
PHYSICAL REVIEW B 98, 024309 (2018)

Surface acoustic waves on one-dimensional phononic crystals of general anisotropy:
Existence considerations

A. N. Darinskii1,2 and A. L. Shuvalov3

1Institute of Crystallography FSRC “Crystallography and Photonics”, Russian Academy of Sciences,
Leninskii pr. 59, Moscow 119333, Russia

2National University of Science and Technology “MISIS”, Leninsky pr. 4, Moscow 119049, Russia
3Université de Bordeaux, CNRS, UMR 5295, 33405 Talence, France

(Received 26 March 2018; revised manuscript received 8 June 2018; published 23 July 2018)

Existence of surface acoustic waves on the boundary of half-infinite one-dimensional phononic crystals is
investigated. The structure is formed of perfectly bonded solid nonpiezoelectric layers of general anisotropy. The
layers are parallel to the substrate surface. It is shown that at most three surface waves can exist in a stopband.
The number of surface waves on the structure with a given order of layers is correlated with the number of
surface waves on the structure where the order of layers is reversed, namely, in total at most three surface waves
occur within a stopband. However, if the layers are arranged so that the period is symmetric with respect to its
midplane, “symmetric” period, then at most one surface wave exists per stopband on the phononic crystal-vacuum
boundary. A criterion of the occurrence of such a wave in the lowest stopband is found. No surface acoustic wave
exists in the lowest stopband on the mechanically clamped surface but one surface wave can occur in the other
stopbands. The case of “symmetric” period has no relation to crystallographic symmetry. In particular, it occurs
in half-infinite two-layered phononic crystals where the thickness of the exterior layer of the substrate is half the
thickness of the interior layers of the same material.
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I. INTRODUCTION

During the last decades much attention has been paid to
acoustic waves in phononic crystals [1–3]. The simplest option
is a one-dimensional (1D) phononic crystal, a periodically
layered medium. Even in this case the band structure of
frequency spectra results in intriguing peculiarities in the
behavior of the reflection and transmission coefficients [4,5].
Notice that the results obtained in studying the elastic wave
propagation in 1D phononic crystals are useful for under-
standing the properties of low-frequency acoustic phonons in
semiconductor superlattices [6–8].

The boundary of phononic crystals is able to support surface
acoustic waves (SAWs) just as the boundary of homogeneous
solids [9]. SAWs on 1D phononic crystals with layers parallel
to the surface truncating the structure were studied extensively
(see [4] for a review). In particular, shear horizontally polarized
(SH) SAWs in nonpiezoelectric and piezoelectric phononic
crystals [10–17], sagittally polarized two-partial SAWs
[18–21], fully coupled three-partial SAWs [22–25], and leaky
SAWs [17,21,25] were investigated. The scalar setup of elastic
SH waves is a special case, for it allows analytical insight into
the link between the inhomogeneity profile and the existence
of SH SAW in layered or continuously periodic structures
[16]. Note that the SAW propagation on periodic solid-fluid
structures [5,26] and on solid-fluid Fibonacci superlattices [27]
was also intensively studied analytically and numerically.

Despite a large amount of results, the question of actual
existence and number of SAWs on 1D phononic crystals still
remains open. This work fills in this gap as applied to solid
structures with perfectly bonded layers. We prove a number of

statements concerning the existence of SAWs on half-infinite
nonpiezoelectric 1D phononic structures of general anisotropy.
In other words, our considerations do not take advantage of any
properties related to a particular crystallographic symmetry.
It appears that ideas put forward in order to study the SAW
propagation in homogeneous substrates are applicable to the
SAW existence problem in periodic structures. We mean the
theorems concerning the existence of SAWs on half-infinite
homogeneous purely elastic anisotropic substrates [28,29]
(see also [30–32]).

Our paper is arranged as follows. In Sec. II we briefly remind
some general relations, which hold true for plane waves in non-
piezoelectric substrates. Section III discusses the properties of
the transfer matrix. Section IV is devoted to the SAW existence
problem in 1D phononic crystals. Section V presents numerical
examples illustrating our general conclusions. The results of
our study are summarized in Sec. VI. In the Appendix an
important property of matrices involved in our considerations
is proved.

II. ELASTIC WAVES IN NONPIEZOELECTRIC
SUBSTRATES

Let an elastically anisotropic medium occupy the half-space
nr > 0, where n is the unit normal to the boundary and
r = (x1, x2, x3) is the radius vector. The unit vector m is
perpendicular to n and specifies the direction of propagation of
a plane harmonic wave u(r, t ) along the surface nr = 0. The
displacement u(r, t ) is usually sought for in the form

u(r, t ) = A(y)ei[k(mr)−ωt], (1)
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where the vector function A(y) describes the dependence of
the displacement on the distance y = nr from the boundary,
k is the wave number, and ω is the frequency. The wave field
satisfies the equation [9]

∂σij

∂xj

= −ρω2ui, (2)

where σij = cijkl∂uk/∂xl are the components of the mechani-
cal stress tensor σ̂ in a solid with elastic moduli cijkl , i, j, k, l =
1, 2, 3, ui , i = 1, 2, 3, are the components of u(r, t ) and ρ is
the density. In addition, the boundary conditions at y = 0 and
in the depth y → ∞ must be fulfilled.

The boundary conditions at y = 0 commonly involve trac-
tion F = F(0), where F(y) = σ̂n, or/and displacement A =
A(0). The displacement-traction field described by the vec-
tor column ξ (y) = (A(y), L(y))t , where L(y) = ik−1F(y),
obeys a set of six first-order differential equations [33]

1

ik

dξ

dy
= N̂ξ (3)

with the 6×6 real matrix

N̂ = −
{

(nn)−1(nm) (nn)−1

(mn)(nn)−1(nm) − (mm) + ρv2Î (mn)(nn)−1

}
(4)

constructed from 3×3 matrices of the type (ab) with compo-
nents (ab)IJ = akckIJ lbl , a and b are vectors, v = ω/k is the
velocity of the wave field along the surface, and Î is the 3×3
unit matrix.

When the medium is homogeneous, i.e., N̂ is a constant,
solutions of Eq. (3) are linear superpositions of the partial
waves ξα (y) = ξα exp[ikpαy], where ξα = (Aα, Lα )t and pα

satisfy the eigenvalue problem

N̂ξα = pαξα, α = 1, . . . , 6. (5)

The properties of N̂ and its eigenvectors are comprehensively
discussed in Refs. [31–35]. We shall take advantage of the
symmetry relation

(T̂N̂)t = T̂N̂, (6)

where

T̂ =
{

Ô Î
Î Ô

}
(7)

and Ô is the 3×3 zero matrix. Therefore, the eigenvectors ξα

can be orthonormalized,

(T̂ξα )t ξβ = δαβ, (8)

where δαβ is the Kronecker symbol.
If the medium is vertically inhomogeneous but homoge-

neous along any horizontal directions, i.e., for any orientations
of m, then the wave field is still sought for in the form
(1). An important role is played by the transfer matrix M̂
which expresses the mechanical displacement and traction
at plane y = ya in terms of these characteristics referred to
plane y = yb: ξa = M̂ξb, where ξa,b are the ξ vectors at ya,b,
respectively.

