case v#V’ labels two g,-invariant Wannier centers
belonging to distinct EBRs, as we have exemplified by case
(c) in Sec. V A (cf. Fig. 5). A 2D generalization of case (c) is
a two-band CBR with s orbitals centered at two inequivalent
fourfold-invariant Wyckoff positions, as illustrated in Fig. 5(d).
The Zak phases associated to the C, loop [illustrated in
Fig. 5(e)] differ by 7, hence £, = 2.

|Gn(w

VI. PERIOD MULTIPLICATION IN
TIME-REVERSAL-ASYMMETRIC CHERN BANDS

In this section, we discuss the possibility of period mul-
tiplication for Chern bands (band subspaces with nonzero
Chern number), which belong to class A in the Wigner-Dyson
symmetry classification [31,32]. Our discussion is split into
two parts:

(a) (©) (d)
) MM
; AN
sz \(34/1 G K ng

FIG. 6. Contractible loops (violet lines) in BZs with C,, Cy4, C;
and C¢ symmetry respectively; these loops are used to determine the
Chern number mod n (n = 2, 4, 3, 6, respectively).

(A) Our previous study of Zak-Wannier relations have
demonstrated that symmetry-protected Zak phases can be
directly related to symmetry-protected Wannier centers; in
essence, we have found that certain band subspaces may be
modelled by classical point charges. However, Chern bands
admit no such classical description due to unavoidable quan-
tum fluctuations with respect to the noncommuting projected
position operators, i.e., there exists no representation of Chern
bands on Wannier functions. Nevertheless, the existence of
Bloch functions (which are nonanalytic over the Brillouin
torus) allows for their characterization by Zak phases—which
can be symmetry-protected. Our study in Sec. VIA demon-
strates that Chern bands can realize classically forbidden Zak
phases, that is, Zak phases, which are impossible to realize
in any classically localizable band subspace with zero Chern
number.

(B) The discussion of (A) suggests the possibility of a
classically forbidden period multiplier for Chern bands. As
proof of principle, we construct a C¢ ,-symmetric Chern band
that exhibits stroboscopic oscillations with the classically
forbidden multiplier n; = 2. Our construction of this model
utilizes a novel and generally applicable approach to obtaining
Chern bands—from splitting a multiband EBR into multiple
fewer-band subspaces.

A. Zak-Chern relations and classically forbidden Zak phases

In a C4-symmetric crystal, the Chern number (C) of a
single band is determined modulo four by the C, .-fixed Zak
phases ¢[C,] forn = 2,4 as

Ci.: C= 2@ mod 4,  (29)
as we prove in Appendix F1. Here, C, intersects I' and X,
and Cy4 intersects I' and M, as illustrated in Fig. 6(b). One
consequence of Eq. (29) is that C = —2¢[C4]/7 mod 2, since
¢[C,] € {0, w} from the theorem (in Sec. IVD1). In other
words, ¢[C4] = £ /2 are two classically forbidden values that
would imply a nonzero Chern number.

For C, .-symmetric crystals with n € {2, 3, 6}, there ex-
ist analogous constraints that relate the Chern number to
symmetry-protected Zak phases:

PlC2] — $IC5]

C,: C= — mod 2, (30)

Cs.: C= EAICE) Rl 5 3, (3l
2 T

Ce.: C= 3@ mod 6, (32)
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where the C, and C,, are loops illustrated in Fig. 6. The proofs
of Egs. (30) and (32) are closely analogous to the C, , case
in Appendix F 1. Equation (32) implies for a Cg ;-symmetric
band that ¢[C,] = 7 is classically forbidden, and also either
of p[C3] = £27/3.

All of Egs. (29)—(32) may be generalized to constraints on
the Chern number of an N-band gapped subspace, if we replace
¢[C,] by the phase of det W[C,], with W the N x N matrix
representation of holonomy [cf. Eq. (15)]. These constraints
between g,-protected Zak phases and Chern numbers provide
a complementary perspective to previously developed con-
straints that relate g, eigenvalues to Chern numbers [54,55].

B. Chern bands with classically forbidden period multipliers

The identification of classically forbidden Zak phases in
Sec. VI A implies the existence of classically forbidden period
multipliers in Bloch oscillations. For example, the classically
forbidden ¢[Cy] = & (respectively, ¢[Cs3] = £27/3) in C .-
symmetric band subspaces implies that u, = 2 (respectively,
w1 = 3) is forbidden for the C, (respectively, C3) loop; this
follows from the relation between Zak phase differences
and w that is described in remark (i) of Sec. IVD 1. One
motivation of this section is to construct, as proof of principle,
a Chern band with a forbidden multiplier.

Before this specific construction [detailed in Sec. VIB 2],
let us discuss some generalities about the construction of Chern
bands from tight-binding models. A band representation (BR),
elementary or composite, defines a set of spatially localized
functions which may be used as a basis in a tight-binding
model. The net Chern number of any EBR (and hence of
any BR) vanishes; this follows from Bloch functions of an
EBR [cf. Eq. (22)] being analytic and periodic over the BZ
[33,48]. There are therefore only two ways to obtain Chern
bands: from “band inversion” between distinct EBRs, and from
“splitting” a single, multiband EBR. By band inversion, we
refer to the well-known process of a gap closing between two
EBRs, with an accompanying transfer of topological “charge,”
which in this case is the Chern number. By “splitting” an
EBR into two subspaces, we mean to decompose this EBR
(having N > 1 bands) into two subspaces S; and S, (having
dimensions Ny and N, which sum to N at each k), such that
each of S;, S, individually transforms in a representation of
G. This implies that S; and S, can be separated energetically
atall k.

The splitting of EBRs into Chern bands is a novel construc-
tion that we elaborate upon in Sec. VIB 1. In Sec. VIB2, we
apply this construction to obtain a Chern band with a classically
forbidden multiplier.

1. Obtaining Chern bands from splitting elementary
band representations

Let us propose a general recipe to obtain nontrivial Chern
bands by splitting EBRs of certain nonmagnetic wallpaper
groups (G) that we specify below. By “nonmagnetic,” we mean
that no element of G involves time reversal (7). Our recipe
may be viewed as sure-fire instructions to cook up models
of Chern bands: a splittable EBR defines a tight-binding basis,
and completely generic G-symmetric matrix elements will split
the EBR into nontrivial Chern bands. Our recipe also helps to

identify the wallpaper groups for which splittable EBRs may be
found, which provides guidance to the concrete materialization
of Chern bands. Our EBR-to-Chern recipe is the class-A
analog of a recent proposal to obtain nontrivial Z, topological
insulators in class AlI from splitting half-integer-spin EBRs of
magnetic wallpaper groups [25].

To recapitulate, an EBR is a BR that is not splittable into a
direct sum of BR’s. Most EBRs are BRs that each satisfy: (i) the
Wyckoff position @ is nongeneric, with an on-site symmetry
group P, that is maximal, i.e., Py is not a subgroup of any
other on-site symmetry group P, (ii) the on-site symmetry
representation V of P, is irreducible. (i) and (ii) combined
with (iii): the BR is not an exception listed in Refs. [26,47],
might be viewed as an equivalent definition an EBR that is
operationally more useful for identification.

When an EBR is split into m subspaces (S;, S2,..., Sp), it
must be that at least one of them, say S, is not a representation
of G on Wannier functions; this follows immediately from
the first definition of an EBR. The absence of a Wannier
representation of G is a topological obstruction [25,56,57];
if S; is a single band, then the topological obstruction must
correspond to a nontrivial Chern number. The orthogonal
subspace @7.,S; must then have a nonzero Chern number
of opposite sign, so that the net Chern number of the EBR
vanishes.

Example of splitting an EBR into Chern bands. We consider
the reflection-asymmetric checkerboard lattice discussed in
Sec. IVB1 and split the two-band EBR which comprises
two s orbitals in each unit cell. There are in principle four
possible splittings into single bands (S;, S;) from different
combinations of Cy4 . eigenvalues at the C,4 ;-invariant wave
vector M with C,, eigenvalues at the C,  -invariant wave
vector X, which are tabulated in Table II(a); in all splittings,
neither S; nor S, can be time-reversal-invariant, because the
Bloch functions at M transform in a 2D complex-conjugate
representation (with eigenvalues £i under Cy ;) that is irre-
ducible in the presence of 7 symmetry. That time-reversal
symmetry must be broken suggests that S; and S, have nonzero
and canceling Chern numbers; we confirm this prediction by a
Zak phase analysis of S, combined with the general relation
between Zak phases and Chern numbers in Eq. (29). From the
C4 . eigenvalues at I' and M [cf. Table II(a)], we deduce, via
the theorem, that ¢[C4] = 47 /2 attains a classically forbidden
value—Eq. (29) then informs us that C must be odd, and hence
nonzero.

More examples of such splittings are provided in Appendix
F2, including: (i) the splitting of a two-band EBR on a
honeycomb lattice (with wallpaper group p6 and Wyckoff
position 2b, illustrated in Fig. 3) into two Chern bands, and
(i1) the splitting of a three-band EBR on a Kagome lattice
(wallpaper group p6 and Wyckoff position 3¢, also illustrated
in Fig. 3) into three one-band subspaces, with at least two of
them carrying nonzero Chern numbers. (ii) is elaborated upon
in Sec. VIB 2 using a tight-binding model.

Generally, if an N-band EBR is split into N single-band
subspaces, then at least two of N subspaces must carry non-
trivial Chern numbers. This may be proven—on a case-by-case
basis—by a Zak phase analysis (as we have done above for the
checkerboard EBR). In fact the statement is generally true, as
we prove in Ref. [43].
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Not all nonmagnetic wallpaper groups allow for the splitting
of N-band EBRs into N single-band subspaces. This splitting
is forbidden in wallpaper groups (G), which constrain the
Chern number of any gapped subspace to vanish. All such G
may be identified from the known symmetry transformation of
the U(1) Berry curvature under a wallpaper element g [54]. For
example, a reflection symmetry M, that inverts x constrains
the curvature as Tr Y (—k,, ky) = =TrF* (ky, k) (cf. F in
Table IIT), which guarantees that the Chern number vanishes.
Consequently, the EBRs of all wallpaper groups with reflection
symmetry (e.g., cmm, p4m, p31lm, pbm) are unsplittable
into single bands. This argument may be supported by analysis
of the little groups at high-symmetry wave vectors, where
the reflection symmetry enhances the energy degeneracy. In
simple words, robust band touchings that originate (in part)
from reflection symmetry prevent an EBR from splitting.

Example of an unsplittable EBR. A case in point is the
reflection-symmetric checkerboard lattice with s orbitals—
this is an EBR of the wallpaper group p4m, which dif-
fers from a previously discussed EBR on the reflection-
asymmetric checkerboard lattice (group p4); cf. Fig. 3. The
little group of the C4 . -invariant wave vector M is now the point
group Cy, (in contrast to C4 previously), and the complex-
conjugate representation ps(M) (cf. ps in Table III) with
eigenvalues =i is irreducible owing to the additional reflection
symmetry.

2. Example of Chern band with classically forbidden multiplier

We construct a tight-binding model on a Kagome lattice
with wallpaper group p6. Each of the M = 3 Wannier func-
tions in each unit cell transform as s orbitals, and they are
centered on sites which are invariant under g, = C» ;, i.e., with
Wyckoff position 3¢ (cf. Fig. 3). The corresponding three-band
space is a strong EBR (cf. Definition 7); we shall demonstrate
that a two-band subspace of it has a classically forbidden
multiplier u; = 2.

For a complex nearest-neighbor hopping, all three bands
are generically split in energy. The corresponding symmetry
eigenvalues ps, p; cf. Eq. (18)] at high-symmetry wave vec-
tors, the single-band Zak phases (¢[Cs], ¢[C]), as well as the
Chern number (C) of each band are listed here:

o) p3(K)  BIG] paAT)  p(M)  @IC] C
e e 273 1 -1 7 1
1 1 0 1 1 0 0
e~ i3 Q2m3 _ox/3 1 —1 4 —1

One may verify that this table is consistent with the theorem
in Sec. IVD 1, as well as the Zak-Chern relations of Egs. (30)
and (32).

Let us consider adiabatic transport along C, in the top
two bands with net Chern number 1. Applying the relation
between Zak phases and Bloch oscillations [cf. remark (i) of
Sec.IV D 1], the Zak phase difference of 7 leads to a classically
forbidden multiplier of p; = 2, assuming that both energy
bands are fine-tuned to degeneracy at each k.

Generally for integer-spin representations of space groups,
we expect that no spatial symmetry enforces the energy
degeneracy of multiple bands for all k£ along a line. Finite-

energy splitting leads to a deviation of the Fourier peak
(of the stroboscopic time evolution) away from 27 /(u, T5g),
as discussed further in Sec. VIIIE. In Sec. VII, we will
demonstrate that period multiplication can manifest in time-
reversal-symmetric bands which are topologically nontrivial,
this multiplication does not require any fine-tuning, because the
energy degeneracy at each k can be guaranteed by space-time
inversion symmetry.

VII. PERIOD MULTIPLICATION IN TOPOLOGICAL BAND
SUBSPACES WITH TIME-REVERSAL SYMMETRY

The Kane-Mele model on a honeycomb lattice is the
paradigmatic example of a Z, topological band subspace with
time-reversal symmetry (Wigner-Dyson symmetry class AIl)
[34]. This model is potentially realizable in ultracold atoms in
optical lattices, where microwave driving and lattice shaking
can artificially induce spin-orbit coupling [58,59]. Here, we
will demonstrate that this model realizes stroboscopic Bloch
oscillations with multiplier x; = 3. This period multiplica-
tion may be understood from the perspective of symmetry-
protected Zak phases (Sec. VII A), but not from the perspective
of symmetry-protected Wannier functions, as elaborated in
Sec. VIIB.

A. Zak phase analysis of Kane-Mele model

The Kane-Mele model is obtainable from splitting a half-
integer-spin EBR of the magnetic wallpaper group which
combines p6m with time-reversal symmetry 7 [25]. This EBR
is characterized by the Wyckoff position w = 2b (in Table I),
with Kramers-degenerate p, orbitals on each Wannier center.
Following Ref. [25], we split this four-band EBR into two
two-band subspaces (S; and S;), and for S; we collect in
Table II(f) the C,, and C;, eigenvalues at high-symmetry
wave vectors.

We would now demonstrate these symmetry eigenvalues
imply anontrivial Z, Kane-Mele invariant. This demonstration
is simplified by imposing an additional 3D-spatial-inversion
(Z) symmetry which lies outside p6m (a 2D space group);
even if Z symmetry is not a symmetry of the Hamiltonian,
S1 may be adiabatically deformed to have this additional
symmetry. We may then split ) into two single-band subspaces
(Sli) which transform in orthogonal representations of the
reflection ZC5 ;. The C, ; eigenvalues and Zak phases of SljE
are listed in Table II(f); the Zak phases may be obtained from
the symmetry eigenvalues by application of our theorem in
Sec. IVD 1. Applying the Zak-Chern relation [Eq. (32)], we
then determine the Chern number (C¥) in each single-band
subspace (also known as a mirror Chern number [60]) as
C* =41 mod 6. The proof is completed by utilizing the
well-known equivalence between an odd mirror Chern number
and a nontrivial Z,-invariant [60].

Note in particular that the Zak phases over C; are g3-
fixed to ¢[C3] = £27/3 (cf. ¢, C, in Table III). This im-
plies that stroboscopic Bloch oscillations (along C3) occur
with multiplier x4, = 3, assuming that both bands in S; are
energy-degenerate at all k € C3. This degeneracy condition
is guaranteed—without fine-tuning—if the band subspace is
additionally symmetric under spatial inversion Z.
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From a broader perspective of the Kane-Mele model, we
might ask what C, .-fixed Zak phases are possible in gapped
two-band subspaces, which are both 7- and Z-invariant, as
well as transform in a half-integer-spin representation. To
have C, .-fixed Zak phases, our theorem limits the possible
representations of C, ; at C, ,-invariant wave vectors (K). At
the same time, 77 commutes with C,, ; and is also in the little
group of K—thisimplies that eigenvalues of ¢! *™/" p,, (K ) form
complex-conjugate pairs at each K (cf. p,, F in Table III).
If none of the eigenvalues is real, corollary (I) guarantees
that there are no C, .-fixed Zak phases. Consequently, a
necessary condition for C, .-fixed phases is the existence of
real eigenvalues of ¢'f7/"p,(K)—this can only occur for
n = 3, which may be deduced from the observation that all
eigenvalues of e/*7/"p,(K) are nth roots of —1 for half-
integer-spin representations (F = 1). Particularizing now to
two-band, half-integer-spin subspaces with C¢,, T and Z
symmetry, we find that &, = 3 isequivalent to a nonzero mirror
Chern number, as we prove in Appendix F3. A particular case
of this is the Z-symmetric Kane-Mele model.

