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Sensitivity of a dielectric layered structure on a scale below the periodicity:
A fully local homogenized model
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We inspect the unusual scattering properties reported recently for structures alternating dielectric layers of
subwavelength thicknesses near the critical angle for total reflection. In TE polarization, the unusual scattering
properties are captured by an effective model with an accuracy less than 1% up to kd ∼ 0.1. It is shown
that the propagation is simply dispersive with local dispersion while the boundary layer effects are captured
through a nonintuitive transmission condition. The resulting model involves two parameters depending only
on the characteristics of the multilayer and which are given in closed forms. Besides, we show that a discrete
description of the spectrum using the layer thickness d as unit of measure misses the complexity of the continuous
spectrum exhibiting strong variations within the scale d . This ultrasensitivity to variations below d is attributable
to strong boundary layer effects and, for large structures, to a cooperation between the boundaries and the phase
accumulation within the structure.
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I. INTRODUCTION

Multilayered metamaterials are one-dimensional structures
alternating layers with subwavelength thicknesses. Because
the periodicity d of the layers is small compared to the
incident wavelength 1/k, the scattering properties of such
a multilayered structure are in general well recovered when
one replaces the actual structure by a homogeneous analog.
The procedure to characterize the equivalent homogeneous
medium is the homogenization and at the dominant order,
any homogenization procedure yields the prediction of the
effective medium approximation (EMA). Although the validity
of EMA is a priori only restricted to the condition kd � 1, it
was already known that metallodielectric structures alternating
layers with negative and positive indices may exhibit scattering
properties which are not correctly described by EMA. This was
attributable to the rapid variations of the field within the unit
cell due to high-index volume modes, and nonlocal theories
were proposed [1–3].

In comparison, all-dielectric systems with permittivities of
the same order as the surrounding media were believed to
be accurately described by the EMA. However, Sheinfux and
co-workers have shown recently that dielectric multilayered
metamaterials exhibit scattering properties highly sensitive to
the thickness and the arrangement of the layers in the vicinity
of the critical angle of total reflection [4]; again, the EMA
fails to explain this sensitivity. The study in [5] has confirmed
and complemented these findings for structures of infinite,
semi-infinite, and finite extents. It has been notably shown
that (i) for infinite structures, the actual dispersion relation
given by Bloch-Floquet analysis obeys the EMA prediction,
(ii) the reflectance by semi-infinite structures is insensitive
to the arrangement of the layers near the boundary and does
not differ much from its homogenized counterpart, and (iii) in
contrast, for structures of finite extent, the scattering proper-

ties contradict the EMA prediction even for small kd ∼ 0.1.
Since, this high sensitivity has been confirmed experimentally
for periodic structures [6] and exploited to produce unusual
Anderson localization when introducing disorder in the layer
thicknesses [7,8].

From a theoretical point of view, improved models have
been proposed. In [3], the expansion of the Bloch-Floquet
dispersion relation is performed to get the first correction
in (kd )2 to EMA prediction. This correction is sufficient
to explain the sensitivity of the structure to the periodicity
of the layers but it is unable to explain its sensitivity to
the arrangement of the layers at the boundaries or to the
materials surrounding the structure. To explain these latter
properties, improved models aim to recover boundary effects
at the extremities of the structure by enriching the governing
equations in the effective problem. Chebykin and co-workers
[2,9] used the methodology proposed in [10]; assuming that the
structure is excited by an external current results in an addi-
tional electric polarization which renders the relation between
electric displacement and electric field more involved. While
the presented approach allows one to account for local/nonlocal
dispersion, it is not clear that the sensitivity of the structure
to the layer material ending the structure is captured. In
[11], this approach is generalized by including generalized
relations between the electric displacement and the magnetic
induction vector and the electric and magnetic fields by means
of the permittivity and permeability tensors and two gyration
pseudotensors. The resulting system is underdetermined, thus
it does not permit one to uniquely determine the material
parameters; these latter are obtained on the basis of clever
physical-based assumptions (see also [12] in the context of
hyperbolic metamaterials). In particular, it is shown that, at
the first order, the effective gyrotropy is surface induced and
cancels when the structure starts with half a layer instead of an
entire one, a result that we shall recover in the present study.
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At the next order, the effective permittivity and permeability
do not reduce to scalars and make nonlocal dispersion appear.
Although this result is not expected from the Bloch-Floquet
dispersion relation in TE polarization, the model appears to be
very accurate to reproduce the scattering properties of actual
structures. Eventually, in [13], the authors use the higher-order
correction in the effective permittivity and account for the
boundary effects by adding heuristically an extra layer whose
properties depend on the permittivities of the surrounding
media (in addition to the characteristics of the layers).