Let the layer between y = ya and y = yb be homogeneous.
By virtue of Eqs. (5) and (8),

M̂ =
6∑

α=1

eikhpα ξα ⊗ T̂ξα = eikhN̂, (9)

where the symbol ⊗ stands for the dyadic product and h =
ya − yb. The transfer matrix of n perfectly bonded layers
of thicknesses h1, h2, . . . , hn is the product of the transfer
matrices M̂i = exp [ikhiN̂i], where N̂i is the N̂ matrix (4) of
ith layer:

M̂ = M̂nM̂n−1 . . . M̂1 = eikhnN̂neikhn−1N̂n−1 · · · eikh1N̂1 . (10)

The propagation of plane modes in 1D phononic crystals,
where the neighboring layers are perfectly bonded with each
other, can be analyzed in terms of six-component vector
columns ζα = (Aα, Lα )t formed of the displacement vector
and the traction similar to the eigenvectors ξα of the matrix
N̂. Given the value of k in Eq. (1), the frequency spectrum
is found from the condition that the vectors ζα,a and ζα,b at
the two boundaries y = ya and y = yb of a structure period,
respectively, are collinear, ζα,a = γαζα,b, the parameter γα

being independent of the period number. In other words, ζα

and γα solve the eigenvalue problem for the transfer matrix M̂
(10) of a single period,

M̂ζα = γαζα, α = 1, . . . ,6. (11)

We shall call eigensolutions of Eq. (11) partial modes with
understanding that the displacement-traction field of the mode
α inside layer 1 is ζα (y) = exp(ikyN̂1)ζα , inside the next layer
ζα (y) = exp(ikyN̂2) exp(ikh1N̂1)ζα , etc.

If |γα| = 1, then this mode freely moves through the infinite
phononic crystal like a bulk mode in a homogeneous solid.
Within certain frequency intervals (stopbands) |γα| �= 1. In
this instance, the wave field at the boundaries of periods
decreases or increases with distance from a fixed boundary.
If the eigenvector ζα is referred to boundary y = 0, then the ζ

vector at boundary y = nH of the nth period is ζ (n)
α = γ n

α ζα .
The modes with |γα| �= 1 are analogs of inhomogeneous modes
with Im(pα ) �= 0 in homogeneous substrates. They can be used
to construct wave fields in confined structures, e.g., SAWs.

III. PROPERTIES OF THE TRANSFER MATRIX

Our analysis of the SAW existence on the surface of 1D
phononic crystals will be based on general properties of the
transfer matrix M̂ (10). Let us assume that the period is
“symmetric”: The period involves an odd number of layers n =
2m + 1, layers i and n + 1 − i, i = 1, . . . , m, are identical but
there is no restriction on their crystallographic symmetry. In
this instance the transfer matrix reads as

M̂S = M̂1M̂2 . . . M̂m+1 . . . M̂2M̂1

= eikh1N̂1eikh2N̂2 . . . eikhm+1N̂m+1 . . . eikh2N̂2eikh1N̂1 . (12)

It is noteworthy that a two-layered structure can always be
viewed as a structure with symmetric period. Indeed, one can
choose the center planes of layers 1 as the period boundaries
to obtain

M̂S = eikh1N̂1eikh2N̂2eikh1N̂1 (13)

(the thickness of layer 1 equals 2h1).
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Due to Eq. (6) [36],

(T̂M̂S )t = T̂M̂S, (14)

wherefrom it follows that the eigenvectors of M̂S can be
introduced orthonormalized

(T̂ζα )t ζβ = δαβ. (15)

In addition,

M̂−1
S = M̂∗

S, (16)

so

M̂∗
Sζ

∗
α = γ ∗

α ζ ∗
α and M̂∗

Sζα = γ −1
α ζα. (17)

Hence, if γα is an eigenvalue of M̂S , then 1/γ ∗
α is also an

eigenvalue. Thus, the eigenvalues of M̂S appear pairwise either
as

γα = |γα|eiϕα , γα+3 = 1

|γα|e
iϕα , |γα| �= 1, (18)

or

γα = eiϕα , γα+3 = eiϕα+3 , (19)

where ϕα and ϕα+3 are real. In the former case γα = 1/γ ∗
α+3.

Hence, ζα and ζα+3 can be introduced in such a way that

ζ ∗
α = ζα+3. (20)

In the latter case, γα = 1/γ ∗
α . Accordingly, the vectors ζα and

ζ ∗
α prove to be collinear. Hence, the eigenvectors ζ ′

α and ζ ′
α+3

not obeying the normalization condition (15) can be purely
real. When normalized, one of the eigenvectors is purely real
and the other is purely imaginary depending on which of
the products (T̂ζ ′

α )t ζ ′
α and (T̂ζ ′

α+3)t ζ ′
α+3 is positive. These

products are of opposite sign since they are proportional to
the energy flow carried by modes α and α + 3 perpendicular
to the layers, respectively. As it has been already mentioned,
this pair of eigensolutions corresponds to two modes freely
propagating in the infinite periodic structure.

In the general case, “asymmetric” period, by virtue of
Eq. (6) the transfer matrix (10) of the single period possesses
the property [24]

T̂(T̂M̂)t = T̂M̂t T̂ = M̂∗−1. (21)

According to Ref. [37], if a matrix fulfills relation (21), then
its eigenvalues also appear in pairs either (18) or (19).

We multiply Eq. (11) by (T̂ζ ∗
β )t from the left,

(T̂ζ ∗
β )tM̂ζα = γα (T̂ζ ∗

β )t ζα, (22)

and transform the left-hand side of Eq. (22),

(T̂ζ ∗
β )tM̂ζα = (T̂ζ ∗

β )tM̂T̂T̂ζα = (T̂ζ ∗
β )t (T̂M̂t )t T̂ζα

= (T̂M̂t T̂ζ ∗
β )t T̂ζα = (T̂ζ ∗

β )t ζα/γ ∗
β . (23)

Hence, (T̂ζ ∗
β )t ζα = 0 when γα �= 1/γ ∗

β .
Thus, if γα = |γα|eiϕα with |γα| �= 1, then one can put

(T̂ζ ∗
β )t ζα = δα+3,β . (24)

A specific case is met when γα = eiϕα and γα+3 = eiϕα+3 . In
this instance, the eigenvectors describe a pair of bulk modes.
Therefore, one of the products (T̂ζ ′∗

α )t ζ ′
α and (T̂ζ ′∗

α+3)t ζ ′
α+3

of the non-normalized eigenvectors ζ ′
α,α+3 is positive and the

other is negative since these products are proportional to the
energy flow perpendicular to layers (the mode is incident in
the former case and reflected in the latter case). Hence, the
following normalization conditions can be adopted:

(T̂ζ ∗
β )t ζα = δαβ if the mode α is incident,

(T̂ζ ∗
β )t ζα = −δαβ if the mode α is reflected. (25)

Note that (T̂ζ ∗
α )t ζα = 0 when |γα| �= 1 shows that the decaying

and growing modes do not carry the energy perpendicular to
layers.

The above-listed properties are valid provided that the
eigenvalues of the transfer matrix are distinct which generally
holds true. However, given the vectors n and m as well
as the value of k, at secluded values of the frequency ω,
or the velocity v = ω/k, coinciding eigenvalues can appear.
Two options are met. In spite of coincidence there are still
six linearly linearly independent eigenvectors (semisimple
degeneracy). There also can be that the matrix possesses
less than six eigenvectors (nonsemisimple degeneracy). The
similar types of degeneracy occur with the eigenvalues of the
matrix N̂. For instance, N̂ is nonsemisimply degenerate at
the velocities at which the so-called limiting bulk waves appear,
that is, the bulk waves with group velocity perpendicular to n
[28,31]. Analogous nonsemisimple degeneracy of the transfer
matrix takes place at the frequencies separating passbands and
stopbands. The properties of the degenerate transfer matrix
and its eigenvectors can be investigated by analogy with the
analysis of the properties of the matrix N̂ [31–35].

IV. EXISTENCE OF SURFACE WAVES

We assume that boundary y = 0 of the half-infinite
phononic crystal is simultaneously the boundary of the period.
If the exterior half-space is vacuum, then the traction is to van-
ish at y = 0. It is also of interest to investigate the mechanically
clamped surface which implies the vanishing of the mechanical
displacement at y = 0. In particular, the fact of existence or
nonexistence of SAWs on the mechanically clamped surface
can allow one to make predictions regarding interfacial waves
on the contact between two half-infinite media. Some hints
can be extracted from the examination of Refs. [38,39] where
waves on a contact between two homogeneous solids are
studied.