B. Wannier-function analysis of Kane-Mele model

In the real-space perspective, we begin with an EBR that
is composed of Kramers-degenerate p, orbitals centered on a
honeycomb lattice. The splitting of this EBR into S; and S>
amounts to separating the Kramers pair on each honeycomb
vertex [56,57]. That is, one may choose the Wannier functions
of S to lie on C3 ;-invariant @, but each Wannier function—
having no on-site Kramers partner—cannot individually form
a representation of time-reversal symmetry. This obstruction
is intrinsic to to the Z,-topological phase [56,61].

Despite being centered on a Cj -invariant Wyckoff po-
sition, we point out that the Wannier function also does
not form a representation of Cs_..'> This is supported by
numerical constructions of Wannier functions in various works
[25,56,57], which agree that the spin expectation value of
the Wannier function cannot be parallel to e,. These works
demonstrate that a Wannier representation of a (magnetic)
space group G need not form a band representation of G.

Let us discuss the implications for a hypothetical Zak-
Wannier relation in the Kane-Mele phase. Any multiband
Zak-Wannier relation requires a prescription to reduce the
gauge ambiguity of Wannier functions; our symmetry-based
prescription of Sec. V evidently does not work, because each
Wannier function does not locally form a representation of
g3 = Cs .. Alternatively stated, the Kane-Mele phase exhibits
symmetry-protected Zak phases and period multiplier, but not
a symmetry-based Zak-Wannier relation (cf. Definition 8).

VIII. EXPERIMENTAL FEASIBILITY
OF PERIOD-MULTIPLIED BLOCH OSCILLATIONS

Let us discuss physical parameters which determine if
period multiplication is observable—given a N-band subspace,
a field F and the shortest reciprocal lattice vector G in the

2This will be proven in a future work; for now, we appeal to the
wealth of numerical evidence.

(b)
E Gll Gl

= JEg Cs K
= QEg 1_‘ M

FIG. 7. (a) lllustration of the energy gap (E¢), energy separation
(E,) and energy width (Ag). (b) Possible loops in the Brillouin zone
of the honeycomb lattice.

direction of F. For simplicity, we shall assume that this
subspace is lowest in energy;'? every other band is said to
belong to the high-energy subspace, and E is defined as the
energy gap that separates low- and high-energy subspaces.
Precisely, E¢ is the difference between the lowest energy
of the high-energy bands and the highest energy of the low-
energy bands, as illustrated in Fig. 7. Period multiplication can
only occur for a low-energy subspace that comprises multiple
bands; for simplicity, we assume there are two bands with
corresponding energy functions E(k) and E»(k), and E, is
defined as the gap that separates these two bands [cf. Fig. 7(a)];
E, = 0 if both bands are connected as a graph, e.g., due to a
nonsymmorphic symmetry [cf. Fig. 2(b), Sec. III]. The energy
width A is defined as the maximum over k of E» (k) — E (k).

Beside these three energy scales, the other relevant param-
eters are the magnitude of the field (F'), the magnitude of the
reciprocal lattice vector (G), the mass (m) of the particle,
a relaxation time (7r) induced by many-body or impurity-
induced scattering, as well as the maximum over position
r of the energy width of the translation-invariant potential
AV =sup, |V (r)| —inf, |V(r)| < oo.

In the following subsections, we discuss (1) a constraint on
the parameters (F, G, m, AV, Eg) which justify the adiabatic
approximation for the low-energy subspace, (2) a condition on
(F,G,m, AV, E,), which encourages all bands in the low-
energy subspace to participate in transport, and (3) a constraint
on (F, G, t), which guarantees that Bloch oscillations are not
smeared out by many-body or impurity-induced scattering.
A subtlety about transport along bent loops is discussed in
Sec. VIIID. In Sec. VIIIE, we discuss and bound deviations
from integer period multiplication in L fields; these deviations
originate from the dynamical component of the adiabatic
propagator. We remind the reader that, in contrast, there are no
analogous deviations for || fields. Cold atoms in optical lattices
allow for parameter ranges that are optimal to observe period
multiplication; in Sec. VIIIF we summarize the experimental
setup and techniques used in a recent cold-atom experiment
[12] that is directly relevant to our theory.

BIn principle we may consider a scenario where the N-band sub-
space is not lowest in energy. For Bloch oscillations to be observable,
we would have to bound the probability that a state initialized in
the N-band subspace is found (at a later time) outside the N-band
subspace. This would require a simple generalization of the analysis
provided in Sec. VIII A [62], see also Ref. [39].
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A. Bounding leakage by the adiabatic theorem

To observe Bloch oscillations, it is necessary that an initial
state in the low-energy subspace remains (to good approxi-
mation) in said subspace on time scales much larger than the
oscillatory period (uTp; with p and Ty defined in Table III).
Defining the leakage L(¢) as the probability that an initial state
is found in the higher-energy subspace at a later time ¢, we
would like L(uTg)<K1.

For a tightly bound particle (Eg<<AV), we apply the
adiabatic theorems developed by A. and G. Nenciu [5,37,62],
to bound the leakage as

LuTy) < 2L Ev Ey 33
(uTp) < G Eé<a+uﬁEG>, (33)
to lowestorderin F',with § = (1 4+ 8/7)16/7 ~ 9,ando = 0
(respectively, = 4/m) for the |-field (respectively, L field).'*
In the simplest case of a one-dimensional crystal, 27 F/G =
Fa is the potential difference (due to a field F) between
Wannier functions displaced by the Bravais lattice period a
(cf. Sec. IV B)." The leakage depends not only on the obvious
energy scales: 27 F /G and the gap Eg; it depends also on a
third scale Ey = (G /2)/2AV /m formed by (G, m, AV).10
Combining L<1 with the upper bound in Eq. (33), we derive
a condition on the force:

EZ Ey\ !
Fg=—"S(a+us=—) . (34)
|4

For the general form of L(#), which applies beyond the tight-
binding regime (E¢<<AV), we refer the interested reader to
Ref. [39].

B. Condition for multiband transport
in the low-energy subspace

For multiband transport within the low-energy subspace,
we would transport to be nonadiabatic with respect to any of
the two bands in this subspace. Equivalently, we would like the
leakage from any of the two bands to be large. A conservative
estimate for favorable parameters is provided by inverting the
inequality of Eq. (34) (with Eg replaced by E,):

Fs X Ei (wr pLv B (35)
—_——— a E—
G Ey "E,

with constants as discussed after Eq. (33).

14The difference between L and || fields originates from the distinct
symmetry transformation of the operator F - Pr(1 — P), which is
relevant in the adiabatic theorem for field-deformed bands [37]. This
distinction is further elaborated in Ref. [39].

5In general, 27 F /G = F - Aw where Aw is the minimal distance
between hybrid Wannier functions [36] that are localized along F.

16We offer the following interpretation of Ey = fiwy. Suppose a
one-dimensional periodic potential has the form (AV/2)cos(Gx);
this potential may be expanded near the minimum (x =0) as
mw?x? /2 (to quadratic order and dropping the constant), where @y =
G(AV/2m)'/? is the characteristic frequency of the corresponding
harmonic oscillator.

C. Relaxation time

Thus far, we have not yet discussed the presence of im-
purities, lattice excitations (phonons) or electron-electron (or
particle-particle) interactions. Indeed, scattering is the main
limiting process of coherent electronic phenomena like Bloch
oscillations; period-multiplied Bloch oscillations can only be
observed if

hG
F>p—. (36)

with u the period multiplier. For solids, realistic parameters
are Z ~0.1-0.5 nm and 7 ~ 10710713 s [6], thus the
necessary forces to observe at least one Bloch period are large,
i.e., F ~ 1-4000 MeV/cm. Lattices with large lattice constants

include semiconductor superlattices (%” ~ 10nm) [2] and cold

atoms in optical lattices (%’ ~ 1 um) [12]; the latter also have
longer relaxation times.

D. Bounding leakage by the sudden approximation
for bent loops

Let us consider transport along the bent loops C; and Cy4
(with u, = 3 and = 2, respectively; cf. C, in Fig. 6, Table III).
The kink in either loop corresponds to an instantaneous switch
in the direction of F(¢) (the L field) after every half period
(Tg/2). At this kink, the Hamiltonian is continuous but not
first-order differentiable with respect to time.'” Since the
adiabatic theorem discussed in Sec. VIITA applies only to
first-order differentiable Hamiltonians, the theorem can be
used to bound the leakage everywhere on the loop except at
the kinks. The leakage at the kink is instead bound by the
sudden approximation, i.e., the leakage vanishes in the limit F
is modified instantaneously. More realistically, if § is the time
needed to switch the direction of F(¢), then the leakage at the
kink is of order O(8%).!8

E. Transport signatures for quasienergy-degenerate bands

Period multiplication in a L field only occurs for band
subspaces with exactly degenerate energies [cf. remark (i) of
Sec. IV D 1]. Such degeneracy is either symmetry-imposed (cf.
Sec. VII), or originates from an atomic limit (cf. Sec. IV B), or
otherwise requires fine-tuning (cf. Secs. V A and VIB 2). In the
latter two categories, we are motivated to study transport sig-
natures of band subspaces whose energies are quasidegenerate
at each k.

For brevity of presentation, we would only discuss the case
of strong, atomic EBRs with period multiplier u; = x; > 1
(cf. Sec. IV B); similar arguments can be applied to other quasi-
degenerate subspaces. For finite Wannier center separations,

17This holds in the time-dependent gauge for the vector potential,
which is proportional to [ F (¢')d'.

'8Sudden changes of a time-dependent Hamiltonian are of two types.
In the conventional sudden approximation, an instantaneous change of
the Hamiltonian results in it being discontinuous in time. In the context
of the kinked loop, an instantaneous change in the Hamiltonian results
in it being continuous in time but not first-order differentiable. Further
details on this type of “sudden approximations” will be provided in a
separate publication.
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bands generically split in energy (on a scale Ag) due to
tunneling between Wannier centers. A Fourier peak in the
stroboscopic expectation value of an observable then deviates
from the frequency 27 /(. Tp) by a quantity of order Ag/h,
as derived in Appendix G. Moreover, the ratio of the deviation
of the peak over 2w /(u,Tg) is of order AgTy/(2mh) =
ApG/(2r F). We see that dynamics is well-approximated by
an atomic BR if the energy splitting A g (induced by tunneling)
is much smaller than the spacing (27 F'/ G) between adjacent
rungs of the Wannier-Stark ladder.

F. Experimental realization with cold atoms in optical lattices

A threefold-periodic Bloch oscillation of a band population
was recently measured by T. Li et al. [12] for cold bosonic
atoms (*’Rb) in an optical honeycomb lattice. In this section,
we summarize their experimental setup to stimulate further
experimental investigations.

Li performed near-adiabatic transport within a two-band
subspace that may be identified with the strong EBR discussed
in Sec. IVA. The lattice (with period %’T ~ 500 nm) was
created by interfering three laser beams of wavelength A; =
755 nm.!” Let us introduce the convenient energy scale E, =
n? /Zm)nl2 ~ 16.6 peV, which may be interpreted as the zero-
point energy of a #’Rb atom confined to one wavelength of the
laser. The following parameters are obtained from Ref. [12]:
the lowest two energy bands are nearly degenerate (Ag =~
0.75E,) and separated from higher-energy bands by a gap
Eg =~ 3.7E,; the potential width is AV ~ 62FE,. The parame-
ters suggest that the low-energy subspace is well-approximated
by an atomic EBR. As explained in Sec. IV A, such an atomic
EBR manifests Bloch oscillations with multiplier £, = 3.

Trapped bosonic atoms were first condensed into the lowest-
energy, single-particle Bloch function at zero wave vector
(") [63,64]. This macroscopically occupied Bloch state was
then driven along the straight path C; [illustrated in Fig. 6(d)]
by acceleration of the optical lattice. The acceleration is
accomplished by linearly sweeping the frequency of the laser
beams. Independent control of the sweep rates of two laser
beams allows one to vary the magnitude and direction of
F () [12]; this allows one to drive a Bloch state along a
kinked loop, as exemplified by C5 in Fig. 7(b).?° For a time-
independent force F ~ 2 peV/icm, u, Tp &~ 200 us is just
smaller than the exponential decay time =~ 400 us of the
measured oscillations.”!

An example of an oscillatory observable is the band
operator, defined by Ogq) = Zyzl |1 k) j{u;k| for energy
eigenstates u; x; k(¢) is determined by the acceleration the-
orem, and N = 2 in the current context. The time-dependent
expectation value of the band operator was obtained in Li’s
experiment by repeated, time-delayed measurements of band
populations in the low-energy subspace. Though it was not the
motivation of Li’s experiment to measure period-multiplied

19Private communication with K. Wintersperger

20Private communication with T. Li and 1. Bloch.

2'The decay time can be obtained from a fit of Fig. S6A of
Supplementary Material for Ref. [12]; the value 400 us was confirmed
through private communication with K. Wintersperger.

Bloch oscillations, ¢, = 3 can be inferred from a recurrence
of the lowest-energy band population after three fundamental
periods; cf. Fig. 3B in Ref. [12]. Li’s main motivation was
to measure Zak-phase differences by generalized Ramsey
interferometry [63,64], and their measured A¢ = 2.06(3)/3
compares favorably with the theoretical value of A¢ = 27/3
(as calculated in Sec. IV C).

We now present two physical implications of our theory,
that go beyond what has been measured in Ref. [12]. (i) In a
band subspace with zero non-Abelian Berry curvature, the Zak
phase depends only on how the loop wraps the Brillouin torus,
and is insensitive to local-in-k details of the loop, as explained
in Sec. IVC. This may be compared with a well-known
phenomenon in electromagnetism: the Aharonov-Bohm phase
is insensitive to continuous deformations of the trajectory in
regions with zero magnetic field; the field is the Abelian U(1)
curvature for the electromagnetic vector potential in real space.
The Aharonov-Bohm phase depends only on the number of
times the trajectory winds around magnetic flux tubes. In
contrast, the experimental setup in Ref. [12] describes a band
subspace with zero non-Abelian U(2) Berry curvature in k
space. One implication is that a continuous deformation of
the loop C, [e.g. to C; or C3 in Fig. 7(b)] would not change
A¢ = 27 /3. On the other hand, A¢ = 0 for the loop parallel
to G' + G” [illustrated in Fig. 7(b)], which is homotopically
inequivalent to C,.

(i) The non-Abelian curvature acquires finite value away
from the atomic limit. This may be accomplished by reducing
the potential barrier that separates honeycomb vertices, so as to
allow for intervertex tunneling. One implication would be an
increased sensitivity of A¢ to continuous deformations of the
loop, e.g., A¢ for C, and C} generically deviates from 27 /3;
however, it is remarkable that A¢ = 27/3 remains quantized
for the C3 loop, for which half the loop is mapped to the other
half by a threefold rotation. Indeed, the Zak phase difference
associated to C3 may be viewed as a topological invariant
protected by threefold rotational symmetry, as explained in
the example of Sec. IVD 1. A further implication is that A¢ =
27 /3 remains quantized under a perturbation (e.g., a sublattice-
dependent potential) that breaks sixfold but preserves threefold
rotational symmetry.