Among the different approaches of effective media, the
homogenization based on two-scale asymptotic analysis is
largely used at the dominant first order (hereafter termed HM1)
which corresponds to the EMA. By construction it provides
constant effective parameters which depend on the microstruc-
ture only. When conducted at higher orders, spatial dispersion
appears, also by construction, and depending on the form of
the wave equation, we may expect local or nonlocal dispersion
[14–16]. What has been less regarded is the homogenization of
structures of finite extent (see [17] for multilayered structures).
At any order in the homogenization process, an effective wave
equation is obtained but effective transmission conditions at
the boundaries of the structure can also be derived. These
transmission conditions, often nonintuitive, are particularly
relevant when ultrathin metamaterial structures are considered,
and they have been regarded primarily in this context (see,
e.g., [18,19]). In this case, nonlocality is invoked when the
transmission conditions involve tangential derivatives of the
field.

In the present study, we show that conducting the homoge-
nization up to the third order provides a simple model hereafter
termed HM3 with an effective wave equation involving a
permittivity εeff frequency dependent in agreement with [3,13]
and effective transmission conditions involving a parameter
ε̂ which depends only on the layer terminating the structure.
The modeling is presented in Sec. II where both parameters are
given in a closed form; the details of the homogenization proce-
dure are collected in Appendix A. The boundary parameter ε̂ is
a key ingredient to accurately describe the scattering properties
of the multilayered structure; in particular, it accounts for
the intuitive fact that a perfect impedance matching with an
output homogeneous medium is in general impossible. This
ingredient was introduced heuristically by considering an extra
layer at the boundaries of the layered structure in [13]; in [11],
it was accounted for through the gyration pseudotensors. In
the present model, it is not necessary to introduce a priori
additional complexities in the model (an extra layer or an
effective gyrotropy). The transmission conditions involving
ε̂ are deduced from the Helmholtz equation for polarized
waves satisfied in the layers and in the input/output media. The
breakdown of EMA in the critical conditions is analyzed in the
Sec. III. As already pointed out in [4,5], this breakdown is due
to a large error of the model for relatively small kd ∼ 0.1 values
but it is not attributable to a failure in the expected convergence
of EMA when kd → 0. Conducting the asymptotic analysis at
higher order results in an improved model which provides an
accuracy better than 1% up to kd ∼ 0.1 and better than 10%
up to kd ∼ 1. Further results and validations of the model are
collected in Sec. IV.

εin

εout
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db

z

x

θ
0

εbεa

FIG. 1. Multilayer structure illuminated by a plane wave near the
critical angle of total reflection (d = da + db is the period).

In particular, we report a result on the sensitivity of the
spectrum in the vicinity of the critical conditions. We show
that strong variations of the reflected/transmitted powers occur
when the thickness of the first layer is varied continuously from
0 to d. This casts light on the ultrasensitivity of these structures,
beyond that already reported within a discrete description of
the spectra with d as unit of measure.

II. MODELING

A. The actual and homogenized problems

For an incident wave in the plane (x, z) in TE, the Maxwell
equations simplify to the Helmholtz equation applying to the
electric field E = E(x, z)ey , namely, the scalar field E satisfies

�E(x, z) + k2ε(z)E(x, z) = 0, (1)

with, in the present case, ε(z) = εin, εa, εb, εout, varying along
the z axis (Fig. 1). If the incident wave is a plane wave at
incidence θ , the problem reduces to a one-dimensional problem
along z which can be solved easily, e.g., with the transfer matrix
formalism [4]. Our effective model is derived using a two-
scale homogenization technique detailed in Appendix A. At
the dominant order (order 1), the model HM1 is that of the
classical homogenization and coincides with the EMA. The
layered material is replaced by an equivalent homogeneous
medium with an effective permittivity

〈ε〉 = daεa + dbεb

da + db

. (2)

At this order, the transmission conditions at the boundaries
of the structure are the usual continuities of the electric
field and of its normal derivative. Conducting the analysis
at the order 2 leaves us with a model termed HM2 where
the effective medium in the bulk is the same as in EMA,
but with modified transmission conditions. The field E is
still continuous across the boundary but its normal derivative
experiences a jump which is linked to the value of E at the
boundary and to a parameter ε̂ depending on the arrangement
of the layers terminating the structure (ε̂ does not depend
on the characteristics of the surrounding media). Eventually,
going up to the order 3 enables the correction in the effective
permeability to be obtained. Specifically, our homogenized
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FIG. 2. (a) Convention to characterize the two layers terminating
the structure at z = 0 and L. (b) Effective parameters (ε̂in, ε̂out) from
(5), for εa = 5, εb = 1, and da = db = d/2.