The boundary conditions generally put three relations on
the characteristics of the wave field, so the wave field should
involve at least three partial modes in order to satisfy these rela-
tions. Besides, the SAW field is to decrease to zero as y tends to
infinity. Therefore, a SAW generally occurs only within “full”
stopbands, that is, within frequency intervals where, given the
k value, the magnitudes of all six eigenvalues of the transfer
matrix are not equal to unity, so three eigensolutions with
|γα| < 1 can be selected. We put |γα| < 1 at α = 1, 2, 3.

Within a “full” stopband ωmin < ω <ωmax the displacement-
traction vector ζSAW = (ASAW, LSAW)t of SAW field is repre-
sentable at y = 0 as a linear combination of three eigenvectors
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of the transfer matrix,

ζSAW =
3∑

α=1

bαζα. (26)

The coefficients bα are to be such that either LSAW = 0 or
ASAW = 0. The former equality requires the linear dependence
of the vectors L1,2,3. The SAW frequency ωSAW is a root of
the equation det(L̂123) = 0, where L̂123 is the 3×3 matrix
which columns are the vectors L1,2,3. The condition ASAW = 0
will be fulfilled at a frequency which satisfies the equation
det(Â123) = 0, where Â123 is the 3×3 matrix which columns
are the vectors A1,2,3. We shall investigate separately the cases
where the period of the substrate is symmetric and asymmetric.

A. Symmetric period

Let us form the real 6×6 matrix

ϒ̂ = i

3∑
α=1

[ζα ⊗ T̂ζα − ζα+3 ⊗ T̂ζα+3]

= i

3∑
α=1

[ζα ⊗ T̂ζα − ζ ∗
α ⊗ T̂ζ ∗

α ] =
(

Ŝ Q̂
B̂ Ŝt

)
, (27)

where Ŝ, Q̂, and B̂ are the 3×3 blocks of ϒ̂, the matrices Q̂
and B̂ being symmetric.

The matrix ϒ̂ is an analog of the so-called integral Stroh ma-
trix introduced in [28,29]. The integral Stroh matrix is defined
in [28,29] as the integral of a matrix N̂(θ ) over the angle θ from
0 to 2π , where N̂(θ ) is obtained from Eq. (4) by substituting
the vectors m′ = m cos θ − n sin θ and n′ = m sin θ + n cos θ

for m and n, respectively, and cijkl − ρv2δjkmiml for cijkl . The
integration way, which comes from the theory of dislocations
in anisotropic solids [40], is not applicable to the cases under
consideration and one has to demonstrate that matrix (27)
does not diverge inside full stopbands at frequencies where
the transfer matrix falls into nonsemisimple degeneracy (see
Appendix).

The degeneracy issue arises because the eigenvector ζd ,
which corresponds to the degenerate eigenvalue of the non-
semisimply degenerate M̂S , is self-orthogonal in the sense
(T̂ζd )t ζd = 0 [cf. Eq. (15)]. Hence, if, e.g., the non-normalized
eigenvectors ζ ′

α,β coalesce to ζd , then the dyads ζγ ⊗ T̂ζγ ,
γ = α, β, formed of the vectors ζα,β , which are normalized
according to Eq. (15), diverge. The analysis shows that if the
degeneracy happens in the stopband, then ϒ̂ involves the sum
of the divergent dyads. The sum does not diverge and ϒ̂ remains
finite. The degeneracy of M̂S at the band edge is such that
the difference of the divergent dyads enters ϒ̂. The difference
diverges, so does ϒ̂. Note that (T̂ζd )t ζd = 0 at a band edge
reflects the fact that the bulk mode associated with ζd has
zero-energy flow perpendicular to the layers.

Due to Eq. (15)

ϒ̂
2 =

(
Ŝ2 + Q̂B̂ ŜQ̂ + Q̂Ŝt

B̂Ŝ + Ŝt B̂ Ŝt2 + B̂Q̂

)
= −

(
Î Ô
Ô Î

)
(28)

and

ϒ̂ζα = iζα, ϒ̂ζα+3 = −iζα+3, α = 1, 2, 3. (29)

In view of Eq. (29), the surface impedance Ẑ and admittance
Ŷ relating displacement with traction,

Lα = −iẐAα, Aα = iŶLα, α = 1, 2, 3 (30)

can be expressed in terms of the matrices Ŝ, Q̂, and B̂:

Ẑ = −Q̂−1 − iQ̂−1Ŝ, Ŷ = B̂−1 + iB̂−1Ŝt . (31)

The real parts Ẑ and Ŷ are symmetric matrices. From Eq. (28)
it follows that their imaginary parts −Q̂−1Ŝ and B̂−1Ŝt are an-
tisymmetric matrices. Hence, Ẑ and Ŷ are Hermitian matrices
within a full stopband.

Due to the completeness of the set of eigenvectors,
3∑

α=1

[ζα ⊗ T̂ζα + ζα+3 ⊗ T̂ζα+3] =
(

Î Ô
Ô Î

)
, (32)

and Eq. (20), which is valid in a full stopband for α = 1, 2, 3,
one has

B̂ = 2i

3∑
α=1

Lα ⊗ Lα, Q̂ = 2i

3∑
α=1

Aα ⊗ Aα. (33)

Therefore,

det(B̂) = −8i det(L̂123)2, det(Q̂) = −8i det(Â123)2. (34)

As a result, the equation on the SAW frequency can be written
in the form det(Ẑ) = 0 or det(B̂) = 0 and det(Ŷ) = 0 or
det(Q̂) = 0.

The properties of Ẑ, Ŷ, B̂, and Q̂ can be established
with the help of a relation between the impedance and the
surface Lagrangian £ of the time-averaged Lagrange function
of harmonic wave fields which decay with distance towards
the interior of the substrate. Like in the case of homogeneous
substrate [28,29] (see also [41]),

£ = 1

8
(F∗A + FA∗) = −k

4
A∗ẐA, (35)

where A and F = σ̂n = −ikL are the displacement and the
traction at the surface, respectively. In deriving this expres-
sion, the fact is used that the equation of motion for an
elastic field moving in a homogeneous solid along m with
velocity v can be written in the form ∂σ ′

ij /∂xi = 0, where
σ ′

ij = [cijkl − ρv2mimlδjk]∂uk/∂xl [28,41]. Accordingly, the
Lagrange function for the fields obeying the equation of motion
can be brought into the form

L = −1

2

∫
σ ′

ij

∂uj

∂xi

dV = 1

2

∫
σ ′

ij niujdS, (36)

where n is the internal normal to the surface S. Equation (36)
can be applied to wave (1) in each layer. The contraction σ ′

ij ni

reduces to the tractionσijni = Fj since n is perpendicular to m.
The traction and displacement are continuous and the internal
normals are counterdirected in neighboring layers. As a result,
we arrive at Eq. (35).

By analogy with considerations of SAWs on homogeneous
substrates, we find that

Ẑ and Ŷ are positive-definite matrices at ω = 0, (37)

∂Ẑ
∂ω

is a negative-definite matrix in full stopbands, (38)

∂Ŷ
∂ω

is a positive-definite matrix in full stopbands. (39)
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Equation (37) is due to the fact that at ω = 0 the Lagrangian is
the energy of the static field with sign “minus.” The latter two
properties follow from the fact that the partial derivative ∂L/∂v

is positive since it equals twice the kinetic energy divided by
v and that, given the displacement A on the surface, ∂£/∂v =
−k2A∗(∂Ẑ/∂ω)A/4.