IX. DISCUSSION AND OUTLOOK

The topological classification of band systems continues to
be an active field that is enriched by K theory [31,65-73],
the theory of vector bundles [74,75], and the theory of
band representations [25,26,43,76,77]. Some classification
schemes can provide model (Dirac) Hamiltonians [78-80]
and topological invariants, which are calculable in tight-
binding models [20,32,36,69,70,81-85]. Only some of these
topological invariants have been associated to experimental
signatures—the majority of these signatures rely on identifying
the energy-momentum dispersions of edge or bulk states [86],
either through photoemission [87] or tunneling spectroscopy
[88]. Far fewer invariants have been connected with transport
experiments [13-15,17], and this work represents an attempt
to bridge this gap.

Let us summarize some of our results from a differ-
ent perspective than has been presented. We considered the
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adiabatic transport of Bloch waves, and focused on oscillatory
observables, which are translation-invariant, as exemplified by
the band operator. For all multiband subspaces that exhibit
Bloch oscillations with period multiplier u > 1, a unifying
property is that their multiband Zak phases (¢) differ pairwise
by integer multiples of 277/, owing to the point group of the
crystal. Generally, © divides n, which is the order of a point
group element g. The robustness of the Zak phases only occurs
for certain orientations of the driving field with respect to a
crystallographic axis characteristic of g. For example, if g is
a screw rotation, two distinct types of Bloch oscillations may
arise when we align the field parallel (]|) or perpendicular (L)
to the screw axis.

Itis nota priori obvious that a Zak phase difference of 27 /1
leads to Bloch oscillations with multiplier . More directly,
Bloch oscillations originate from pairwise phase differences
(¢j — ;) in the spectrum of the adiabatic propagator [cf.
Eq. (4)], where ¢; includes both geometric and dynamical
contributions. If a | field is applied to a nonsymmorphic
crystal, we have found that ¢ always has the same ladder
structure as ¢, hence period multiplication is guaranteed. In
the case of the L field, pairwise phase differences in ¢ only
equal that of ¢ if bands are energy-degenerate at all points
on the k-space loop. This degeneracy is naturally realized by
symmetry (as exemplified by the Kane-Mele model with period
multiplier © = 3), or by taking the atomic limit of a band
representation (as exemplified by u > 1 strong elementary
band representations).

While period-multiplied Bloch oscillations can always be
understood from the perspective of Zak phases, a complemen-
tary, real-space explanation through Wannier functions is not
always attainable—owing to a topological obstruction. A case
in point are bands with nontrivial Chern number; these bands
are not representable by Wannier functions [33,89], but may
nevertheless be associated to a classically forbidden multiplier
u > 1(cf. Sec. VI). We have also studied the Kane-Mele model
for Z, topological order; though locally threefold symmetric
Wannier functions cannot exist [56], this model exhibits a
threefold period multiplication (cf. Sec. VII).

A real-space perspective exists for all our other case studies.
For d-dimensional crystals in a || field, this perspective is
attained by Wannier functions that are localized in the direction
of the field and extended as a Bloch function in the other
d — 1 direction(s). For d-dimensional crystals in a | field,
we consider (hybrid) Wannier functions that are localized in
the plane perpendicular to the field, and otherwise extended in
d — 2 direction(s).

Underlying the complementary perspectives on Bloch os-
cillations, is a multiband Zak-Wannier relation for N-band
subspaces, i.e., a one-to-one correspondence between all N
Wannier centers and all N Zak phases. (i) For the | field,
the Zak-Wannier relation exists for (hybrid) Wannier functions
which are maximally localized [20] in the direction of the field.
(i) For the L field, the Zak-Wannier relation exists for (hybrid)
Wannier functions satisfying a newly formulated symmetry
condition—namely, that they correspond to g-symmetric el-
ementary band representations. Such symmetry-based Zak-
Wannier relations are introduced by us in this work.

More generally, a one-to-one correspondence may hold
between a subset of the N Zak phases and a subset of the N

Wannier centers; such correspondences would be referred to as
incomplete. Band subspaces with an incomplete Zak-Wannier
correspondence may still manifest Bloch oscillations with
multiplier u > 1—if atleast two g-protected Zak phases differ
by 27 /u; this is left to future investigations. Band subspaces
with g-protected Zak phases (having either a complete or
incomplete Zak-Wannier correspondence) should be identi-
fiable by application of our theorem (cf. Sec. IVD 1). This
theorem inputs, for any band subspace, the representation of g
at high-symmetry wave vectors, and outputs the subset of Zak
phases, which are fixed to integer multiples of 27t /n with n the
order of g.

Though p>1 Bloch oscillations do not occur for band
insulators [6], they may in principle occur for band metals, and
more realistically for bosonic cold atoms in optical lattices (cf.
Sec. VIITF). Underlying this broad range of applications is that
w, when formulated as a quantized difference in Zak phases, is a
topological invariant that characterizes band wave functions—
independent of the filling or particle statistics. From this per-
spective, we may compare p with other space-group-protected
topological invariants that characterize the filled bands
of insulators [20,25,26,34,35,55,61,66,69,70,73,80,82,83,90—
101]. In stable [31,66,67,69,70,73,78-80,83] classifications
of topological insulators, the corresponding topological in-
variants are invariant against symmetric deformations of the
Hamiltonian that preserve a single gap—the gap that separates
filled and empty bands. Such stable topological invariants do
not change upon addition of trivial (filled or empty) bands.??
In contrast, ; may change under the addition of trivial bands.
That is to say, if we evaluate  for two band subspaces (that
differ only by an addition of trivial bands), we may arrive at
distinct values for w. In this sense, u is more closely analogous
to invariants of fragile topological insulators.??
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Organization of the appendix. We start the appendix with a
table to summarize the symbols that were used throughout the
main text; for a symbol that appears in the main text but not
in this table, its definition ought to be nearby. In Appendix A,
we derive the spectrum of the adiabatic propagator within a

22By “trivial bands,” we mean band representations of the space
group [43].

2 A fragile topological insulator [43,76,77,119] is defined by two
properties: (a) Wannier functions exist but cannot be locally sym-
metric. (b) By addition of trivial bands (corresponding to locally
symmetric Wannier functions, or equivalently band representations),
a fragile topological insulator can be trivialized. It should be clarified
thataband subspace with i > 1isnotnecessarily a fragile topological
insulator.
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TABLE III. Summary and description of symbols used throughout the main text.

Symbol(s) Description

k, ko wave vector, with subscript: initial wave vector

r position operator or position vector

a,a lattice constant, primitive lattice vector

F, F magnitude of force, force vector

Tp Bloch period

W, [y, L1 € Ziog integer in period multiplication (of Tp), subscript specifies direction of F relative to some symmetry axis
N eZ. number of bands, number of atoms per unit cell

0 arbitrary operator (in Bloch representation: assumed to be translation-invariant)

P projection operator onto N-dimensional subspace

Vi Bloch function in the subspace projected by P

Uy cell-periodic component of

Ak) Berry connection

F(k) Berry curvature in 2D or for a plane in 3D

H, translation-invariant, free-particle Hamiltonian

H effective Hamiltonian of N-dimensional subspace

U propagator generated by #, expressed in Bloch basis at k¢ in P

exp time- or path-ordered exponential

J € Z.y number of Wannier-Stark ladders

G space group

P point group

g=@Qlt)e G symmetry element, g leaves the spatial origin invariant, ¢ is a translation

np 8n €G symmetry of order n: (g, ,)", (§,)" = e (identity), (g, )" is a translation by p primitive lattice vectors
n e Zs order of g, ,, g»

P € ZLxo determines fractional translation of g, ,

Cnj,Ch€G n-fold rotation about axis with unit vector e; or e (if unspecified)

M;eG reflection that inverts the jth coordinate

w,w’ Wyckoff position; superscript labels an EBR

w;, W symmetry-related Wyckoff positions (to w, w", respectively)

P g projection operator to Wannier functions localized at @ ; + R

My, M, €Z.y multiplicity of a Wyckoff position w, w", respectively: number of symmetry-related Wannier centers per unit cell
P, Py on-site symmetry group (stabilizer) of Py, , P, respectively

Vo, VY on-site symmetry representation of P,,, P, respectively

K, K, T’ high-symmetry, or g,-invariant, wave vector; I denotes the origin of the BZ

G, G, reciprocal vector, with subscript: satisfies Eq. (9)

X1 € Zisg 21/ x. is the smallest difference in Wannier centers times G,

C,C, noncontractible loop in the BZ, with subscript: goes through I', maps half of the loop to other half by g,
w Wilson loop or matrix representation of holonomy

¢ Zak phase: €'? is an eigenvalue of W

E €l 2m /&, is the smallest difference in Zak phases

8 regular representation of g € G on Bloch or Wannier functions

FeZ, F = 0 for spinless or integer-spin representations, F' = 1 for half-integer spin representations
pn(k) N-dimensional matrix representation on Bloch functions at k of g,

my(k) € Zy degeneracy of eigenvalue e**'/" in p, (k), | € Z,

k. wave vector for which m;(K) is maximal among K € {I", K}

I, € Z, eigenvalue e?**/" for which m,, (k. ) is maximal

CeZ (first) Chern number of N-dimensional subspace over the BZ

subspace with nonsymmorphic symmetry, under the applica-
tion of a || field; we also describe a symmetry criterion for or-
bital splitting in the Wannier-Stark effect. A symmetry criterion
to obtain strong band representations is presented in Appendix
B. Then, the sufficiency and necessity of conditions (i)—(iii) in
Sec. IVB 3, to satisfy Eqgs. (10) and (10') for at least one G,
of the form of Eq. (9), is proven in Appendix C. We relate the
Wilson loop to the projected position operator in Appendix D,
i.e., we derive Eq. (16), and derive the Zak-Wannier relation for
strong, atomic EBRs [Eq. (17)]. We then prove the theorem and

the corollaries of Sec. IV D 1 in Appendix E. Next, we detail on
several case studies: In Appendix F 1, we prove the Zak-Chern
relation for the reflection-asymmetric checkerboard lattice,
stated in Sec. VIB 1; in Appendix F2, we present a general
analysis of split subspaces in the hexagonal and Kagome
lattices from a more general perspective than presented in
Sec. VIB2; in Appendix F3, we prove the claim that ; =3
if and only if the mirror Chern number is nonzero for systems
such as the Kane-Mele model studied in Sec. VII A. At last,
Appendix G derives corrections to the frequency 27 /(. Tg)
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occurring in the Bloch oscillation for a L field applied to a
nearly degenerate band subspace characterized by w©,. We
employ Einstein’s summation convention for repeated indices;
sometimes the sum is explicitly spelled out to avoid confusion.

APPENDIX A: ADIABATIC EVOLUTION
UNDER A ||-FIELD

In crystals with a nonsymmorphic symmetry g, , (cf.
Table III for the definition of g, ,), energy bands divide into
subspaces with minimal dimension of | [given by Eq. (1)] per
wave vector, such that within each subspace all energy bands
are connected (as a graph) [18] over the BZ [cf. Figs. 1(b),
2(e), and 2(h)]. This is because the Bloch wave functions
which describe energy bands along g, ,-invariant lines, can
be chosen as eigenstates of 2, , (cf. Table III). We will show
that, related to the division of energy bands into subspaces of
minimal dimension ), is that the adiabatic propagator U (Tg)
[defined in Eq. (4)] describes a permutation of order p; from
this we will then derive the ladder structure of the spectrum of
U(Tp).

The ladder structure of U(Tp) is valid for any energy
matrix, including the zero energy matrix. This gives us an
alternate proof for the ladder structure of the Zak phases (¢).
The proof is presented separately for ;1 = n and for u; < n.
For p; < n, we further distinguish between two cases: U (Tp)
either describes a single w cycle or multiple 1 cycles; for
W) = n, only single u; cycles exist. A u; cycle is a cyclic
permutation of order 1 where no element is mapped to itself
when permuted less than ) times. U(Tp) describes multiple
Wy cycles if there exist symmetry eigenvalues, which are not
mapped onto each other by any multiple of U(Ty). For u
labeling different 1| cycles, the degeneracy J,, of the uth cycle
is the dimension of a symmetry eigenspace in the uth cycle.
The total degeneracy J = ), J, equals the number of orbitals
in 1/ of the primitive unit cell; J also equals the number of
Wannier-Stark ladders.

For J Wannier-Stark ladders, we may ask if the ladders
are all degenerate. To every Wannier-Stark ladder (indexed

by 1, =1, ..., J,) we associate a phase y“; then the offset
between the ¢,th and the ¢/, th Wannier-Stark ladder is
Ayl,, t/ — J/(L“ )/(t“/) (Al)
For a single cycle of degeneracy J, we will show that
iy©O1J
e} = o (U Ts)00). (A2)

where o denotes the spectrum of a matrix and U (w T )o,0 18 the
J x J matrix that describes adiabatic transport for p T of a
symmetry-degenerate eigenspace; the spectrum is independent
of the choice of eigenspace. For multiple cycles, the uth cycle is
associated with phases { y(‘")} '"_;» which are determined by an
equation analogous to Eq. (A2) but with U (¢ T )o,0 restricted
to the uth cycle. This restriction is possible due to a block-
diagonal form of U(Tp) with respect to (wrt.) the different
cycles, as we elaborate in Sec. A 2.

An example of a single 4-cycle is shown in Figs. 1(a) and
1(b) for g4,1 a fourfold screw (i = n = 4); Figs. 2(d) and 2(e)
shows a single 2-cycle of symmetry degeneracy J = 2 for g4 »
a fourfold screw () = 2 while n = 4).

1. Hy=n

If 1y = n, then the spectrum of the matrix representation
On,p(k) of gy, pnp(k) is defined as in Eq. (18)] has to
comprise all the eigenvalues {w;, = e**/P/"} jez,,» Where
each eigenvalue has equal degeneracy J. Assuming first that
U (Tp) cyclically permutes all n eigenspaces of g, ,, or more
precisely, U (Tg) describes a ) cycle wrt. the eigenspaces of
8n,p» we now outline how this permutation results in a ladder
structure of the spectrum of U(Tp) (details below). For a
cycle, concatenating 1 permutations gives no permutation at
all. Therefore U () Tp) is block-diagonal, where each block
has dimension J x J. Each of these p blocks is unitarily
equivalent to every other block, and may be viewed as the
unitary representing the adiabatic evolution of an initial state
in one (J-dimensional) eigenspace of g, , over a u-fold-
expanded BZ, as shown Fig. 1(b). Let us denote the eigenvalues
of each block as {e/”"’}’_,, with y© € [0, 27r). The spectrum
of U (T3) is then obtained from U (1 T ) by, loosely speaking,
taking the pth root of U (i Tg). The spectrum of U (T3 ) can
thus be organized into J sets of order w. Each set, labeled
byt =1,...,J,has the ladder structure: {e!?""/m1e2mil/1 }ﬂal
[illustrated in Figs. 2(c), 2(f) and 2(1)], with e2mit/m originating
from the diagonalization of the order-u | permutation matrix.