In accordance with Eq. (37), for an arbitrary real vector a the
contractions aẐa ≡ −aQ̂−1a and aŶa ≡ aB̂−1a are positive
at ω = 0. Hence,

B̂ is a positive-definite matrix at ω = 0, (40)

Q̂ is a negative-definite matrix at ω = 0. (41)

Analogously, a(∂Ẑ/∂ω)a≡ − a(∂Q̂−1/∂ω)a and a(∂Ŷ/∂ω)a
≡ a(∂B̂−1/∂ω)a. In view of Eqs. (38) and (39), the matrices
∂Q̂−1/∂ω and ∂B̂−1/∂ω are positive definite in full stopbands.
By differentiating the spectral decomposition of the matrices
Q̂−1 and B̂−1 and using the orthogonality of each normalized
eigenvector to its derivative, we find that the frequency deriva-
tives of their eigenvalues are positive in full stopbands. Hence,

the eigenvalues of Q̂ and B̂ decrease
with increasing frequency in full stopbands. (42)

We remind that Q̂ and B̂ are real symmetric matrices, so their
eigenvalues are real.

Further, by virtue of Eq. (29), LSAW = 0 entails B̂ASAW = 0
and B̂A∗

SAW = 0. The vectors ASAW and A∗
SAW are not collinear.

Otherwise, the eigenvectors of the transfer matrix would be
linearly dependent, once LSAW = L∗

SAW = 0. Therefore, we
conclude that two eigenvalues of B̂ vanish, i.e.,

the eigenvalues of B̂ vanish pairwise inside full stopbands.

(43)

The noncollinearity of ASAW and A∗
SAW can also be proved by

noting that, in the case of collinearity, ASAW is collinear to a
real vector A0 which is to satisfy the relation ŜA0 = iA0 but
it cannot be valid since Ŝ is a real matrix.

For analogous reasons, from the relations Q̂LSAW = 0,
which holds true when ASAW = 0, it follows that

the eigenvalues of Q̂ vanish pairwise inside full stopbands.

(44)

None of the three eigenvalues of B̂ and Q̂ can tend to infinity
within full stopbands because all elements of the matrices are
finite within these bands. Accordingly,

the determinants of B̂ and Q̂ can vanish
only once within full stopbands. (45)

References [28,29] investigate the existence of SAWs on
homogeneous substrates within the subsonic velocity interval
0 < v < vlim, where vlim is the velocity along the substrate
surface of the slowest limiting bulk wave, that is, all partial
modes are inhomogeneous when v < vlim. Homogeneous bulk
modes appear at v � vlim. In periodic structures, an analog
of the subsonic interval is the frequency interval 0 < ω <

ωlim, where ωlim is a threshold frequency above which the
passband for a pair of modes appears, given the value of
the wave number k in Eq. (1). We shall call the interval

0 < ω < ωlim the lowest stopband. At ω > ωlim the transfer
matrix can have at least two distinct eigenvalues exp(iϕα ) and
exp(iϕα+3), and at ω = ωlim these two eigenvalues coalesce.
Accordingly, the analog of the limiting bulk wave at v = vlim in
the homogeneous substrate is the mode associated at ω = ωlim

with the coalescing eigenvalues of the transfer matrix. This
mode at ω = ωlim will also be called limiting. The transfer
matrix is nonsemisimple degenerate at ωlim and its degenerate
eigenvector ζd , which is mentioned in the beginning of this
section, corresponds to the limiting mode. Like the limiting
wave on the homogeneous substrate, the limiting wave at ω =
ωlim may leave the surface of the layered substrate traction free.
By analogy, such a limiting wave will be called exceptional.

The comparison shows that the properties of the matrices
Ẑ, Ŷ as well as of Q̂, B̂, and Ŝ within the interval 0 < ω < ωlim

are identical to those of their counterparts involved in the
theory of SAWs in the subsonic interval on the homogeneous
substrate [28,29]. Therefore, the existence theorems [28,29]
are applicable to SAWs in the lowest stopband on 1D phononic
crystals with symmetric period. As to the other full stopbands,
the conclusions appear to be somewhat different because
nothing is known about the signs of the eigenvalues of the
matrices Ẑ, etc., at the edges ωmin, ωmax of these bands.

Summing up, in the case of symmetric period, the following
statements hold true for full stopbands corresponding to a fixed
value of the tangential wave number k:

at most 1 SAW exists on the mechanically free surface
in any full stopband, (46)

the SAW on the free surface necessarily exists in the
stopband 0 < ω < ωlim

unless the limiting mode at ω = ωlim is exceptional,
if the limiting mode is exceptional, then the SAW
does not need to exist within the range 0 < ω < ωlim, (47)

at most 1 SAW exists on the clamped surface
in any full stopband, except 0 < ω < ωlim, (48)

the SAW cannot exist on the mechanically clamped surface
in the stopband 0 < ω < ωlim. (49)

Statements (46) and (48) are direct consequences of property
(45). The determinant of Q̂ cannot vanish within the stopband
0 < ω < ωlim, because due to Eqs. (41) and (42) the matrix Q̂
is negative definite within this stopband, so (49) holds true.

At the lowest stopband edge ωlim the matrix B̂ diverges and
one of its eigenvalues tends to minus infinity if the limiting
mode is not exceptional. If the limiting mode is exceptional,
then B̂ does not diverge. In view of Eqs. (40) and (45), we
arrive at (47). The matrices B̂ and Q̂ also diverge at the edges
ωmin, ωmax of the other full stopbands unless the limiting
modes satisfy the condition of the free or clamped surface,
respectively. But, this divergency does not lead necessarily to
the vanishing of eigenvalues inside the stopband and, hence,
to the existence of SAWs, because the sign of the eigenvalues
of the matrices at ωmin and ωmax is not detectable.

Apparently, the exceptional limiting mode is a specific
situation. Hence, the SAW on the free surface of phononic
crystals with symmetric period practically always exists in the
lowest stopband.
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When the sagittal plane spanned by the vectors n and m is
the plane of symmetry, or the structure is composed of isotropic
layers, there are four sagittally polarized modes and two SH
modes, the two sets of modes being totally independent of
one another. It may be that the stopband 0 < ω < ω

(SH)
lim of SH

waves is formally the lowest full stopband, but the sagittally
polarized SAW does not exist in the interval 0 < ω < ω

(SH)
lim

since it falls into the interval ω
(SH)
lim < ω < ωlim, where ωlim is

the edge of the passband for the sagittally polarized waves.
The explanation is that the limiting SH mode at ω

(SH)
lim on the

substrate with symmetric period is always exceptional [16],
so the uncertainty regarding the SAW in the interval 0 < ω <

ω
(SH)
lim matches (47). Note that the SH SAW cannot exist in

0 < ω < ω
(SH)
lim [16].

B. Asymmetric period

The sum (26) now involves three eigenvectors α = 1, 2, 3
of the transfer matrix M (10) corresponding to the case of
asymmetric period. We introduce the matrix

�̂ = i

3∑
α=1

[ζα ⊗ T̂ζ ∗
α+3 − ζα+3 ⊗ T̂ζ ∗

α ] =
{
�̂11 �̂12

�̂21 �̂22

}
.

(50)

The matrix �̂does not diverge in the stopbands (see Appendix).
The “suspicious” points are those where the transfer matrix M̂
is nonsemisimple degenerate. The matrix �̂, like the matrix ϒ̂

in the analogous case, will involve divergent dyads. Inside the
stopband such dyads are summed up and the divergent terms
cancel out. None of the elements of �̂ diverge. In contrast, at a
band edge the divergent dyads are subtracted from one another
in the expression of �̂. The difference preserves divergent
terms, so some elements of �̂ diverge.