Proof. Let us first explain what it means for U(Tp) to
describe a p| cycle wrt. the eigenspaces of g, ,. We denote the
eigenstates of p, ,(k) by {|u?,k)cell}j€ZuH70‘EZJ with j labeling
the symmetry representation and « the basis states which span
a degenerate eigenspace. We will further assume that these
states are energy eigenstates. We will show that in the basis
B= {|“3{,ko>cen}a€Z.z,jeZ#H chosen at the base point ko, U(Tg)
takes the form

U(TB) j =B ajj—lD(]) (A3)

Here, the subscript 3 reminds us of the special basis choice, and
d;, jy—1 is a unitary and faithful matrix representation of the
cycle that maps {|u(}t,k0)cell}0‘_}{|u771,k0>cell}a forall j € Z,,

with [ug ) een=luy, g, )een- EXplicitly, the matrix reads as

0 | Dy| 0 |...] 0
0 | 0 |Doy|...] 0
U(Tp) =5 0 0 0 0 )
0 | 0| 0 |...|Duy
Do | 0 | 0 |...| ©

where D are unitary J x J matrices indexed by j' € Z,,,
and with matrix elements labeled by «, 8 € Z; (no sum over

J:
Dé"; - ( ﬂ -1 ko|eiG-r|u;' k0+G)cell

x (@ B IAGG ) F ()~ € et )de! myve
Jhi

(A4)
The non-Abelian Berry connection A is defined as in Eq. (5)
wrt. the symmetric basis {lu?,k>cell}aezlvjezu“ , Fisthedriving
force, and € the energy matrix [(defined in Eq. (6)]. The matrix
Dy describes adiabatic evolution over the loop C,, : ko— ko +
G within the eigenspace {|uf, ;) celaez, -

To prove Eq. (A3), we use that (u; x| = eiG"(uj,k0|, and
that /¢ ’|ujJrl Kot G cell and |u;,k0)cell belong to the same
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representation of g, because e 'PC4/"

Eq. (4) reads as (no sum over j, j’)

Wjtln = Wjn. Then

B B iG-
U(TB)j,jr =B <u le! r|u‘]}'+1,k0+G

Jsko )cell

. Ty , / WYIds!
Si P LA F ()= €k )1dt 1)V
x (& )i

= 31+1J’<u§3’—1,k0 |eiG'r|”;Gko+G)cen

x (& J® ARG F W)@ D /1) (A 5)
i
The 841, factor comes from the following two observations:
first, Eq. (6) reads as
B —ik-r ikr|, o
(ul) e Hoe™ " [us ;)

=5,y [€E)} (A6)

cell
by our assumption that the states |u ;). are simultaneously
energy and symmetry eigenstates. Secondly, the non-Abelian
Berry connection satisfies
Bo _ [ B | o
A(k); = <uj’k|1Vk|uj,’k)

cell

= a)ja)j'(ujg,k |§Tivk§ |u‘}t'»k)cell

= (,()j(z)ij(k)f:?,,

(A7)

J

Z U(TB)j,j’f]l‘/ =35

€Ly
1
i1

where p! = e/ *+27D/1i satisfies the eigenvalue Eq. (A8).
We now prove that in the general case of J > 1

0 1 0 0
0 0 1 0

U(Tp) =p diag ..
0 0 0 ... 1
™ 0 0 ... 0

1
—= 2.8
K jez,,

_ &l 2D +D =i Tacyre; 0 — 1 ¢l

using §1iV; g = i Vy. This implies that the non-Abelian Berry
connection is also block-diagonal wrt. j, i.e., for all j'#j
andall o, B € Z; : A(k)f”j’ = 0. Therefore Eq. (AS) proves
Egs. (A3) and (A4).

We now calculate the eigenstates {f l’l}leZuH,zeZ , and
-values {u!"*}icz, ez, of U(Tg), which satisfy

2

j’EZu“ BEZ,;

(UTp)Sh — 18 80p) fii's =5 0 (A8)

for j,l € me o, L € Z ;. We will show that
1

L i amhi/mpie (A9)
&

I i(yW+42ml 1,1
ut=e (0% )/Hu’ =

for y© € [0, 27r) generically independent of each other and
v/t e CM ® C/ = CV an orthonormal basis. For a fixed ¢ €
Z;, each set {u'*};ez. corresponds to one Stark-Wannier
ladder.

In the simplest case of a spinless system with J = 1, we
can neglect the indices , B, t. Then Dy, = €'% for some 6; €
[0, 27r). Let

M

- L ioranbiimgi
i

with y = ZjeZuH 0;, then

i —i e O
o), = 8; e Zocir<i % (A10)

+l,j/ei9i’ el 2D =i Yogjrjr Oy

where each block has dimension . U(Tp) is expressed in the orthonormal basis

B (=t |,
B= {Uj/’a|Mj’,k0)cell}j€ZuH,LEZ_19

(Al1)
0 1 0
0 0 1 0
0 0 0 1
e 0 0 0
(A12)

of CV, where the vectors /+ are as in Eq. (A9). We note that the reducible representation of the 11| cycle in the basis B [see above
Eq. (A4)] has been decomposed into J irreducible 1) cycles in B. The eigenvalues of U(Tp) consist of the eigenvalues of each
of its i x 1) blocks. Using the result from J = 1 studied above (particularized to 6; = 6, = - -+ = 6,,_; = 0 and 6y = 6©)),
then y© = 6@ and we obtain the eigenvalues and eigenvectors stated in Eq. (A9).

‘We first notice that
DD ... Dyy—1yDo)

D)D) ... DoyDq)

U (Tp)" =g

DyDq) - - - Dyuy-2) Dy -1y

is block-diagonal, with all blocks on the diagonal being unitarily equivalent. The jth block (j € Z,,) corresponds to adiabatic
transport with initial symmetry-degenerate states {|u ; ). }acz, for u) BZ’s. Especially, the eigenvalues of different blocks,

corresponding to different initial symmetry eigenvalues, are the same. Let {v’, e"em}LGZ, be the normalized eigenvectors and
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eigenvalues of the last block D) D1y . .. D —2)D -1y, 1.€., (in the basis B)

> W@,

OtEZj

[— .
o« —B SJ/’M\I—IC Uﬂ.

0w

(A13)

Absent any other symmetries, the different phases 8¢ e [0, 27) are generically independent. We now define the ordered basis

(@0, 910 . pAThO 0t pAh e Ay
A1, =i, A—j—1:A—1,
U5y =B 8y a1V, ¥ =p (U(Tp)" /700 (Al4)
[
for j, j' € Z,,, o, € Z;. The left-right ordering of this basis diagonal wrt. u, i.e., U(TB)zf(};fﬁjr — 0 forall uzu’. We denote

corresponds to the top-down and left-right ordering of the row
and column indices of U(Tg) in B, respectively. The basis
B is normalized because it is constructed from the iterative
application of a unitary U(Tp) to a normalized vector 91~ 1,
States in B are orthogonal wrt. ¢ because of the orthogonality
of {v'},cz, in C’. States in B are orthogonal wrt. j because
[(U(Tp)] changes a state with symmetry eigenvalue w;,, (ko)
to a state with symmetry eigenvalue w;_; , (ko)#w; (ko) for
alll/ =1,..., uy — 1. By construction, application of U(Tg)
on each basis element of B gives

o = g U (T,

U(Tp)"™ = 5 (U(Tp)y o7 = &gl

(A15)
hence U(Ts) expressed in the basis B is indeed as stated
above. We have found that the phases {y“}’ | in Eq. (A9)
equal the eigenphases of the last, or equivalently, first, block
of (U(Tg))"; this proves Eq. (A2). |

2. uy<n

For ) < n, the spectrum of p, , has two possible forms:
either there exists a single (possibly symmetry-degenerate) 1
cycle or there exist multiple (possibly symmetry-degenerate)
) cycles. In either case, the spectrum does not have to contain
all the eigenvalues {wj, »}j,ez,. The case of a single u cycle
is analogous to the discussion in Appendix A 1. All that is left
to study is adiabatic transport in a subspace with multiple u
cycles.

We begin the study with an example of monodromy of the
energy bands for uy =2 <n =6, p =3. If the symmetry
eigenvalues of p, , are {1, —1} for one cycle with no symmetry
degeneracy (J; = 1), and for the other cycle {w, —w} (v =
e?"!/3) with degeneracy two (J, = 2); the total number of bands
is (J1 + J2)uy = 3 x 2 = 6. In this example, the propagator
can be block-diagonalized to two 2 cycles with J; = 1 and
J2 =2:

D(()’()) O

UTs) = ‘ 0 D11

D(_l,()) 0

Here, D((),()), D((),l) e U(1) and D(—l,O)’ D(—l,l) e U(2). We
see that U(Tp) is block-diagonal wrt. to different | cycles;
this reduces the problem back to single | cycles.

Proof. Let U(Tg) consist of multiple p) cycles (labeled
by index u € Zgcq(p,n)), then we show that U(Tg) is block-

the simultaneous eigenstates of the Bloch Hamiltonian and

the symmetry by {|ujﬁ‘ i ) cell Ju.au,j Where o, labels different

eigenstates with the same eigenvalue e*™'*/" j.n» Similar to
before, and j € Z,,. We proved in Egs. (A6) and (A7) that
the Bloch Hamiltonian and the non-Abelian Berry connec-
tion are diagonal in such a basis. Therefore Eq. (AS) still
holds with the replacements j' — (', j'), j — (u, j), 8 —
Bu, o — «,. Because of this block-diagonal form of U (T5)
in different cycles, its eigenvalues and eigenvectors consist of
the eigenvalues and eigenvectors of U(Tp) restricted to each
single (possibly degenerate) cycle, i.e., they are all of the form
of Eq. (A9), but with possibly different degeneracies J,. W

3. Orbital splitting by the Wannier-Stark effect

For J > 1 orbitals localized on the same real-space center
(@), we may ask in what situations are the Wannier-Stark
ladders nondegenerate. We will see that a driving force F
cannot split a Kramers degeneracy in a Wannier-Stark ladder,
though it might split other degeneracies. We will formulate
symmetry-based criteria to determine when degeneracies re-
main in the presence of a || field.

The orbitals form a representation of a 2D (magnetic)
on-site symmetry group Q, which is the subgroup of G that
remains a symmetry in the presence of the field; for a 1D chain
embedded in 3D space, as exemplified in Figs. 1(a), 2(a), 2(d)
and 2(g), G is generally a line group [102]. In the simplest case
of the force directed parallel to the chain (along e;), Q is the
subgroup of G that preserves the z coordinate.

Since time-reversal symmetry (7') acts locally in space, T
is not spoilt upon application of a force. We may therefore
expect for half-integer-spin representations of 7' that (i) J €
27 due to spin-doubling, and (ii) the spectrum of H is
Kramers-degenerate.”* As an example, we apply (i) and (ii)
to a glide-symmetric (g»,1) crystal with two atoms per unit
cell, and a Kramers-degenerate orbital (J = 2) localized on
each atom [cf. Fig. 2(g)]; its band structure and degenerate
ladder spectrum are illustrated in Figs. 2(h)-2(i). The Kramers
degeneracy of the spectrum of #, combined with its ladder
structure, results in period doubling (u = 2).

Though a driving force F cannot split a Kramers degener-
acy, it may yet split a degeneracy originating from the orbital
degree of freedom—this orbital splitting due to the Wannier-
Stark effect is an analog of spin splitting due to the Zeeman
effect. Owing to a symmetry reduction in the presence of an

24Consequences (i) and (ii) are verified in Ref. [39].

024310-28



TOPOLOGICAL BLOCH OSCILLATIONS

PHYSICAL REVIEW B 98, 024310 (2018)

electric field, the degeneracy in the Wannier-Stark spectrum
may be less than the number of orbitals J—we refer to this as
orbital splitting.

For a band representation with Wyckoff position w and
on-site representation V, application of a field F reduces the
on-site symmetry group Py, to a subgroup Q. The symmetry-
based criterion for orbital splitting is that orbital splitting
generically occurs if the unitary representation V is reducible
under Q.

Let us exemplify such a splitting for a 1D chain em-
bedded in 3D. For a band representation having a single
Wannier center @ per unit cell, we consider an irreducible
vector representation V (e.g., px%ip, orbitals) of Py = Cyy,
which is generated by fourfold rotation about e, (parallel
to the 1D chain) and a reflection (M,) that inverts y. If
the field is oriented in the xz plane and has a nonzero
componentine,,then @ = {e, M,}; Qonly has 1D irreducible
representations. This implies that the two Wannier-Stark
ladders are generically nondegenerate, i.e., orbital splitting
occurs.

Similarly, we might consider a one-dimensional lattice with
point group generated by M, and ge 3 (a sixfold-screw with half
a lattice translation along e;); then, energy bands are (u; =
2)-fold connected according to Eq. (1) and the discussion
in Sec. lIC. A p,=%ip,-orbital forms a two-dimensional
irreducible representation of the on-site symmetry group P, =
{e,C3.,M,,C5.M,}. For a field as described above, the
reduced symmetry group is Q = {e, M,}, which results in
orbital splitting. If we consider an additional s-orbital localized
at another Wyckoff position,zthe corresponding Wannier-Stark

ladders with ladder spacing ﬁ = 1 are generically nondegen-

erate: one offset Ay(V=£0 exists between the Wannier-Stark
ladders corresponding to the p orbitals, and another one,
Ay @ =0, between a Wannier-Stark ladder from a p orbital
and one from the s orbital.

APPENDIX B: SUFFICIENT SYMMETRY CRITERIA
FOR STRONG BAND REPRESENTATIONS

As described in Sec. IVB5, a sufficient symmetry criteria
for strong band representations (BRs) is that Eq. (13) is satisfied
for each Wannier center @ ;. The goal of this section is to
formulate sufficient symmetry criteria for Eq. (13).

These criteria are formulated for each Wannier center
individually. By choosing the spatial origin to lie at w ; + R,
Eq. (B1) simplifies to

Pj,R (r~vj) Pj,RZO (Bl)
for some unit-magnitude two-vector v;. Two possibilities
emerge: either (a’) symmetry constrains both P; gxP; g =
P; ryPjr =0, or (b') symmetry constrains only one com-
ponent (corresponding to v;) of the projected position op-
erator to vanish. We expect that the isotropic condition (a’)
occurs only for nongeneric Wyckoff positions at isolated
high-symmetry points, while the anisotropic condition (b’)
occurs for nongeneric Wyckoff positions that is movable along
a high-symmetry line. Let us utilize known matrix-element
selection rules [44] to formulate sufficient criteria for (a’)
and (b'), as detailed in Appendixes B 1 and B2, respectively.

Examples of weak BRs which do not satisfy these criteria are
provided in Appendixes B 3 and B4.

1. Sufficient criterion for isotropic, strong EBRs

We denote the on-site symmetry group at @ ; + R by P;,
as a short-hand for Py, g. X; is its 2D vector representa-
tion, and V; its (possibly reducible) on-site representation on
Wannier functions; X7 and V are their respective conjugate
representations. Applying a matrix-element selection rule [44],
a sufficient condition for (a’) is that (a) (V;)*® X; ® V;,
when decomposed into unitary irreducible representations of
‘P;, does not contain the trivial representation. An example
of an isotropic strong EBR has been described at the end of
Sec. IVB5; here we exemplify an isotropic strong CBR.

Example of isotropic strong CBRs. A case in point are BRs
of wallpaper groups, which are characterized by (i) a single
Wyckoff position (w) with multiplicity M, being unity or
greater, (ii) an on-site symmetry group P, thatis neither trivial
nor Cy (C; is generated only by reflection [44]), and (iii) the
on-site representation V, of P, is a direct sum of the same
one-dimensional irreducible representations. First note that the
tensor product V} ® V;, with V% the complex conjugate repre-
sentation of V,, is just the trivial representation. This implies
that V¥ ®X®V,, = (dim V,,)*X, with X the two-dimensional
vector representation of P,,. Condition (ii) implies that P,, is
one of the C,, or C,, groups, for which the vector representation
X does not contain the trivial representation.

2. Sufficient criterion for anisotropic, strong EBRs

For a 2D unit vector v j, we define the 1D on-site symmetry
group P;j as consisting of symmetries in P; that map v; to
+wv;. In wallpaper groups, P;j must therefore be a subgroup
of Cyy, i.e., equal to the trivial group, C,, Cy or Cypy; 73;/
is necessarily Abelian for integer-spin representations, which
we assume henceforth. All the unitary irreducible represen-
tations of an Abelian group are 1D. For example, if (i)
Pj ={e, Ca..} = Cy then P}’ = Cy; similarly if (ii) P; has a
reflection that inverts v ;, then 73;/ also inherits it. For 73;/ we
denote the corresponding 1D vector representation by X ;’ ; for
a given representation V; of P;, we define Vjv’ as the restricted

representation of P;j . In example (i) above and v; = e,, X j-*
is the (unique) nontrivial 1D unitary irreducible representation
of 77; = C»;if V; represents a p,, orbital, then V;“ is the trivial
representation of C,; on the other hand, if V; represents a p,
orbital, then Vje*EXj-*.

Then, a sufficient condition for (b’) is that (b) (Vjv’ *®
X ';’ ® V7, when decomposed into into unitary irreducible rep-

resentations of 73;] , does not contain the trivial representation.