Due to Eq. (24)

�̂ζα = iζα, �̂ζα+3 = −iζα+3, α = 1, 2, 3, (51)

�̂
2 =

(
�̂

2
11 + �̂12�̂21 �̂11�̂12 + �̂12�̂22

�̂21�̂11 + �̂22�̂21 �̂
2
22 + �̂21�̂12

)

= −
(

Î Ô
Ô Î

)
. (52)

The 3×3 blocks �̂ij of �̂ are not real matrices:

(T̂�̂)t = T̂�̂
∗

(53)

and, hence,

�̂22 = �̂
t∗
11, �̂12 = �̂

t∗
12, �̂21 = �̂

t∗
21. (54)

Below, we are making use of the properties of the impedances
and admittances relating Aα and Lα as well as Aα+3 and Lα+3:

Lα = −iẐAα, Aα = iŶLα, (55)

Lα+3 = iẐ′Aα+3, Aα+3 = −iŶ′Lα+3, (56)

FIG. 1. “Direct” periodic structure with order of layers 1-2-3 (a)
and “reversed” structure where the order of layers is 3-2-1 (b).

where α = 1, 2, 3. In view of (51),

Ẑ = −�̂
−1
12 − i�̂

−1
12 �̂11,

Ŷ = �̂
−1
21 + i�̂

−1
21 �̂22, (57)

Ẑ′ = −�̂
−1
12 + i�̂

−1
12 �̂11,

Ŷ′ = �̂
−1
21 − i�̂

−1
21 �̂22. (58)

The four matrices are Hermitian since, due to Eqs. (52) and
(54), the matrices �̂12 and �̂21 are Hermitian while the
matrices �̂

−1
12 �̂11 and �̂

−1
21 �̂22 are anti-Hermitian.

We use expression (10) of the transfer matrix M̂ under
reservation that the substrate occupies the half-space (nr) > 0,
where n is the internal normal [see Fig. 1(a)]. The assumption
that the three eigenvectors ζα , α = 1, 2, 3, are associated with
decaying fields applies to M̂ (10). Let the substrate occupy the
half-space (nr) < 0, where n is the external normal, and the or-
der of layers is reversed [see Fig. 1(b)]. The vectors m and n and
the elastic constants are specified in the old coordinate system.
In this instance, the transfer matrix of the “reversed” structure

M̂′ = e−ikh1N̂1 . . . e−ikhn−1N̂n−1e−ikhnN̂n (59)

is the inverse of the transfer matrix M̂ (10) of the “direct”
structure. Therefore, the six eigenvalues and eigenvectors
of M̂′ are (1/γα , ζα) and (1/γα+3, ζα+3), where α = 1, 2, 3.
Since 1/|γα+3| = |γα| < 1, α = 1, 2, 3, now the vectors Aα+3

and Lα+3 are associated with decaying fields. Therefore,
within a full stopband the displacement-traction field
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ζ ′
SAW = (A′

SAW, L′
SAW)t , which correspond to a SAW on

the reversed structure, is representable at y = 0 as a linear
combination ζ ′

SAW = ∑3
α=1 b′

αζα+3. The SAW frequency
ωSAW on the mechanically free surface is a root of the equation
det(L̂456) = 0, and on the clamped surface ωSAW is a root of
the equation det(Â456) = 0, where the symbols L̂456 and Â456

stand for the matrices which columns are the vectors L4,5,6

and A4,5,6, respectively.
As it has already been indicated, the properties of the

impedance and admittance relating the displacement and trac-
tion of a field, which decays with distance into the depth of the
substrate, are found using the fact that the surface Lagrangian
£ for such a field can be expressed in terms of these matrices.
Equation (35), which involves the impedance Ẑ, is obtained
under assumption that the vector n is the internal normal.
If n is the external normal, then £′ = −(F′∗A′ + F′A′∗)/8
[cf. Eq. (35)]. The insertion of F′ = −ikL′ = kẐ′A′ yields
£′ = −kA′∗Ẑ′A′/4, i.e., £′ and £ [Eq. (35)] are expressed
identically in terms of the impedances. Hence, Ẑ and Ẑ′, as
well as Ŷ and Ŷ′, exhibit alike properties.

Thus,

Ẑ, Ẑ′, Ŷ, and Ŷ′ are positive-definite matrices at ω = 0,

(60)

∂Ẑ
∂ω

and
∂Ẑ′

∂ω
are negative-definite matrices in full stopbands,

(61)

∂Ŷ
∂ω

and
∂Ŷ′

∂ω
are positive-definite matrices in full stopbands.

(62)

The properties of the matrices �̂12 and �̂21 are also required.
Combining Eqs. (50) and the completeness relation

3∑
α=1

[ζα ⊗ T̂ζ ∗
α+3 + ζα+3 ⊗ T̂ζ ∗

α ] =
{

Î Ô
Ô Î

}
(63)

results in

�̂12 = 2i

3∑
α=1

Aα ⊗ A∗
α+3, �̂21 = 2i

3∑
α=1

Lα ⊗ L∗
α+3. (64)

Hence,

det(�̂12) = −8i det(Â123) det(Â∗
456), (65)

det(�̂21) = −8i det(L̂123) det(L̂∗
456), (66)

so the frequencies of SAWs in the “direct” structure [Fig. 1(a)]
and the “reversed” structure [Fig. 1(b)] fulfill the equations
det(�̂12) = 0 or det(�̂21) = 0 depending on the boundary
conditions.

Since

�̂
−1
12 = −(Ẑ + Ẑ′)/2, �̂

−1
21 = (Ŷ + Ŷ′)/2, (67)

from Eqs. (60)–(62) it follows that

�̂21 is a positive-definite matrix at ω = 0, (68)

�̂12 is a negative-definite matrix at ω = 0, (69)

the eigenvalues of �̂12 and �̂21 decrease
with increasing frequency in full stopbands (70)

[cf. properties (40)–(42) of the matrices Q̂ and B̂]. The
eigenvalues of �̂12 and �̂21 are real because these matrices are
Hermitian. Unlike the eigenvalues of Q̂ and B̂, the eigenvalues
of �̂12 and �̂21 do not need to vanish in pairs. None of the
eigenvalues of �̂12 and �̂21 can tend to infinity inside a full
stopband because all elements of �̂12 and �̂21 are finite (see
Appendix). In view of this fact and Eq. (70),

the determinants of �̂12 and �̂21 can vanish
at most three times within a full stopband. (71)

A reservation to (71) concerns �̂12. By virtue of Eqs. (69) and
(70),

�̂12 is a negative-definite matrix in the lowest stopband
(72)

and, hence,

the determinant of �̂12 cannot vanish
in the lowest stopband. (73)

The determinant of �̂21 can vanish in any full stopband. By
Eq. (66), the condition det(�̂21) = 0 entails either det(L̂123) =
0, or det(L̂∗

456) = 0, or det(L̂123) = det(L̂∗
456) = 0. If the latter

option happens, then the coefficients bα and b′
α , α = 1, 2, 3,

can be chosen in such a way that LSAW = ∑3
α=1 bαLα = 0

and L′
SAW = ∑3

α=1 b′
αLα+3 = 0. When LSAW = L′

SAW = 0, it
follows from Eq. (51) that �̂21ASAW = �̂21A′

SAW = 0, where
ASAW = ∑3

α=1 bαAα and A′
SAW = ∑3

α=1 b′
αAα+3. The vectors

ASAW and A′
SAW cannot be collinear if LSAW = L′

SAW = 0
since otherwise the eigenvectors of the transfer matrix fall
into linear dependence. Therefore, �̂21ASAW = �̂21A′

SAW = 0
implies that two eigenvalues of �̂21 vanish under condition
det(L̂123) = det(L̂∗

456) = 0.
As a result, we conclude that

at most three SAWs exist on the mechanically free surface
in a full stopband, (74)

in sum, the number of SAWs on the free surfaces of
the direct and reversed structures
does not exceed 3 in a full stopband. (75)

Analogous statements are valid regarding SAWs on the me-
chanically clamped surface:

at most three SAWs exist on the mechanically clamped
surface in a full stopband, (76)

in sum, the number of SAWs on the clamped surfaces of
the direct and reversed structures
does not exceed 3 in a full stopband. (77)

Due to Eqs. (65) and (73),

SAW does not exist in the lowest stopband
if the surface is mechanically clamped. (78)
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At the edges of the stopbands, excludingω = 0, the matrices
�̂21 and �̂12 diverge and one of three eigenvalues of each
matrix tends to infinity unless the limiting bulk mode satisfies
the condition of the free or clamped surface, respectively. Let
us consider the lowest stopband. By virtue of Eq. (68), all the
eigenvalues of �̂21 are positive and in view of (70) we arrive
at the following conclusion:

in the lowest stopband, at least one SAW exists
on the mechanically free surface
provided that the limiting mode does not satisfy
the condition of the free surface. (79)

The situation where the limiting mode satisfies the condition
of free surface, i.e., the occurrence of the exceptional limiting
mode, is fairly specific. Therefore, one can argue that at least
one SAW practically always occurs in the lowest stopband
either in the case of the direct structure or in the case of
the reversed one. Like in the case of symmetric period, the
divergency of the matrices at the edges of the other stopbands
does not allow any conclusions to be made regarding SAWs.