Example of anisotropic strong EBRs. Let us consider the
wallpaper group G = pmg and the Wyckoff position w ; = 2¢
(cf. Fig. 3), whichis invariantunder P; = C; = {e, M} where
e is the trivial element and M, is the reflection that inverts x and
leaves y invariant. For a single orbital with representation V;
localized at w ;, (V;)*®V; = A, is the trivial representation
of P;. The vector representation X ; of P; is A @A, where A,
is the nontrivial 1D irreducible representation of C,. Hence,
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(Vi)*®X;®V; = A|@A; contains the trivial representation,
i.e., criterion (a) is not satisfied. We now show that criterion
(b) holds for v; = e, but not for v; = e,: the reduced on-site
symmetry group remains 73;*' = P; with on-site symmetry
representation Vf = V;; however, the reduced position op-
erator (x) corresponds to the one-dimensional representation
X;*‘ = A,.Then (V;’ )*®X;j ®Vjv/ = A, does not contain the
trivial representation, i.e., criterion (b) holds. In the y direction,
Pf" = {e} implies that all representations are trivial, thus (b)
cannot be satisfied for v; = e,.

3. Examples of weak and composite BRs

Consider composite BRs of the space group with a trivial
point group. A subset of these composite BRs have reducible
on-site representations on at least one Wannier center (indexed
by j). Since the stabilizer P; is trivial, a reducible, integer-spin
representations is necessarily at least two-dimensional. In the
absence of any on-site symmetry, the direct product of any
representation is always the trivial representation; physically
stated, in the absence of any on-site symmetry, Wannier
functions can hybridize and split away from @ ;. Such BRs
are weak.

Similarly, we might consider composite BRs of a space
group with a nontrivial point group. A subset of these compos-
ite BRs have a reducible on-site representation on at least one
generic Wyckoft position, i.e., a Wannier center with a trivial
stabilizer. The same argument as in the previous paragraph
leads to the conclusion that such BRs are weak.

4. Examples of weak and elementary BRs

By exhausting all EBRs for integer-spin representations of
wallpaper groups, we have found a single example of a weak
and elementary BR. For future investigation, we believe that
more examples may be uncovered in half-integer-spin EBRs
of wallpaper groups, and EBRs of 3D space groups.

Let us consider p,=%ip, orbitals on the vertices of a
honeycomb lattice (with Wyckoff position @ ); they form the
two-dimensional irreducible (vector) representation V, = X
of the on-site symmetry group P, = C3,, which is generated
by M, and Cs. For convenience, we place the origin in w.

Let us argue, in two steps, that generically Px P and Py P
do not commute. In the first step, we observe that Px P and
Py P are generically nonzero because X*® X ® X contains the
trivial representation, i.e., condition (a) is not satisfied. To
elaborate, let us denote the trivial representation of C3, by Ay,
the nontrival 1D irreducible representation by A, and the 2D
irreducible representation by E; the vector representation falls
into the latter category: X = E. Then X®X = A|PA,PE.
Since X* = X, it follows that X*®X®X contains X®X,
which contains Ay, the trivial representation.

In the second step, we would argue that Px P and Py P do
not commute. Indeed, the only nonzero matrix elements in both
operators can be derived from knowing the only C3,-invariant
function that is cubic in powers of x and y: x3 — 3xy? [44];
we have assumed here that C5, includes a mirror that inverts
y. Consequently,

PxP = |p)(px|x|ps){px] + |py)(17y|x|py><py|7
PyP = |p){(px1y|py) Pyl + | Py} Py Y| Px) (Pxl.

(B2)

In the basis of | p,) and | py ), we observe that Px P is a diagonal
matrix with generically different diagonal elements, and Py P
is off-diagonal—therefore they do not commute, for the same
reason that the Pauli matrices o3 and o do not commute.

APPENDIX C: x > 1 FOR EBRs

We show first that criteria (i—iii) in Sec. IV B 3 are sufficient
to prove Egs. (10) and (10") (x > 1) for at least one G, of
the form of Eq. (9). Next, we exhaust all EBRs of wallpaper
groups, to show that criteria (i—iii) in Sec. IV B 3 are actually
equivalent to Eq. (10’). We notice that Eq. (9) rules out g, =
Cs, ., because there exists no Cg .-invariant wave vector on the
first-BZ boundary. Moreover, by condition (i) in Sec. [IVB 3,
gn cannot be a glide reflection.

1. Conditions (i)-(iii) in Sec. IVB3 = Eq. (10)

Since @ ; + R is generated from w; by R € T, ¢'%+®i
is independent of the representative Wannier center of w ; +
R. Moreover, we may infer ¢/"¢»'@; = 1 from the following
demonstration: consider a plane wave with 2D wave vector K,
and with coordinates restricted to @ ; + R; by condition (ii),
such a discrete plane wave forms a scalar representation of g,,,

ie., g, maps ¢/®7i as
g ezK,, @i elK” & wj elG” wjezK,x w,’ (C])
with €% @7 an nth root of unity, owing to the triviality of g".

By condition (iii), @ ; and @ ; are related by an element in P
that is not in P, and therefore Aw = @ ;; — @ ; cannot be
a Bravais lattice vector. It follows that if Aw and G,, are not
orthogonal, ¢/¢»"A® must equal a nontrivial root of unity.

We address the possibility that G,-Aw =0 for g, a
reflection or rotation. In the former case, this is impossible
owing to (a) @ ; and @ ; lying on distinct, parallel mirror
lines, due to condition (iii), and (b) G, being orthogonal to
both mirror lines, due to Eq. (9). For g,, a rotation of order
2,3, or 4, and supposing G,-Aw = 0, there exists a linearly
independent G;, which also satisfies Eq. (9) for a distinct wave
vector K/, on the BZ boundary—this is a well-known property
of rotationally invariant points [44]. It follows that G,-Aw
is neither zero, nor an integer multiple of 27; ¢!%"2® must
therefore be a nontrivial root of unity. This completes the proof
that Eq. (10) is satisfied.

At last, we show that all other pairs of g,-invariant Wannier
separations Aw’ are (possibly trivial) multiples of 27t /11, , i.e.,
Eq. (10") is satisfied. We first notice that ¢/"2@" is an nth root
of unity, as shown above; thus G,-A®w’ is a multiple of 277 /n.
For n = 2, 3, 4, all divisors that are not one, are either equal
to n, or divide another divisor [in which case 1t is the largest
divisor for which Eq. (10) is satisfied]. More explicitly, for
n=2,3, uy =n, thus if G,-A®w’ is not zero, it is trivially
a multiple of 27t/ ; for n = 4 and G,- Aw’ nonzero, either
w1 =4, or u; =2, suchthat G,-Aw’ also being an nth root
of unity, must be a multiple of 27/, . This completes the
proof that under conditions (i)—(iii), Egs. (10) and (10") are
satisfied. |
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2. Wallpaper groups: Conditions (i)—(iii)
in Sec. IVB3 & Eq. (10')

In 2D, we went through all Wyckoff positions of the
17 wallpaper groups to study when conditions (i)—(iii) in
Sec. IVB3 and Eq. (10") are independently satisfied. We
found that they are simultaneously satisfied for 16 Wyckoff
positions in 9 wallpaper groups, while for all other Wyckoff
position, neither of them hold. We therefore conclude that in
2D, conditions (i)—(iii) and Eq. (10') are equivalent.

There are several ways in which a Wyckoff position
of a wallpaper group fails to satisfy conditions (i)—(iii) in
Sec. IVB3, as well as Eq. (10"). (1) The Wyckoff position
is nongeneric [condition (i) is not satisfied]; equivalently,
G-w ; are not fixed by symmetry to any special value, i.e.,
Eq. (10’) is generically not satisfied. (2) If M, = 1, condition
(>i1), as well as Eq. (10), are not satisfied. (3) 2a in cm,
(2a, 2b) in cmm: Here, 2a and 2b in the International Table of
Crystallographie[42] refer to multiplicity two with a centered
unit cell, whereas we define M, wrt. primitive unit cells;
M = 1and condition (ii), as well as Eq. (10), are not satisfied.
(4) (4d, 4e)in cmm, 2e, 2 f, 2g, 2h) in pmm, (4d, 4e, 4f)
in p4m, 3d in p3ml, 3c in p3lm, (6d, 6¢) in pbm: the
nontrivial symmetry in P, is a reflection; these Wyckoff
positions lie on a reflection-invariant line (rather than a point,
as for rotational symmetries), hence G-w ; is not fixed to
symmetry by any special value, i.e., Eq. (10') is generically
not satisfied. Though M, > 1, all symmetry-related Wannier
centers lie on nonparallel lines, and condition (iii) is not
satisfied.

APPENDIX D: RELATIONS BETWEEN THE PROJECTED
POSITION OPERATOR AND THE WILSON LOOP

The first part of this appendix proves Eq. (16). The second
part proves the atomic Zak-Wannier relation [Eq. (17)] for
strong, atomic EBRs of a space group G. For notational
simplicity, let us drop the subscript n of G in Eq. (16).

1. Proof of Eq. (16)

The integral on the left-hand side of Eq. (16) may be
reparametrized by a time variable dt as

(Wj,k, |€i [y PF(t)-rPdt ’wj/’k()),

with a time-dependent force satisfying F(t) = hdk/dt, and
T is the time taken to complete the loop C. Equation (D1) is
equivalent to the problem of a Bloch function (/- ¢, being the
initial state) evolving under a time-dependent field F (¢). The
role of P in Eq. (D1) is to restrict the field-induced dynamics to
a low-energy subspace spanned by N Bloch functions at each
wave vector in the Brillouin zone; this restriction is physically
justified by the adiabatic approximation, which holds for
sufficiently large T.>> By the acceleration theorem [5], the
wave vector of the initial Bloch function evolves in accordance
with dk/dt = F(t)/h and ko = k(0) as the initial condition.

(D1)

2The adiabatic theorem holds for C that is smooth. If C is kinked, the
restriction is further justified by the sudden approximation discussed
in Sec. VIIID.

We may therefore replace P in Eq. (D1) by P(C) C P, where

P(C)is the line integral of P(k) = YN |y, &) (¥,.x| over the
loop k € C. Equation (16) is then equivalent to the identity
S(kf _ kO _ G)W[C]],]/ — (1/fj,k,- ’61 fc P(C)rP(C)dk ‘ I/fj,,k0>’

(D2)

For a reminder of the definitions of various symbols, we refer

the reader to Table III.
We begin by deriving an analog of Eq. (D2) for an infinites-
imal path in k space, with the eventual goal of concatenating

infinitesimal paths into a finite loop C. The infinitesimal analog
is (writing out sums explicitly)

N
lim|8k| — O /c Z [ erok) (€ AE 0K )j’jr<"//j’,k|dk

J.Jj'=1
=lim|sk| — 0 ¢ POrPCOk p(cy. (D3)

The left-hand side of Eq. (D3) is the operator that induces

parallel transport from k — k + 8k for any k and k + 5k € C.
We start the proof of Eq. (D3) by applying the idempotency

of P(C), such that the right-hand side of Eq. (D3) becomes

eiP(C)rP(C)-SkP(C)
=[I +iPC)rP(C) -5k + O(|6k|»)]P(C)
= P(O)I +ir - 8k 4+ O(|8k[*)]P(C)
= P(C) ek P(C)+ O(|8k?).
By definition of P(C),
P(C)em* P(C)

N
=Y / / W) (Wsale™ Wy ) (W i | dkd K
iaidede
and using
(Wjale™ ™ Wy ) = 8(k — k' — SK) el jor g )cen
= 8(k — k' — 5k)(eA®%H),
the infinitesimal version is proven.
To relate Eq. (D3) to Eq. (D2), it is useful to decompose
C into the path-ordered product Cg, ...CoCy, where K is
number of kinks (possibly zero) in C, and each of the C; is
an oriented straight path beginning at wave vector k;_; and
ending at k;. Let §k; by an infinitesimal vector parallel to C;.

Then by path-ordered concatenation of Eq. (D3) over the path
C;, we derive

80k — ki = Sk)WICi],.
= 8(k; — ki_y — 8k)(E Je, Adodky

Ji
_ (Wj,k,- |€i fC/ P(C)rP(C).dk|¢j’,k,-_1>y
and finally
Skxi1 — ko — GYWIC];, ;v
=8k 11 — ko — G)(WICk 1] ... WICIWICi])

JJ'

= <wj,k1<+1 |€i Je P(C)rP(C)'dk|wj’,ko>' n
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2. Zak-Wannier relation for strong, atomic BRs

The atomic Zak-Wannier relation [Eq (17)] says that the
eigenvalues of W are equal to {¢/®@/}Y_,, where {w;}}_,
are different representatives of the Wyckoff position @ (cf.
Definition 2) of the strong, atomic EBR. Let us begin from
the just-proven identity [Eq. (16)], which applies generally to
any N-band subspace projected by P. We then particularize to
strong BRs, which satisfy the defining property that Px P and
Py P commute in the atomic limit. That is to say, there exists
a set of Wannier functions W; g (projected by P; g) that are
eigenstates of Pr P with eigenvalues w ; + R. Consequently,
the operator on the left-hand-side of Eq. (16) may be expressed

as
— E eleijR,
J:R

where G is the primitive reciprocal vector that connects C
across the Brillouin zone. In deriving the above expression,
we have used that [Px P, PyP] = 0 for every k € C, hence
the path-ordering may be ignored, and Pr P may be replaced
by directly by its spectral decomposition Z r(@; + R)P;p.

The Fourier transform of W; g [cf. Eq. (22)] defines a set
of Bloch functions v x, which satisfy

& §. PrP-dk (D4)

Z(Wj,kf|P1,R|Wj/,k0) =08(ky —ko—G)8j 8-
R

It follows from Eqs. (D4) and (D5) that

(D5)

(wj,k/ |€1 fC PrPAdk’wj,’ko) — a(kf _ k() _ G)Sj’j,einwj . (D6)
Combining the above equation with Eq. (16), we derive

WIC); o = 8;.¢' 9™ (D7)

This equality is valid in the basis of Bloch functions that are the
Fourier transforms of projected-position eigenstates. In a more
general basis given by ¥y x = Z?’:l ¥ kS« (k) with unitary
S, the Wilson loop W need not be diagonal. Independent
of basis, we may identify the eigenphase of W[C] (i.e., the
Zak phase) as ¢;[C] = G-w; mod 2w, which proves our
claim. |

APPENDIX E: THEOREM FOR SYMMETRY-PROTECTED
ZAK PHASES

Here we provide the proof for the theorem and its corollaries
stated in Sec. IVD 1.

1. Proof of the theorem

We first notice that we can write the loopC, = §,K,, — K,
as the concatenation of the two lines: C! =T — K, and C2 =
8. K, — I'. Wilson lines at symmetry-related wave vectors
satisfy [20,50]

WIgK < g.k] = p.(KYWIK' < klp,(k)' (E1)

(this was shown in terms of the sewing matrix but can
equivalently be shown for p,).

Let W[C,i] be the Wilson line with base point K,
and end point I' = g,I", then using the above relation, we

find

W[Cn] = W[gnKn <~ Kn] ZW[gnKn <—§nF]W[F <~ Kn]
= 3, (K,)W[K, < T1g,(D)'W[T « K,]
= $,.(K,)Z'8,(D)'Z = p,(K,)Z p, (D) Z.  (E2)

The unitary Wilson line Z = W[C!] conjugates the unitary
matrix p, (I")’, but does not change its eigenvalues. Varying pa-
rameters in the Hamiltonian that preserve the symmetry g,, Z
can be any element of U(/N) (assuming no other symmetries);
the g,-protected Zak phase factors exactly correspond to the
eigenvalues of W|[C,] that are independent of Z.

We use the spectral decomposition of p,(K,) and
Z'p,()Z to obtain a spectral decomposition of WI[C,].
Let B, be the projection operator onto the eigenspace of
Ztp, (D) Z with eigenvalue A, =e 27%/"; O, = 1y — P,
projects to its orthogonal complement. Let }3; be the projection
operator onto the eigenspace of p, (K, ) with eigenvalue e>//"
Decomposing the Wilson loop as

WIC,] = ey,
l

+) 0, 71,022, (E3)
1

we find that the rank of the projection B3,*B3, varies with Z. If
the rank m;(K,) of °3; is larger than the rank N — m (k,) of
£, then PP, must have positive rank. This means that there
exists a subspace of minimal rank r[C,] = m;(K,) — (N —
my, (k,)), independent of Z, which projects to the Wilson loop
eigenvalue e>™/!=)/" If we try to apply the same reasoning
to ;9. we find that m, (k) cannot be larger than m;, (k..), by
assumption. Therefore 3,Q, has no Z-independent subspace.

In the case where k,= K,, we first notice that
ZWIC,1ZT = Z,on(K,,)ZTpn(F)T and WIC,] are spectrally
equivalent. Then we can apply a similar reasoning as for
k., = T". This proves the theorem. |

2. Proof of corollaries (I) and (II)

To prove corollary (I), we notice that m;(k,) < my, (k,),
therefore 7;[C,] < 2m;, (k,) — N is bigger than zero if and only
it m (k,) > N/2.

For corollary (IT), we observe that all Zak phases are g,-
protected if and only if r;[C,,] = m,(k,), which is equivalent to

=my, (k).

At last, we prove that even for nonunique (I, k), (I}, k.,),
ie., my (k) =my (k.), the output of the theorem is unique.
We distinguish two scenarios: (i) If k, =k but [, #1[/ then
my, (ki) =my (k) < N/2. By corollary (I), there can be no
symmetry-protected Zak phases. (i) If I, =, but k, #k,
then for all / 1, holds that m;(k,) < N —m,, (k,) and thus
r1[C,] < 0. Therefore the only symmetry-protected Zak phases
arise for / = I, for which r;[C,] = 2m, (k.) — N Zak phases
are g,-protected to +2m (I, —I,)/n, where + (respectively,
—)applies fork, = ', k., = K, (respectively, k. = K, k, =
I'). Interchanging the roles of (L., k) and (I, k') leads to the
same g,-protected Zak phases. |
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APPENDIX F: CASE STUDIES WITH TOPOLOGICALLY
NONTRIVIAL SUBSPACES IN CLASS A/AII

1. Zak-Chern relation in C, .-symmetric lattices

To prove Eq. (29), we concatenate C4 with —C; (the minus
sign indicates a reversal in orientation) to form the contractible
loop C’ which bounds a quarter of the Brillouin torus. Due to the
periodicity of the Bloch functions on a torus, the Berry phase
of C’ satisfies ¢[C'] = ¢[C4] — ¢[C,]. Moreover, via Stoke’s
theorem, ¢[C’] equals a quarter of the total integrated curvature,
modulo 2m; the latter equals —27C/4, hence we obtain
Eq. (29). The mod-four arbitrariness in Eq. (29) originates from
the mod-27 ambiguity in the Berry phase. |

2. Class A: Honeycomb and Kagome lattices

An example of splitting an EBR into Chern insulators is
given by the honeycomb lattice with s orbitals at the Wyckoff
positions 2b (cf. Table I); here we consider the wallpaper
group p6 in contrast to p6m used in the main text. The
corresponding eigenvalues of C3 ; (p3) and C, ; (p2) are also
listed in Table II(b) (p6 is a subgroup of p6m). There are four
ways to split the EBR into two single bands, depending on the
combination of C3 ; and C; , eigenvalues at the high-symmetry
wave vectors. One single band has Zak phase 27/3 for the
Cs-loop, while the other band has Zak phase —2m/3. Using
Eq. (31), we also find that the Chern numbers of the two single
bands must be equal to £1 modulo 3 for all four splittings.

We now consider splitting the EBR of the Kagome lattice
with s-orbitals at the Wyckoff position 3¢ (cf. Table I). We have
seen an explicit tight-binding model in Sec. VIB 2, while here
we discuss what are all the possible splittings in general. From
Table I1(c), we infer that the three-band C,-Wilson loop results
in i, = 2, while the C; loop has no symmetry-protected Zak
phases (u = 1). There are in principle 72 possible splittings
of the three-band subspace into three single-band subspaces.
The C,-Wilson loop after the splitting results in three C; .-fixed
Zak phases, with two of them differing by r; there are many
different possibilities for the three Cs .-fixed Zak phases and
therefore for the Zak phases of the C3-Wilson loop. For each
splitting, we calculate the three single-band Chern number
modulo 6 using Eq. (32) and combine them into an unordered
triple: each component corresponds to the Chern number
of a single band. These triples are of the form (0, 1, —1),
0,3,-3),1,1,-2),(-1,-1,2),(1,2,-3). The three
Chern numbers must sum to zero, because the three-band
subspace is an EBR (which has zero three-band Chern
number). We notice that the triples (0,2, —2), (2,2,2) do
not appear in the above combinations, which is equivalent
to say that not all Chern numbers can be even (indeed, two
single-band Chern numbers are odd and one is even).

3. Proof of equivalence of 1, = 3 and nonzero mirror Chern
number in class AII

We prove that for the set of two-band subspaces with half-
integer spin representation, as well as time-reversal 7', sixfold
rotation Cg ., and inversion Z symmetry, holds: ; = 3 if and
only if the mirror Chern number C* is nonzero.

Dueto TZ symmetry, all C3 ; eigenvalues (of p3) in the two-
band subspace come in pairs of only two kinds: {e*"/3, ?7i/3}

and {1,e 27/3}. This is because the spectrum of e'f7/"p,

must be invariant under complex-conjugation. Let us exhaust
all possible combinations of C3 ; eigenvalues that would give
rise to iy = 3. If only C3 ; symmetry existed, the theorem (in
Sec. IVD 1) states that either

(@0 (p3(D)) = (777, &7, o (ps(K)) = {1,677},
(b)o(p3(I)) = {1,773}, o (p3(K)) = {3, ¥™/3).
(F1)

Since M, = C, ;7 is a symmetry by assumption, and com-
mutes with Cg _, for any single-band subspace of M_, the Cs ,
eigenvalues at K and K’ are identical. Let us apply Chen-
Gilbert-Bernevig’s criterion [54], which relates the Chern
number modulo three to the C;, eigenvalues; applying the
criterion within each mirror subspace, we determine the mirror
Chern number modulo three, but not its parity. When we restrict
to a single band that transforms in one representation of M_,

e = py(D)ps(K)p3(K') = p3(D)(p3(K))*.  (F2)

In case (a), the product of eigenvalues within one M, subspace
equals either of p3(I)(p3(K))* = e**i/3 or = e=27/3 which
implies that the mirror Chern number is nonzero. This is also
the case for (b): p3(I)(p3(K))* = e~ 27/3 or = 27i/3,

We have not yet exhausted all cases with ;; = 3. Since M,
symmetry allows us to split the two-band subspace into two
single-band subspaces, we should apply the theorem within
each single band. To obtain a Berry phase of +2/3 (where
the + occurs for one M, subspace and — for the other), we
could also pair up 1 (at one invariant wave vector) with e =27/
(at the other invariant wave vector). Then p3(I")(p3(K ))2 =
e*t27i/3 or = e=27/3 implies that the mirror Chern number is
nonzero. |

APPENDIX G: APPLYING A 1 FIELD TO A NEARLY
DEGENERATE BAND SUBSPACE

The atomic limit of crystals describes a scenario where
bands are not dispersive. We have identified band subspaces
which Bloch oscillate with frequency 27 /(i) T ) in the atomic
limit. In the vicinity of the atomic limit, bands have a small but
finite energy dispersion, i.e., the band width at each k is

[(u 1| Ho(K) |t k) cent

Ap(k) = max
ij N

—{uj x| Ho(k)uj g)cen| > 0, (GD)

where |u; k)., span the N-dimensional subspace at each
k € C,, and Hy(k) = e k" Hye'k" is the Bloch Hamiltonian.
The overall band width is defined by A = maxgec, Ap(k) >
0. We will show that the shift in the frequency (6w) from
2n /(w1 Tg) is bounded by

Tp AE

1
b < — IAE(k(D)lldt < =

G2
Ty )y (G2)

where k(t) describes the parametrization along the loop C,
with base point k¢ € C, and which wraps around the BZ in the
direction of the reciprocal vector G, [defined in Eq. (9)].
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The time-ordered integral in U (Tp) [U(Tp) is defined in operator on cell-periodic functions as
Eq. (4)] can be expressed explicitly by discretizing time 75 =

(L + 1)é¢t for L € N large and 8¢ > 0 small, and therefore k) = ) ) G4
also discretizing the wave vector k; = k({6t) forl =0, ..., L Bk ,GZZ ) - G4)
such that k; = ko + G,, with increment 6k; = k; — k;_; for I

all I=1,...,L. Eventually, we will take the continuum

The adiabatic evolution operator U(Tp) in discrete time,

limit §t—0, L— o0 with (L 4 1)5t=Tp constant. Let us first 1 .
U(Tg) = [],2, U(8t), is then [20]

express the infinitesimal propagator U (¢) to first order in 6¢

as
. L-1
i . —i
U@t = (ﬂN -~ ﬁe(knawm(klwkz) U(Tp); =(uikera|| ] Blhip)e okt
LJ Coil=0
i
=8ij— gQE,-,j(k;)St - (”i«kz |vk|uj«kl>cell -8k x |”‘j-k0>cell’
i
= (wie [14j.1) oy — EQS,-, j(kp)St where the notation [] L, clarifies that the product is path-
ordered along the loop C,. Note that the discretization er-
+(Vkui,k,|uj,k/>ceu - 0k, ror is now of order O(L8t?) = (O(6t), while expanding the

exponential to first order in é¢ gives a contribution of order
O(Lét) = 0(Q).

where € is the energy matrix, defined in Eq. (6), and A the non- In the energy-degenerate case where &; ;(k;) = &; ; Eo(k;),
Abelian Berry connection [Eq. (5)]. We write the projection the discretized propagator U (Tp) simplifies to

J

= (ui,k/ﬂ |e_iHU(kl)8t/h |ujvkl)cell’ (G3)

L
. . L
Uatomlc(TB)i,j — e—l 21:1 EU(kI)SI/h(ui,kO+G| l_[ m(kl) |Mj,k0>ce“ + O((St) (GS)
Cpil=1

Away from that limit, the energy matrix is not proportional to the identity, so let

¢ (k) = Eo(k)d; j + SE; j(k)

with Ey(k) = %tr@?(k) and §E; ; (k) = ﬁi, j(k) a Hermitian, traceless N x N matrix (for a complex number z, we denote by
Z its complex conjugate), which is bounded by the band width Ag(k) at each k. Then Eq. (G3) together with the equalities
Hy(k) = Eo(k)B (k) + (Hy(k) — Eo(k)B(k)) and B (k) = B(k), gives to zeroth order in §¢:

L1 .
L iét
U(Tp);,; = e D Eokodt/y, 6l 1_[ <1 — 7(Ho(kz) — Eo(k;)) + ‘»B(k1+1)>5~13(k1)|uj,ko)cen
C,:1=0

o YR L—1
= U"OMe(Tp); ; — ’Tf’ Zie ok /Mgy, 6| D (]‘[ Pey) (Ho(kr) — Eo(ki)B(kr)) [ Bk )) |t k)

I'=0 \I>I' <l

where in the last equation %(SE (k) appears exactly once at each position k; in the path-ordered product. This is the discretized
version (to first order in 1) of the well-known identity

aly(A+ABY _ fs Adt' 5[y @0 Mgl Ayar

Using the triangle and Cauchy-Schwartz inequalities several times, as well as ||B(k)|| = 1 for all k € C,,, we obtain for the
operator norm

L L
atomic 8t 8t
IU(Tp) — U™ (Tp)|| < 7 I’E:I I8 E ki)l + O@1) < 7 ;:l Ag(ky) + O(1). (Go)

To relate |U(Tg) — U*°™C(Tg)]| to the shift in oscillation frequency, we consider the eigenvalues and (normalized) -vectors
(&9, | ¥ ko) Imez,y OFf UMO™C(Tg) [Eq. (G5)]; in this basis, we denote matrix elements by T°™(Ty),, ; = §,,,¢'%". Since the
right-hand side of Eq. (G6) is small, we can use a first order perturbation to find U (Tg)my = Bmyle"(‘/’"'“"*) + O(A%) where
O(en) = O(Ag) for all m € Zy. For simplicity, we assumed that ¢,,7%¢; for m=£[, but degeneracies can be treated analogously
using standard methods of degenerate perturbation theory; the result, Eq. (G2), is the same. The operator norm || . || can then be
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bounded from below as follows, for all m € Z,

IU(Tp) — U™™(Tp)|> = | (Tg) — U™ (Tp)I> > Y (0 (Tg) — U™ (Tp))}, ,(T(Tp) — U™ (T5))1.m

m,l

leZy

= [1 =& + O(AL)]” = lenl? + O(A}); (GT)

especially, ||U(Tg) — U atomic (7Y || > max,, |€m].

In the atomic limit, the Bloch oscillation frequency is obtained from the phases {¢,; }nez, as L min,, o [, — @ol; because

Tp

of the dependency of the phases {¢,;}mcz, on the choice of origin, as elaborated in Sec. IVD 1, we can assume without loss of
generality that ¢y = 0. The shift in oscillation frequency is therefore

1 1 1 . 1 T
Sw| = — min |6, | < — max |e,| < —||U(Tg) — U™ (Tp)|| < — Ap(k())|dt,
[do| TBmyéO'ml\TBm#Oln'\TB” (Tg) (B)”\hTB | | Ag k)
where we took the continuum limit of Eq. (G6) for the last equality. This proves Eq. (G2). ||

[1] P. Voisin, J. Bleuse, C. Bouche, S. Gaillard, C. Alibert, and A.
Regreny, Phys. Rev. Lett. 61, 1639 (1988).

[2] E. E. Mendez and G. Bastard, Phys. Today 46, 34 (1993).

[3] G. H. Wannier, Phys. Rev. 52, 191 (1937).

[4] G. H. Wannier, Rev. Mod. Phys. 34, 645 (1962).

[5] A. Nenciu and G. Nenciu, Phys. Lett. 78, 101 (1980).

[6] N. W. Ashcroft and N. D. Mermin, Solid State Physics
(Saunders College, Philadelphia, 1976).

[7] H. Hiller, Am. Math. Mon. 93, 765 (1986).

[8] D. Culcer, Y. Yao, and Q. Niu, Phys. Rev. B 72, 085110 (2005).

[9] M. V. Berry, Proc. R. Soc. London A 392, 45 (1984).

[10] J. Zak, Phys. Rev. Lett. 62, 2747 (1989).

[11] F. Wilczek and A. Zee, Phys. Rev. Lett. 52, 2111 (1984).

[12] T.Li, L. Duca, M. Reitter, F. Grusdt, E. Demler, M. Endres, M.
Schleier-Smith, I. Bloch, and U. Schneider, Science 352, 1094
(2016).

[13] M. Konig, S. Wiedmann, C. Briine, A. Roth, H. Buhmann,
L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, Science 318,
766 (2007).

[14] J. I. Vdyrynen, M. Goldstein, and L. I. Glazman, Phys. Rev.
Lett. 110, 216402 (2013).

[15] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den
Nijs, Phys. Rev. Lett. 49, 405 (1982).

[16] A. Alexandradinata and L. Glazman, Phys. Rev. B 97, 144422
(2018).

[17] A. Alexandradinata, C. Wang, W. Duan, and L. Glazman, Phys.
Rev. X 8, 011027 (2018).

[18] L. Michel and J. Zak, Phys. Rev. B 59, 5998 (1999).

[19] M. Lax, Symmetry Principles in Solid State and Molecular
Physics (Wiley, New York, 1974).

[20] A. Alexandradinata, X. Dai, and B. A. Bernevig, Phys. Rev. B
89, 155114 (2014).

[21] R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651
(1993).

[22] J. Zak, Phys. Rev. B 23, 2824 (1981).

[23] R. A. Evarestov and V. P. Smirnov, Phys. Status Solidi 122, 231
(1984).

[24] H. Bacry, Commun. Math. Phys. 153, 359 (1993).

[25] B. Bradlyn, L. Elcoro, J. Cano, M. G. Vergniory, Z. Wang, C.
Felser, M. I. Aroyo, and B. A. Bernevig, Nature (London) 547,
298 (2017).