If the sagittal plane is the plane of crystallographic sym-
metry, then the relevant 2×2 diagonal blocks of the 3×3
matrices Ẑ, Ẑ′, etc., pertain to sagittally polarized SAWs. The
remaining diagonal element of each matrix characterizes SH
SAWs. Accordingly, in a full stopband for sagittally modes,
at most two sagittally polarized SAWs can exist and in total
not more than two SAWs can exist on the direct and reversed
structures. Unlike the case of symmetric period, the limiting
SH mode at the upper edge of the lowest stopband has nonzero
traction [16]. Therefore, at least one SAW, sagittally polarized
SAW or SH SAW, exists in this band on the free surface of
either direct or reversed structure. One SH SAW exists in the
lowest stopband for SH modes on the free surface of either
direct or reversed structure. At most one SH SAW on the free
and the clamped surface is allowed to exist in a SH stopband
of one of these two structures.

All these conclusions are applicable to structures made of
elastically isotropic layers where the modes are naturally split
into SH-polarized and sagittally polarized ones. The results
of numerical computations and analytic evaluations carried
out in Refs. [10–24] exemplify permissible options of their
occurrence (see also Sec. V).

We assumed that k �= 0 in Eq. (1). If k = 0, then, after
having changed the definition of the vector L, e.g., L = ik−1

0 F,
where k0 has the meaning of a wave number, one arrives
at the eigenvalue problem of type (5) for a matrix slightly
different from the matrix N̂ (4) but possessing equivalent
properties. The factor k0 appears in Eq. (35) instead of k.
The expression Ls = 0.5σijniuj for the surface Lagrangian
Ls of a homogeneous solid should be derived in a different
manner in order to validate its applicability at k = 0. Namely,
one can write the bulk Lagrangian Lb in the form Lb =
0.5(ρω2 ∑3

i=1 u2
i − σij ∂uj/∂xi ) and use Eq. (2) to obtain L =∫

LbdV = 0.5
∫

σijniujdS [cf. Eq. (36) and the discussion
around it]. The properties of the matrices Ẑ, Ŷ, etc., also remain
valid, excluding those which hold true only in the stopband
0 < ω < ωlim, since at k = 0 all the stopbands begin from
nonzero frequencies. Accordingly, statements (46), (48), and
(74)–(77) cover the case k = 0 as well. Note that the results

obtained for structures composed of isotropic layers are in
agreement with these statements (see Refs. [12,13,18,42]).

V. SURFACE WAVES ON InAs-GaSb SUPERLATTICES

As an example, we discuss the SAW spectrum on the
InAs-GaSb superlattice. Notice that from the viewpoint of the
electron-hole band properties this superlattice is of interest by
the fact that the minimum of the conduction band of InAs is
lower than the maximum of the valence band of GaSb [7].

The substrate with symmetric period will be referred to as
the InAs/GaSb/InAs or GaSb/InAs/GaSb substrate depending
on which of the layers, InAs or GaSb, is exterior, respectively.
Analogously, the substrate with asymmetric period will be
referred to as the InAs/GaSb or GaSb/InAs substrate. In
accordance of our terminology, GaSb/InAs is the reversed
InAs/GaSb substrate. Besides, we consider InAs/GaSb and
GaSb/InAs structures with exterior layer of intermediate
thickness in order to track the transformation of SAWs with
changing period from asymmetric to symmetric.

We assume that the thicknesses hInAs and hGaSb of the
InAs and GaSb layers are identical, except possibly the
exterior layer which is characterized by the thickness h,
and use the dimensionless parameter ωH/v0, where ω is
the frequency, H = (hInAs + hGaSb)/2π and v0 = 3×103 m/s.
The layer boundaries are (001) planes and the direction of
propagation is [100], so the modes are split into SH polarized
modes and modes polarized in the sagittal plane (010) or,
for short, sagittally polarized modes. The material constants
are taken from site [43]: c11 = 8.34×1010 N/m2, c12 =
4.54×1010 N/m2, c44 = 3.95×1010 N/m2, ρ = 5680 kg/m3

for InAs and c11 = 8.83×1010 N/m2, c12 = 4.02×1010 N/m2,
c44 = 4.32×1010 N/m2, ρ = 5614 kg/m3 for GaSb. The weak
piezoelectric effect is ignored. We put k = 2.5kB in Eq. (1),
where kB = 1/H is the Brillouin wave number.

Figure 2 depicts the dependence of the magnitudes of the
three eigenvalues of the transfer matrix on ωH/v0 within the
interval from 1.8 to 2.4. Note that the transfer matrices M̂ and
M̂S have identical eigenvalues in our case.
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FIG. 2. Magnitudes of eigenvalues of the transfer matrix vs the
parameter ωH/v0 at k = 2.5kB . The eigenvalues γs1,s2 and γSH

characterize the sagittally polarized and SH modes, respectively.
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FIG. 3. SAW branches vs thickness h of the exterior layer InAs
at k = 2.5kB . Mechanically free surface. Sagittally polarized SAWs:
branches B1-B5. SH SAW: branch B8. Gray lines: passbands. The
SH-mode passband is near ωH/v0 = 2.3.

Below ωH/v0 = 1.8 all three eigenvalues are hardly dif-
ferent from zero. The passbands appear within very narrow
intervals of ωH/v0 values at which the absolute value of at least
one of the eigenvalues is equal to unity. Nevertheless, even such
a band structure significantly modifies the SAW propagation as
compared with that on homogeneous InAs or GaSb substrates.

The SAW frequencies at k = 2.5kB as functions of the
thickness of the exterior InAs layer are shown in Fig. 3.
The surface is mechanically free. The values h/hInAs = 0.5
and h/hInAs = 1 correspond to the InAs/GaSb/InAs and
InAs/GaSb substrates, respectively. The lowest branch B1
practically represents the SAW on the half-infinite InAs sub-
strate, because at k = 2.5kB the penetration depth of this wave
is so small that it propagates as if the exterior layer were
infinitely thick. The ωH/v0 value corresponding to the SAW
velocity on InAs equals 1.74.

In accordance with the general statement (46), one SAW
exists on the mechanically free surface of InAs/GaSb/InAs
in the lowest stopband ωH/v0 < 2.04. InAs/GaSb supports
two waves in the lowest stopband. The second SAW on
the free surface (branch B2) is also sagittally polarized, like
the first one. It occurs near the edge of the stopband where the
magnitudes of the eigenvalues γs1,s2 associated with sagittally
polarized modes are not very small (Fig. 2). Such a closeness
to the band edge correlates with the fact that the half-infinite
homogeneous substrate supports only one SAW [28,29]. This
restriction implies that the second SAW cannot appear in the
frequency range where |γs1,s2| are extremely small since then
the influence of the structure inhomogeneity on SAWs is minor.

With decreasing h/hInAs the SAW frequency approaches
the band edge. Branch B2 disappears on reaching the band
edge at h/hInAs ≈ 0.95 but reappears as branches B3 and B4
in higher stopbands. The end of branch B4 at h/hInAs = 0.5
is the sagitally polarized SAW in the third full stopband for
sagittally polarized modes.

A sagittally polarized SAW on the free surface of
InAs/GaSb exists in the third stopband. It gives rise to branch

FIG. 4. SAW branches vs thickness h of the exterior layer InAs
at k = 2.5kB . Mechanically clamped surface. Sagittally polarized
SAWs: branches C1, C2. SH SAWs: branch C3. Gray lines: passbands.
The SH-mode passband is near ωH/v0 = 2.3.

B5 which ends at the upper edge of the stopband when
h/hInAs ≈ 0.8. Branch B6 of SH SAWs on the free surface goes
from a frequency below the edge of the lowest stopband of SH
waves (InAs/GaSb substrate) towards this edge. At h/hInAs =
0.5, i.e., on InAs/GaSb/InAs substrate, one has the exceptional
limiting SH mode. SH SAWs do not exist inside the lowest
stopband on structures with symmetric period but the limiting
bulk wave corresponding to the edge of this stopband satisfies
the condition of the free surface [16]. Branch B8 lies near the
band edge since SH SAWs do not exist on the free surface
of half-infinite homogeneous nonpiezoelectric substrates, so
this SAW can appear on layered substrates within a frequency
interval where the relevant eigenvalue of the transfer matrix is
not very small (γSH in Fig. 2).

SAWs also exist on the clamped surface (Fig. 4). Branch
C1 of sagittally polarized SAWs begins at the upper edge
of the stopband and ends at the lower edge of the band
when h/hInAs ≈ 0.81. There is one more branch of sagittally
polarized SAWs (branch C2). This branch begins at a frequency
lying inside the third stopband (h/hInAs = 1, i.e., InAs/GaSb
substrate), goes upward, and ends at the upper edge of the
third stopband when h/hInAs ≈ 0.6. On the clamped surface
of InAs/GaSb, the SH SAW occurs in the second SH stopband
(branch C3).

Note that all branches shown in Figs. 3–5 exist in stopbands
common for sagittally and SH polarized waves. Therefore,
these SAWs also exist in the vicinity of [100] direction.

The SAW spectrum on the InAs-GaSb superlattice under
the same conditions, but with exterior GaSb layer, is shown in
Fig. 5. SH SAWs do not exist either on the free or clamped
surface. To be more exact, the limiting SH bulk wave at the
upper edge of the lowest SH stopband satisfies the condition
of the free surface of the GaSb/InAs/GaSb substrate. This wave
disappears once h/hGaSb > 0.5. An explanation of this fact is
that the SH stopband edge is below the SH bulk wave velocity
in GaSb (ωH/v0 = 2.78), so adding a “fast” GaSb layer
destroys the wave on GaSb/InAs/GaSb substrate similarly to
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FIG. 5. SAW branches as functions of the thickness h of the
exterior layer GaSb at k = 2.5kB . Sagittally polarized SAWs on
the free surface (branches B1–B3) and on the clamped surface
(branch B4). GaSb/InAs/GaSb substrate: h/hGaSb = 0.5. GaSb/InAs
substrate: h/hGaSb = 1. Gray lines: passbands. The SH-mode pass-
band is near ωH/v0 = 2.3.

what happens when a fast layer is placed on a homogeneous
substrate. On the contrary, the SH stopband edge is above the
SH bulk velocity in InAs (ωH/v0 = 2.2) and, hence, adding
an InAs layer slows down the limiting SH bulk wave on the
free surface of the InAs/GaSb/InAs substrate, giving rise to a
branch of SH SAWs (B6 in Fig. 3).

The only SAW on GaSb/InAs substrate exists at ωH/v0 <

2.3 when the surface is mechanically free and the frequency be-
longs to the third stopband for sagittally polarized modes. This
SAW resembles very closely the SAW on the half-infinite GaSb
substrate coming about at the velocity v = 2724 m/s which
corresponds to ωH/v0 = 2.27. With decreasing h/hGaSb the
SAW on GaSb/InAs continuously transforms to the SAW
on GaSb/InAs/GaSb, the ωH/v0 value still approximately
equaling 2.27.

Apart from the SAW inside the third stopband, GaSb/InAs/
GaSb supports the SAW on the clamped surface near the lower
edge of the fourth stopband, the SAW on the free surface near
the upper edge of the second stopband of sagittally polarized
modes, and the SAW on the free surface within the lowest
stopband. Since the ωH/v0 value corresponding the SAW
on the half-infinite GaSb substrate is above the edge of the
lowest stopband, it is natural that the SAW exists in the
lowest stopband near its edge where |γs1,s2| is large enough
for the presence of other layers to affect the solution of the
boundary-value problem (see Fig. 2).

The absence of the SH SAW on the free surface of
GaSb/InAs in the lowest stopband for SH waves agrees with
general conclusions (the end of the previous section). The SH
SAW exists on InAs/GaSb in this stopband and, therefore,
it cannot exist on GaSb/InAs. The existence of the SAW on
the free surface of GaSb/InAs in the third stopband agrees
with general conclusions as well. There are one SAW on
InAs/GaSb (branch B5 in Fig. 3) and one SAW on GaSb/InAs
in this stopband. The number of SAWs on InAs/GaSb/InAs

and GaSb/InAs/GaSb substrates in higher stopbands are also
in agreement with general statements (46) and (48).

The InAs/GaSb superlattice is an example of two-layered
phononic crystals with asymmetric period which at certain
values of the wave number k support two sagittally polarized
SAWs in the lowest stopband when the exterior layer is of one
sort of material but support no SAW in this stopband if the
exterior layer is of the other material. The W/Al half-infinite
superlattice studied in Ref. [18] is a structure of different type.
Having asymmetric period, it supports one sagittally polarized
SAW in the lowest stopband within an interval of k values
independently of which layer is exterior but outside this k

interval one sagittally polarized SAW exists in the lowest
stopband if the exterior layer is W and no SAW exists in the
lowest stopband if the exterior layer is Al.

Note that in Ref. [25], SAW branches on the mechani-
cally free surface of GaAs/AlAs superlattices with different
external layers were computed. By our classification, this is
the case of asymmetric period in mutually reversed structures
GaAs/AlAs and AlAs/GaAs. The plane of propagation is (001)
and the direction changes from [100] until [110]. In the lowest
stopband, two SAW branches on GaAs/AlAs and one branch
on AlAs/GaAs are found. In the second full stopband, there
one SAW on GaAs/AlAs and one SAW on AlAs/GaAs. These
results also agree with our general statements.

VI. CONCLUDING REMARKS

In this work, a number of rigorous statements are proved
regarding the existence of SAWs on half-infinite 1D nonpiezo-
electric phononic crystals of general anisotropy. In particular,
not more than one SAW exists on the mechanically free surface
of structures in which the layers are placed “symmetrically”
within the period. The existence criterion for this SAW in
the lowest stopband is established. The simplest example of
the substrate with “symmetric” period is an appropriately
truncated two-layered periodic structure. If the period is
“asymmetric,” then at most three SAWs can occur in a “full”
stopband. A correlation between the number of SAWs on the
phononic crystal with given order of layers and on the phonic
crystal with the reversed order of layers is found: at most three
SAWs can exist in total.