[26] J. Cano, B. Bradlyn, Z. Wang, L. Elcoro, M. G. Vergniory,
C. Felser, M. 1. Aroyo, and B. A. Bernevig, Phys. Rev. B 97,
035139 (2018).

[27] N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997).

[28] D. A. Abanin, T. Kitagawa, I. Bloch, and E. Demler, Phys. Rev.
Lett. 110, 165304 (2013).

[29] M. Atala, M. Aidelsburger, J. T. Barreiro, D. A. Abanin, T.
Kitagawa, E. Demler, and 1. Bloch, Nat. Phys. 9, 795 (2013).

[30] E.J. Dyson, J. Math. Phys. 3, 1199 (1962).

[31] A. Kitaev, in Advances in Theoretical Physics: Landau Memo-
rial Conference, edited by V. Lebedev and M. Feigelman, AIP
Conf. Proc. No. 1134 (AIP, New York, 2009), p. 22.

[32] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig,
AIP Conf. Proc. 1134, 10 (2009).

[33] C. Brouder, G. Panati, M. Calandra, C. Mourougane, and
N. Marzari, Phys. Rev. Lett. 98, 046402 (2007).

[34] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802
(2005).

[35] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).

[36] M. Taherinejad, K. F. Garrity, and D. Vanderbilt, Phys. Rev. B
89, 115102 (2014).

[37] G. Nenciu, Rev. Mod. Phys. 34, 645 (1991).

[38] E. Bezout, Théorie générale des équations algébrique (Paris,
Impr. de P.-D. Pierres, Paris, 1779).

[39] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.98.024310, which includes Refs. [5,9-
11,18-20,23,25,26,37,47,62,103-118].

[40] E. Blount, in Solid State Physics (Academic Press, New York,
1962), Vol. 13, pp. 305-373.

[41] S.-L. Zhang and Q. Zhou, Phys. Rev. A 95, 061601(R) (2016).

[42] T. Hahn and P. Paufler, Crystal Research and Technology
(WileyVCH Verlag, Weinheim, 1984), Vol. 19.

[43] A. Alexandradinata and J. Holler, arXiv:1804.04131.

[44] M. Tinkham, Group Theory and Quantum Mechanics (Dover,
New York, 2003).

[45] H. Seo, C. Hotta, and H. Fukuyama, Chem. Rev. 104, 5005
(2004).

[46] H. Seo, S. Ishibashi, Y. Otsuka, H. Fukuyama, and K. Terakura,
J. Phys. Soc. Jpn. 82, 054711 (2013).

[47] H. Bacry, L. Michel, and J. Zak, Group Theor. Methods Phys.
313, 289 (1988).

024310-35


https://doi.org/10.1103/PhysRevLett.61.1639
https://doi.org/10.1103/PhysRevLett.61.1639
https://doi.org/10.1103/PhysRevLett.61.1639
https://doi.org/10.1103/PhysRevLett.61.1639
https://doi.org/10.1063/1.881353
https://doi.org/10.1063/1.881353
https://doi.org/10.1063/1.881353
https://doi.org/10.1063/1.881353
https://doi.org/10.1103/PhysRev.52.191
https://doi.org/10.1103/PhysRev.52.191
https://doi.org/10.1103/PhysRev.52.191
https://doi.org/10.1103/PhysRev.52.191
https://doi.org/10.1103/RevModPhys.34.645
https://doi.org/10.1103/RevModPhys.34.645
https://doi.org/10.1103/RevModPhys.34.645
https://doi.org/10.1103/RevModPhys.34.645
https://doi.org/10.1016/0375-9601(80)90820-8
https://doi.org/10.1016/0375-9601(80)90820-8
https://doi.org/10.1016/0375-9601(80)90820-8
https://doi.org/10.1016/0375-9601(80)90820-8
https://doi.org/10.1080/00029890.1986.11971943
https://doi.org/10.1080/00029890.1986.11971943
https://doi.org/10.1080/00029890.1986.11971943
https://doi.org/10.1080/00029890.1986.11971943
https://doi.org/10.1103/PhysRevB.72.085110
https://doi.org/10.1103/PhysRevB.72.085110
https://doi.org/10.1103/PhysRevB.72.085110
https://doi.org/10.1103/PhysRevB.72.085110
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1103/PhysRevLett.62.2747
https://doi.org/10.1103/PhysRevLett.62.2747
https://doi.org/10.1103/PhysRevLett.62.2747
https://doi.org/10.1103/PhysRevLett.62.2747
https://doi.org/10.1103/PhysRevLett.52.2111
https://doi.org/10.1103/PhysRevLett.52.2111
https://doi.org/10.1103/PhysRevLett.52.2111
https://doi.org/10.1103/PhysRevLett.52.2111
https://doi.org/10.1126/science.aad5812
https://doi.org/10.1126/science.aad5812
https://doi.org/10.1126/science.aad5812
https://doi.org/10.1126/science.aad5812
https://doi.org/10.1126/science.1148047
https://doi.org/10.1126/science.1148047
https://doi.org/10.1126/science.1148047
https://doi.org/10.1126/science.1148047
https://doi.org/10.1103/PhysRevLett.110.216402
https://doi.org/10.1103/PhysRevLett.110.216402
https://doi.org/10.1103/PhysRevLett.110.216402
https://doi.org/10.1103/PhysRevLett.110.216402
https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1103/PhysRevB.97.144422
https://doi.org/10.1103/PhysRevB.97.144422
https://doi.org/10.1103/PhysRevB.97.144422
https://doi.org/10.1103/PhysRevB.97.144422
https://doi.org/10.1103/PhysRevX.8.011027
https://doi.org/10.1103/PhysRevX.8.011027
https://doi.org/10.1103/PhysRevX.8.011027
https://doi.org/10.1103/PhysRevX.8.011027
https://doi.org/10.1103/PhysRevB.59.5998
https://doi.org/10.1103/PhysRevB.59.5998
https://doi.org/10.1103/PhysRevB.59.5998
https://doi.org/10.1103/PhysRevB.59.5998
https://doi.org/10.1103/PhysRevB.89.155114
https://doi.org/10.1103/PhysRevB.89.155114
https://doi.org/10.1103/PhysRevB.89.155114
https://doi.org/10.1103/PhysRevB.89.155114
https://doi.org/10.1103/PhysRevB.47.1651
https://doi.org/10.1103/PhysRevB.47.1651
https://doi.org/10.1103/PhysRevB.47.1651
https://doi.org/10.1103/PhysRevB.47.1651
https://doi.org/10.1103/PhysRevB.23.2824
https://doi.org/10.1103/PhysRevB.23.2824
https://doi.org/10.1103/PhysRevB.23.2824
https://doi.org/10.1103/PhysRevB.23.2824
https://doi.org/10.1002/pssb.2221220127
https://doi.org/10.1002/pssb.2221220127
https://doi.org/10.1002/pssb.2221220127
https://doi.org/10.1002/pssb.2221220127
https://doi.org/10.1007/BF02096648
https://doi.org/10.1007/BF02096648
https://doi.org/10.1007/BF02096648
https://doi.org/10.1007/BF02096648
https://doi.org/10.1038/nature23268
https://doi.org/10.1038/nature23268
https://doi.org/10.1038/nature23268
https://doi.org/10.1038/nature23268
https://doi.org/10.1103/PhysRevB.97.035139
https://doi.org/10.1103/PhysRevB.97.035139
https://doi.org/10.1103/PhysRevB.97.035139
https://doi.org/10.1103/PhysRevB.97.035139
https://doi.org/10.1103/PhysRevB.56.12847
https://doi.org/10.1103/PhysRevB.56.12847
https://doi.org/10.1103/PhysRevB.56.12847
https://doi.org/10.1103/PhysRevB.56.12847
https://doi.org/10.1103/PhysRevLett.110.165304
https://doi.org/10.1103/PhysRevLett.110.165304
https://doi.org/10.1103/PhysRevLett.110.165304
https://doi.org/10.1103/PhysRevLett.110.165304
https://doi.org/10.1038/nphys2790
https://doi.org/10.1038/nphys2790
https://doi.org/10.1038/nphys2790
https://doi.org/10.1038/nphys2790
https://doi.org/10.1063/1.1703863
https://doi.org/10.1063/1.1703863
https://doi.org/10.1063/1.1703863
https://doi.org/10.1063/1.1703863
https://doi.org/10.1063/1.3149481
https://doi.org/10.1063/1.3149481
https://doi.org/10.1063/1.3149481
https://doi.org/10.1063/1.3149481
https://doi.org/10.1103/PhysRevLett.98.046402
https://doi.org/10.1103/PhysRevLett.98.046402
https://doi.org/10.1103/PhysRevLett.98.046402
https://doi.org/10.1103/PhysRevLett.98.046402
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevB.89.115102
https://doi.org/10.1103/PhysRevB.89.115102
https://doi.org/10.1103/PhysRevB.89.115102
https://doi.org/10.1103/PhysRevB.89.115102
http://link.aps.org/supplemental/10.1103/PhysRevB.98.024310
https://doi.org/10.1103/PhysRevA.95.061601
https://doi.org/10.1103/PhysRevA.95.061601
https://doi.org/10.1103/PhysRevA.95.061601
https://doi.org/10.1103/PhysRevA.95.061601
http://arxiv.org/abs/arXiv:1804.04131
https://doi.org/10.1021/cr030646k
https://doi.org/10.1021/cr030646k
https://doi.org/10.1021/cr030646k
https://doi.org/10.1021/cr030646k
https://doi.org/10.7566/JPSJ.82.054711
https://doi.org/10.7566/JPSJ.82.054711
https://doi.org/10.7566/JPSJ.82.054711
https://doi.org/10.7566/JPSJ.82.054711
https://doi.org/10.1007/BFb0012290
https://doi.org/10.1007/BFb0012290
https://doi.org/10.1007/BFb0012290
https://doi.org/10.1007/BFb0012290

J.HOLLER AND A. ALEXANDRADINATA

PHYSICAL REVIEW B 98, 024310 (2018)

[48] J. D. Cloizeaux, Phys. Rev. 135, A685 (1964).

[49] T. Eguchi, P. B. Gilkey, and A. J. Hanson, Phys. Rep. 66, 213
(1980).

[50] A. Alexandradinata and B. A. Bernevig, Phys. Rev. B 93,
205104 (2016).

[51] P. Zeiner, R. Dirl, and B. Davies, J. Phys. A: Math. Gen. 33,
1631 (2000).

[52] R. Sakuma, Phys. Rev. B 87, 235109 (2013).

[53] J. Zak, Lect. Notes Phys. 382, 581 (1991).

[54] C. Fang, M. J. Gilbert, and B. A. Bernevig, Phys. Rev. B 86,
115112 (2012).

[55] A. Alexandradinata, Z. Wang, and B. A. Bernevig, Nature
(London) 532, 189 (2016).

[56] A. A. Soluyanov and D. Vanderbilt, Phys. Rev. B 83, 035108
(2011).

[57] G. W. Winkler, A. A. Soluyanov, and M. Troyer, Phys. Rev. B
93, 035453 (2016).

[58] F. Grusdt, T. Li, I. Bloch, and E. Demler, Phys. Rev. A 95,
063617 (2017).

[59] M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes,
and 1. Bloch, Phys. Rev. Lett. 111, 185301 (2013).

[60] J. C. Y. Teo, L. Fu, and C. L. Kane, Phys. Rev. B 78, 045426
(2008).

[61] L. Fu and C. L. Kane, Phys. Rev. B 74, 195312 (2006).

[62] A. Nenciu, Stud. Cercet. Fiz. 38, 494 (1987).

[63] A. Zenesini, D. Ciampini, O. Morsch, and E. Arimondo, Phys.
Rev. A 82, 065601 (2010).

[64] S. Kling, T. Salger, C. Grossert, and M. Weitz, Phys. Rev. Lett.
105, 215301 (2010).

[65] J. C. Y. Teo and C. L. Kane, Phys. Rev. B 82, 115120 (2010).

[66] T. Morimoto and A. Furusaki, Phys. Rev. B 88, 125129 (2013).

[67] D. S. Freed and G. W. Moore, Ann. Henri Poincare 14, 1927
(2013).

[68] G. C. Thiang, Ann. Henri Poincaré 17, 757 (2015).

[69] K. Shiozaki and M. Sato, Phys. Rev. B 90, 165114 (2014).

[70] K. Shiozaki, M. Sato, and K. Gomi, Phys. Rev. B 93, 195413
(2016).

[71] K. Shiozaki, M. Sato, and K. Gomi, arXiv:1802.06694.

[72] N. Read, Phys. Rev. B 95, 115309 (2017).

[73] J. Kruthoft, J. de Boer, J. van Wezel, C. L. Kane, and R.-J.
Slager, Phys. Rev. X 7, 041069 (2017).

[74] G. De Nittis and K. Gomi, J. Geom. Phys. 86, 303 (2014).

[75] G. De Nittis and K. Gomi, arXiv:1404.5804.

[76] J. Cano, B. Bradlyn, Z. Wang, L. Elcoro, M. G. Vergniory, C.
Felser, M. 1. Aroyo, and B. A. Bernevig, Phys. Rev. Lett. 120,
266401 (2018).

[77] A. Bouhon, A. M. Black-Schaffer, and R.-J. Slager,
arXiv:1804.09719.

[78] S.Ryu, A. Schnyder, A. Furusaki, and A. Ludwig, New J. Phys.
12, 065010 (2010).

[79] M. Stone, C.-K. Chiu, and A. Roy, J. Phys. A: Math. Theor.
44, 045001 (2011).

[80] C.-K. Chiu, H. Yao, and S. Ryu, Phys. Rev. B 88, 075142
(2013).

[81] A. A. Soluyanov and D. Vanderbilt, Phys. Rev. B 83, 235401
(2011).

[82] K. Shiozaki, M. Sato, and K. Gomi, Phys. Rev. B 91, 155120
(2015).

[83] K. Shiozaki, M. Sato, and K. Gomi, Phys. Rev. B 95, 235425
(2017).

[84] A. Alexandradinata, Z. Wang, and B. A. Bernevig, Phys. Rev.
X 6, 021008 (2016).

[85] R. Yu, X. L. Qi, A. Bernevig, Z. Fang, and X. Dai, Phys. Rev.
B 84, 075119 (2011).

[86] L. Fidkowski, T. S. Jackson, and I. Klich, Phys. Rev. Lett. 107,
036601 (2011).

[87] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045
(2010).

[88] I. K. Drozdov, A. Alexandradinata, S. Jeon, S. Nadj-Perge, H.
Ji, R. J. Cava, B. Andrei Bernevig, and A. Yazdani, Nat. Phys.
10, 664 (2014).

[89] G. Panati, Ann. Henri Poincare 8, 995 (2007).

[90] L. Fu, Phys. Rev. Lett. 106, 106802 (2011).

[91] C.-X. Liu, R.-X. Zhang, and B. K. VanLeeuwen, Phys. Rev. B
90, 085304 (2014).

[92] A. Alexandradinata, C. Fang, M. J. Gilbert, and B. A. Bernevig,
Phys. Rev. Lett. 113, 116403 (2014).

[93] C. Fang and L. Fu, Phys. Rev. B 91, 161105 (2015).

[94] B. A. Bernevig and S. C. Zhang, Phys. Rev. Lett. 96, 106802
(20006).

[95] B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Science 314,
1757 (2006).

[96] R. Roy, Phys. Rev. B 79, 195321 (2009).

[97] L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803
(2007).

[98] L. Fu and C. L. Kane, Phys. Rev. B 76, 045302 (2007).

[99] J. E. Moore and L. Balents, Phys. Rev. B 75, 121306 (2007).

[100] R. Roy, Phys. Rev. B 79, 195322 (2009).

[101] R.-J. Slager, A. Mesaros, V. Juricic, and J. Zaanen, Nat. Phys.
9,98 (2012).

[102] M. Damnjanovi¢ and 1. MiloSsevié, Line Groups in Physics,
Lecture Notes in Physics (Springer, Berlin, Heidelberg, 2010),
Vol. 801.

[103] D. Fiorenza, D. Monaco, and G. Panati, Ann. Henri Poincare
17, 63 (2016).

[104] J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).

[105] P. Lowdin, J. Chem. Phys. 18, 365 (1950).

[106] R. Winkler, Spin—Orbit Coupling Effects in Two-Dimensional
Electron and Hole Systems (Springer Berlin Heidelberg, Berlin,
Heidelberg, 2003), Vol. 191.

[107] C. Fang, M. J. Gilbert, and B. A. Bernevig, Phys. Rev. B 87,
035119 (2013).

[108] R. A. Evarestov and V. P. Smirnov, Site Symmetry in Crys-
tals (Springer, Berlin, Heidelberg, 1997), Vol. 1, pp. 1689—
1699.

[109] H. Bacry, L. Michel, and J. Zak, Phys. Rev. Lett. 61, 1005
(1988).

[110] L. Michel and J. Zak, Phys. Rep. 341, 377 (2001).

[111] L. Michel, Phys. Rep. 341, 265 (2001).

[112] L. Michel and J. Zak, Europhys. Lett. 50, 519 (2000).

[113] T. Kato, J. Phys. Soc. Jpn. 5, 435 (1979).

[114] J. C. Budich and B. Trauzettel, Phys. Status Solidi RRL 7, 109
(2013).

[115] A. Messiah, Quantum Mechanics, 2nd ed. (North-Holland,
Amsterdam, 1962).

[116] A. Nenciu, J. Phys. A: Math. Theor. 41, 025304 (2008).

[117] J. E. Avron, J. Zak, A. Grossmann, and L. Gunther, J. Math.
Phys. 18, 918 (1977).

[118] J. E. Avron, J. Phys. A: Math. Gen. 12, 2393 (1979).

[119] H. C. Po, H. Watanabe, and A. Vishwanath, arXiv:1709.06551.

024310-36


https://doi.org/10.1103/PhysRev.135.A685
https://doi.org/10.1103/PhysRev.135.A685
https://doi.org/10.1103/PhysRev.135.A685
https://doi.org/10.1103/PhysRev.135.A685
https://doi.org/10.1016/0370-1573(80)90130-1
https://doi.org/10.1016/0370-1573(80)90130-1
https://doi.org/10.1016/0370-1573(80)90130-1
https://doi.org/10.1016/0370-1573(80)90130-1
https://doi.org/10.1103/PhysRevB.93.205104
https://doi.org/10.1103/PhysRevB.93.205104
https://doi.org/10.1103/PhysRevB.93.205104
https://doi.org/10.1103/PhysRevB.93.205104
https://doi.org/10.1088/0305-4470/33/8/308
https://doi.org/10.1088/0305-4470/33/8/308
https://doi.org/10.1088/0305-4470/33/8/308
https://doi.org/10.1088/0305-4470/33/8/308
https://doi.org/10.1103/PhysRevB.87.235109
https://doi.org/10.1103/PhysRevB.87.235109
https://doi.org/10.1103/PhysRevB.87.235109
https://doi.org/10.1103/PhysRevB.87.235109
https://doi.org/10.1007/3-540-54040-7_167
https://doi.org/10.1007/3-540-54040-7_167
https://doi.org/10.1007/3-540-54040-7_167
https://doi.org/10.1007/3-540-54040-7_167
https://doi.org/10.1103/PhysRevB.86.115112
https://doi.org/10.1103/PhysRevB.86.115112
https://doi.org/10.1103/PhysRevB.86.115112
https://doi.org/10.1103/PhysRevB.86.115112
https://doi.org/10.1038/nature17410
https://doi.org/10.1038/nature17410
https://doi.org/10.1038/nature17410
https://doi.org/10.1038/nature17410
https://doi.org/10.1103/PhysRevB.83.035108
https://doi.org/10.1103/PhysRevB.83.035108
https://doi.org/10.1103/PhysRevB.83.035108
https://doi.org/10.1103/PhysRevB.83.035108
https://doi.org/10.1103/PhysRevB.93.035453
https://doi.org/10.1103/PhysRevB.93.035453
https://doi.org/10.1103/PhysRevB.93.035453
https://doi.org/10.1103/PhysRevB.93.035453
https://doi.org/10.1103/PhysRevA.95.063617
https://doi.org/10.1103/PhysRevA.95.063617
https://doi.org/10.1103/PhysRevA.95.063617
https://doi.org/10.1103/PhysRevA.95.063617
https://doi.org/10.1103/PhysRevLett.111.185301
https://doi.org/10.1103/PhysRevLett.111.185301
https://doi.org/10.1103/PhysRevLett.111.185301
https://doi.org/10.1103/PhysRevLett.111.185301
https://doi.org/10.1103/PhysRevB.78.045426
https://doi.org/10.1103/PhysRevB.78.045426
https://doi.org/10.1103/PhysRevB.78.045426
https://doi.org/10.1103/PhysRevB.78.045426
https://doi.org/10.1103/PhysRevB.74.195312
https://doi.org/10.1103/PhysRevB.74.195312
https://doi.org/10.1103/PhysRevB.74.195312
https://doi.org/10.1103/PhysRevB.74.195312
https://doi.org/10.1103/PhysRevA.82.065601
https://doi.org/10.1103/PhysRevA.82.065601
https://doi.org/10.1103/PhysRevA.82.065601
https://doi.org/10.1103/PhysRevA.82.065601
https://doi.org/10.1103/PhysRevLett.105.215301
https://doi.org/10.1103/PhysRevLett.105.215301
https://doi.org/10.1103/PhysRevLett.105.215301
https://doi.org/10.1103/PhysRevLett.105.215301
https://doi.org/10.1103/PhysRevB.82.115120
https://doi.org/10.1103/PhysRevB.82.115120
https://doi.org/10.1103/PhysRevB.82.115120
https://doi.org/10.1103/PhysRevB.82.115120
https://doi.org/10.1103/PhysRevB.88.125129
https://doi.org/10.1103/PhysRevB.88.125129
https://doi.org/10.1103/PhysRevB.88.125129
https://doi.org/10.1103/PhysRevB.88.125129
https://doi.org/10.1007/s00023-013-0236-x
https://doi.org/10.1007/s00023-013-0236-x
https://doi.org/10.1007/s00023-013-0236-x
https://doi.org/10.1007/s00023-013-0236-x
https://doi.org/10.1007/s00023-015-0418-9
https://doi.org/10.1007/s00023-015-0418-9
https://doi.org/10.1007/s00023-015-0418-9
https://doi.org/10.1007/s00023-015-0418-9
https://doi.org/10.1103/PhysRevB.90.165114
https://doi.org/10.1103/PhysRevB.90.165114
https://doi.org/10.1103/PhysRevB.90.165114
https://doi.org/10.1103/PhysRevB.90.165114
https://doi.org/10.1103/PhysRevB.93.195413
https://doi.org/10.1103/PhysRevB.93.195413
https://doi.org/10.1103/PhysRevB.93.195413
https://doi.org/10.1103/PhysRevB.93.195413
http://arxiv.org/abs/arXiv:1802.06694
https://doi.org/10.1103/PhysRevB.95.115309
https://doi.org/10.1103/PhysRevB.95.115309
https://doi.org/10.1103/PhysRevB.95.115309
https://doi.org/10.1103/PhysRevB.95.115309
https://doi.org/10.1103/PhysRevX.7.041069
https://doi.org/10.1103/PhysRevX.7.041069
https://doi.org/10.1103/PhysRevX.7.041069
https://doi.org/10.1103/PhysRevX.7.041069
https://doi.org/10.1016/j.geomphys.2014.07.036
https://doi.org/10.1016/j.geomphys.2014.07.036
https://doi.org/10.1016/j.geomphys.2014.07.036
https://doi.org/10.1016/j.geomphys.2014.07.036
http://arxiv.org/abs/arXiv:1404.5804
https://doi.org/10.1103/PhysRevLett.120.266401
https://doi.org/10.1103/PhysRevLett.120.266401
https://doi.org/10.1103/PhysRevLett.120.266401
https://doi.org/10.1103/PhysRevLett.120.266401
http://arxiv.org/abs/arXiv:1804.09719
https://doi.org/10.1088/1367-2630/12/6/065010
https://doi.org/10.1088/1367-2630/12/6/065010
https://doi.org/10.1088/1367-2630/12/6/065010
https://doi.org/10.1088/1367-2630/12/6/065010
https://doi.org/10.1088/1751-8113/44/4/045001
https://doi.org/10.1088/1751-8113/44/4/045001
https://doi.org/10.1088/1751-8113/44/4/045001
https://doi.org/10.1088/1751-8113/44/4/045001
https://doi.org/10.1103/PhysRevB.88.075142
https://doi.org/10.1103/PhysRevB.88.075142
https://doi.org/10.1103/PhysRevB.88.075142
https://doi.org/10.1103/PhysRevB.88.075142
https://doi.org/10.1103/PhysRevB.83.235401
https://doi.org/10.1103/PhysRevB.83.235401
https://doi.org/10.1103/PhysRevB.83.235401
https://doi.org/10.1103/PhysRevB.83.235401
https://doi.org/10.1103/PhysRevB.91.155120
https://doi.org/10.1103/PhysRevB.91.155120
https://doi.org/10.1103/PhysRevB.91.155120
https://doi.org/10.1103/PhysRevB.91.155120
https://doi.org/10.1103/PhysRevB.95.235425
https://doi.org/10.1103/PhysRevB.95.235425
https://doi.org/10.1103/PhysRevB.95.235425
https://doi.org/10.1103/PhysRevB.95.235425
https://doi.org/10.1103/PhysRevX.6.021008
https://doi.org/10.1103/PhysRevX.6.021008
https://doi.org/10.1103/PhysRevX.6.021008
https://doi.org/10.1103/PhysRevX.6.021008
https://doi.org/10.1103/PhysRevB.84.075119
https://doi.org/10.1103/PhysRevB.84.075119
https://doi.org/10.1103/PhysRevB.84.075119
https://doi.org/10.1103/PhysRevB.84.075119
https://doi.org/10.1103/PhysRevLett.107.036601
https://doi.org/10.1103/PhysRevLett.107.036601
https://doi.org/10.1103/PhysRevLett.107.036601
https://doi.org/10.1103/PhysRevLett.107.036601
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1038/nphys3048
https://doi.org/10.1038/nphys3048
https://doi.org/10.1038/nphys3048
https://doi.org/10.1038/nphys3048
https://doi.org/10.1007/s00023-007-0326-8
https://doi.org/10.1007/s00023-007-0326-8
https://doi.org/10.1007/s00023-007-0326-8
https://doi.org/10.1007/s00023-007-0326-8
https://doi.org/10.1103/PhysRevLett.106.106802
https://doi.org/10.1103/PhysRevLett.106.106802
https://doi.org/10.1103/PhysRevLett.106.106802
https://doi.org/10.1103/PhysRevLett.106.106802
https://doi.org/10.1103/PhysRevB.90.085304
https://doi.org/10.1103/PhysRevB.90.085304
https://doi.org/10.1103/PhysRevB.90.085304
https://doi.org/10.1103/PhysRevB.90.085304
https://doi.org/10.1103/PhysRevLett.113.116403
https://doi.org/10.1103/PhysRevLett.113.116403
https://doi.org/10.1103/PhysRevLett.113.116403
https://doi.org/10.1103/PhysRevLett.113.116403
https://doi.org/10.1103/PhysRevB.91.161105
https://doi.org/10.1103/PhysRevB.91.161105
https://doi.org/10.1103/PhysRevB.91.161105
https://doi.org/10.1103/PhysRevB.91.161105
https://doi.org/10.1103/PhysRevLett.96.106802
https://doi.org/10.1103/PhysRevLett.96.106802
https://doi.org/10.1103/PhysRevLett.96.106802
https://doi.org/10.1103/PhysRevLett.96.106802
https://doi.org/10.1126/science.1133734
https://doi.org/10.1126/science.1133734
https://doi.org/10.1126/science.1133734
https://doi.org/10.1126/science.1133734
https://doi.org/10.1103/PhysRevB.79.195321
https://doi.org/10.1103/PhysRevB.79.195321
https://doi.org/10.1103/PhysRevB.79.195321
https://doi.org/10.1103/PhysRevB.79.195321
https://doi.org/10.1103/PhysRevLett.98.106803
https://doi.org/10.1103/PhysRevLett.98.106803
https://doi.org/10.1103/PhysRevLett.98.106803
https://doi.org/10.1103/PhysRevLett.98.106803
https://doi.org/10.1103/PhysRevB.76.045302
https://doi.org/10.1103/PhysRevB.76.045302
https://doi.org/10.1103/PhysRevB.76.045302
https://doi.org/10.1103/PhysRevB.76.045302
https://doi.org/10.1103/PhysRevB.75.121306
https://doi.org/10.1103/PhysRevB.75.121306
https://doi.org/10.1103/PhysRevB.75.121306
https://doi.org/10.1103/PhysRevB.75.121306
https://doi.org/10.1103/PhysRevB.79.195322
https://doi.org/10.1103/PhysRevB.79.195322
https://doi.org/10.1103/PhysRevB.79.195322
https://doi.org/10.1103/PhysRevB.79.195322
https://doi.org/10.1038/nphys2513
https://doi.org/10.1038/nphys2513
https://doi.org/10.1038/nphys2513
https://doi.org/10.1038/nphys2513
https://doi.org/10.1007/s00023-015-0400-6
https://doi.org/10.1007/s00023-015-0400-6
https://doi.org/10.1007/s00023-015-0400-6
https://doi.org/10.1007/s00023-015-0400-6
https://doi.org/10.1103/PhysRev.94.1498
https://doi.org/10.1103/PhysRev.94.1498
https://doi.org/10.1103/PhysRev.94.1498
https://doi.org/10.1103/PhysRev.94.1498
https://doi.org/10.1063/1.1747632
https://doi.org/10.1063/1.1747632
https://doi.org/10.1063/1.1747632
https://doi.org/10.1063/1.1747632
https://doi.org/10.1103/PhysRevB.87.035119
https://doi.org/10.1103/PhysRevB.87.035119
https://doi.org/10.1103/PhysRevB.87.035119
https://doi.org/10.1103/PhysRevB.87.035119
https://doi.org/10.1103/PhysRevLett.61.1005
https://doi.org/10.1103/PhysRevLett.61.1005
https://doi.org/10.1103/PhysRevLett.61.1005
https://doi.org/10.1103/PhysRevLett.61.1005
https://doi.org/10.1016/S0370-1573(00)00093-4
https://doi.org/10.1016/S0370-1573(00)00093-4
https://doi.org/10.1016/S0370-1573(00)00093-4
https://doi.org/10.1016/S0370-1573(00)00093-4
https://doi.org/10.1016/S0370-1573(00)00091-0
https://doi.org/10.1016/S0370-1573(00)00091-0
https://doi.org/10.1016/S0370-1573(00)00091-0
https://doi.org/10.1016/S0370-1573(00)00091-0
https://doi.org/10.1209/epl/i2000-00300-9
https://doi.org/10.1209/epl/i2000-00300-9
https://doi.org/10.1209/epl/i2000-00300-9
https://doi.org/10.1209/epl/i2000-00300-9
https://doi.org/10.1143/JPSJ.5.435
https://doi.org/10.1143/JPSJ.5.435
https://doi.org/10.1143/JPSJ.5.435
https://doi.org/10.1143/JPSJ.5.435
https://doi.org/10.1002/pssr.201206416
https://doi.org/10.1002/pssr.201206416
https://doi.org/10.1002/pssr.201206416
https://doi.org/10.1002/pssr.201206416
https://doi.org/10.1088/1751-8113/41/2/025304
https://doi.org/10.1088/1751-8113/41/2/025304
https://doi.org/10.1088/1751-8113/41/2/025304
https://doi.org/10.1088/1751-8113/41/2/025304
https://doi.org/10.1063/1.523360
https://doi.org/10.1063/1.523360
https://doi.org/10.1063/1.523360
https://doi.org/10.1063/1.523360
https://doi.org/10.1088/0305-4470/12/12/017
https://doi.org/10.1088/0305-4470/12/12/017
https://doi.org/10.1088/0305-4470/12/12/017
https://doi.org/10.1088/0305-4470/12/12/017
http://arxiv.org/abs/arXiv:1709.06551