Our work reveals a close methodological similarity between
the analysis of the SAW propagation on homogeneous sub-
strates and the analysis of the SAW propagation on phononic
crystals, especially in the case of structures with symmetric pe-
riod. This fact allows us to think that a large amount of acoustic
wave problems solved for homogeneous anisotropic substrates
by using and developing the method [28–30] are also solvable
for phononic crystals. Among such problems are the existence
of interfacial waves at various types of contact between two
elastically anisotropic solids [38,39], specific features of the
propagation of fast, or “supersonic”, SAWs as well as of leaky
SAWs [44–47]. The counterpart of a “supersonic” SAW on ho-
mogeneous substrate is a nonattenuating SAW existing within
a passband of a phononic crystal (see, e.g., [25]). The list of
problems potentially solvable in the case of phononic crystals
can be extended by referring to the fact that the mathematical
formalism [33] allows the analysis of general properties of the
bulk acoustic wave reflection/transmission in homogeneous
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solids of general anisotropy [46–50], the derivation of explicit
secular equations for SAWs and interfacial waves in generally
anisotropic or low symmetric structures [51–58].

Our results can be extended to half-infinite functionally
graded periodic structures where the matrix N̂ [Eq. (4)] is
a continuous periodic function of the depth coordinate. The
only difference is that the transfer matrix is the multiplicative
integral of N̂ expanding into the Peano series [37].
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APPENDIX

Let the matrix M̂S be nonsemisimply degenerate at a fre-
quency ωd falling into a full stopband. For instance, γ2 = γ3 =
γd and ζ2 = ζ3 = ζd at ωd . In parallel, in view of Eqs. (18) and
(20) γ5 = γ6 = 1/γ ∗

d and ζ5 = ζ6 = ζ ∗
d . The nonsemisimple

degeneracy implies

M̂Sζα = γαζα, α = 1, 4

M̂Sζd = γdζd, M̂Sζg = γdζg + ζd,

M̂Sζ
∗
d = ζ ∗

d /γ ∗
d , M̂Sζ

′
g = ζ ′

g/γ
∗
d + ζ ∗

d , (A1)

where ζg and ζ ′
g are the generalized eigenvectors of M̂S . The

eigenvectors and generalized eigenvectors form a complete set
of linearly independent vectors [37]. Since ζg is a complex
vector, the six vectors ζ1, ζ4 ≡ ζ ∗

1 , ζd , ζ ∗
d , ζg , and ζ ∗

g are also
linearly independent. Hence, the vectors ζ ∗

g and ζ ′
g must be

collinear. The equality M̂∗
S = M̂−1

S yields

M̂Sζ
∗
g = 1

γ ∗
d

ζ ∗
g − 1

γ ∗2
d

ζ ∗
d . (A2)

Therefore, ζ ′
g = −γ ∗2

d ζ ∗
g .

Due to (T̂M̂S )t = T̂M̂S and M̂∗
S = M̂−1

S all the products
of the type (T̂ζα )t ζβ of the vectors in Eq. (A1) vanish, except
(T̂ζ1)t ζ1 and (T̂ζg )t ζd . We put (T̂ζ1)t ζ1 = 1 and (T̂ζg )t ζd = 1,
so the completeness relation for ζ1,d,g and ζ ∗

1,d,g reads as

ϒ̂1 + ϒ̂
∗
1 =

(
Î Ô
Ô Î

)
, (A3)

where

ϒ̂1 = ζ1 ⊗ T̂ζ1 + ζd ⊗ T̂ζg + ζg ⊗ T̂ζd . (A4)

Using the orthogonality relations and the properties of M̂S ,
one can find that in the vicinity of ωd the eigenvalues γ2,3

and eigenvectors ζ2,3 which fulfill the normalization condition
(ζαT̂)t ζβ = δαβ (15) are of the form

γ2,3 = γd ± �γ + O(�γ 2),

ζ2,3 = ζd ± �γ ζg√±2�γ
+ O(�γ 3/2), (A5)

where �γ =
√

(T̂ζd )t�M̂Sζd and �M̂S = (∂M̂S/∂ω)�ω.
Besides, γ5,6 = 1/γ ∗

2,3 and ζ5,6 = ζ ∗
2,3.

The substitution into Eq. (27) of the expressions (A6) for
ζ2,3 and ζ ∗

2,3 yields ϒ̂ = ϒ̂1 − ϒ̂
∗
1 + O(�γ ), i.e., all elements

of ϒ̂ are finite at the point of degeneracy in the full stopband.
The degeneracy of M̂S at the band edge is due to a different

coalescence. One of the three eigenvalues γα , α = 1, 2, 3,
merges with one of the three eigenvalues γα+3 = 1/γ ∗

α . The
expressions of the eigenvalues, which coalesce at the band
edge, are similar to Eq. (A5) of ζ2,3. But, in the present case
ϒ̂ contains the difference of the divergent dyads. The terms of
the type 1/

√
�γ do not cancel out, so certain elements of ϒ̂

can tend to infinity as the frequency approaches the band edge.
Let us assume that the general transfer matrix M̂ [Eq. (10)]

is nonsemisimple degenerate at a frequency ωd inside the full
stopband as a result of the coalescence γ2 = γ3 = γd and,
accordingly, γ5 = γ6 = 1/γ ∗

d . The eigenvalue problem for M̂
reads then as

M̂ζα = γαζα, α = 1, 4

M̂ζd3 = γdζd3, M̂ζg3 = γdζg3 + ζd3,

M̂ζd6 = ζd6/γ
∗
d , M̂ζg6 = ζg6/γ

∗
d + ζd6, (A8)

where ζg3 and ζg6 are the generalized eigenvectors. Since
(T̂M̂)t = T̂M̂∗−1, all the products (T̂ζ ∗

α )t ζβ vanish, ex-
cept (T̂ζ ∗

1 )t ζ4 and (T̂ζ ∗
g6)t ζd3 = −γ 2

d (T̂ζ ∗
d6)t ζg3. We put

(T̂ζ ∗
1 )t ζ4 = 1 and (T̂ζ ∗

d6)t ζg3 = 1. Under this condition, the
completeness relation acquires the form

�̂1 + �̂2 =
(

Î Ô
Ô Î

)
, (A9)

where

�̂1 = ζ1 ⊗ T̂ζ ∗
4 + ζg3 ⊗ T̂ζ ∗

d6 − 1

γ 2
d

ζd3 ⊗ T̂ζ ∗
g6, (A11)

�̂2 = ζ4 ⊗ T̂ζ ∗
1 + ζd6 ⊗ T̂ζ ∗

g3 − 1

γ ∗2
d

ζg6 ⊗ T̂ζ ∗
d3. (A12)

At ω �= ωd the vectors ζ2,3 and ζ5,6 can fulfill the normalization
condition (T̂ζ ∗

α+3)t ζα = 1. Expanding ζ2,3 and ζ5,6, which are
normalized in this way, and the eigenvalues γ2,3,5,6 in the
neighborhood ofωd , we obtain that in the lowest approximation

γ2,3 = γd ± �γ + O(�γ 2), γ5,6 = 1

γ ∗
2,3

, (A13)

ζ2,3 = ζd3 ± �γ ζg3√±2�γ
+ O(�γ 3/2), (A14)

ζ5,6 = ζd6 ∓ �γ ∗ζg6/γ
∗2
d√±2�γ ∗ + O(�γ 3/2), (A15)

where �γ =
√

(T̂ζ ∗
d6)t�M̂ζd3, �M̂ = (∂M̂/∂ω)�ω, the upper

sign in (A13)–(A15) corresponds to the subscripts α = 2, 5.
Thus, we eventually find that the matrix �̂ [Eq. (50)] tends to
�̂ = �̂1 − �̂2 as ω → ωd , where �̂1,2 are given by Eqs. (A11)
and (A12).

The degeneracy of M̂ at the band edge occurs as a result of
the coalescence of one of the three eigenvalues γα , α = 1, 2, 3,
with one of the three eigenvalues γα+3 = 1/γ ∗

α . The elements
of the matrix �̂ diverge since the divergent terms do not cancel
out in this case.
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