problem HM3 reads as

�E + k2εeff(k)E = 0,

∂E

∂z
(x, 0+) − ∂E

∂z
(x, 0−) = k2dε̂inE(x, 0), (3)

∂E

∂z
(x, L+) − ∂E

∂z
(x, L−) = k2dε̂outE(x, L),

where L is the structure extent. The effective bulk permittivity
εeff(k) is given by the asymptotic analysis at the order 3. It is
the first correction, in (kd )2, of the EMA (see Appendix A 1)
and it reads as

εeff(k) = 〈ε〉 + k2

12

d2
a d2

b

d2
(εa − εb )2, (4)

in agreement with the findings of [3] where the correction is
obtained from the actual Bloch-Floquet dispersion relation and
of [13] where it is derived using approximated expressions of
the characteristic matrix (see Appendix A in this reference).

The parameters ε̂in,out are also obtained explicitly and, as
previously said, they depend on the two layers terminating the
structure (see Appendix A 2). With the convention shown in
Fig. 2, they read as

ε̂in = (εa − εb )

d2

{
da

(
d̂in − db

2

)
, d̂in ∈ (0, db ),

db

(
da

2 + db − d̂in
)
, d̂in ∈ (db, d ),

ε̂out = (εa − εb )

d2

{
db

(
da

2 − d̂out
)
, d̂out ∈ (0, da ),

da

(
d̂out − da − db

2

)
, d̂out ∈ (da, d ).

(5)

Simple remarks on ε̂ can be drawn as follows:
(1) For a structure containing an integer number N of layers

(L = Nd) we have d̂in = d̂out, hence ε̂in = −ε̂out.
(2) A structure starting with a half-layer of material b (d̂in =

d/4) or of material a (d̂in = 3d/4) is assigned to the usual
conditions of continuity of the E and its normal derivative, at
z = 0, since ε̂in = 0 in (3). The same applies at z = L with
ε̂out = 0 for d̂out = d/4 or d̂out = 3d/4. This conforms with
the prediction given by the surface-induced effective gyrotropy
in [11].

(3) Reversely, a structure starting with a complete layer
of material a (d̂in = 0) or of material b (d̂in = d/2) realizes
extrema ε̂in = ±(εa − εb ) dadb

2d2 .
It is worth noting that the configuration considered in

[4,13] corresponds to d̂in = d̂out = 0. Thus, ε̂in = −ε̂out take
maximum values.

The homogenized problems HM3 correspond to that of
a slab filled with a homogeneous material (εeff) sandwiched
between two homogeneous media. Setting d = 0 in (3) reduces
the model to EMA. Setting εeff = 〈ε〉 while keeping the
transmission conditions in (3) corresponds to HM2. The order
of the models corresponds to their expected convergences, in
(kd ) for EMA and in (kd )2 for HM2. Eventually, HM3 is a
hybrid model, with a convergence in (kd )2 (see Appendix A).
At any order, the effective structure has local properties in
its bulk with εeff depending on the wave number only. The
effective transmission conditions are local as well since they
involve the field E and its normal derivative in a Robin-like
relation (enlightening discussions on nonlocality and effective
properties can be found in [20,21]). These local properties are
obtained in the polarization TE that we consider in the present
study and they would be lost in TM polarization.

B. Scattering properties of the homogenized structure

1. Semi-infinite structure—Local scattering coefficients

The scattering properties of the slab of extent L can be
deduced from that at the single interfaces, at z = 0 and L.
These latter are obtained considering the solution of the
whole problem with incident waves coming from z = ±∞,
specifically

E = eiγ x

⎧⎨
⎩

a+eiαinz + a−e−iαinz, z ∈ (−∞, 0)
b+eiαz + b−e−iαz z ∈ (0, L)
c+eiαout (z−L) + c−e−iαout (z−L) z ∈ (L,∞),

with γ the wave number along x and (αin, α, αout ) those along
z defined by

γ = k
√

εin sin θ, αin = k
√

εin cos θ,

α =
√

k2εeff − γ 2, αout =
√

k2εout − γ 2. (6)

We get the local scattering coefficients, accounting for the
transmission conditions (3) at z = 0, L, of the form

r+
in = −α − zin

α + zin
, t+in = 2αin

α + zin
,

r−
in = α − zin

α + zin
, t−in = 2α

α + zin
,

r+
out = α − zout

α + zout
, t+out = 2α

α + zout
, (7)

r−
out = −α − zout

α + zout
, t−out = 2αout

α + zout
,

with zin = αin + iε̂in k2d, zout = αout + iε̂out k
2d,

where we have defined at the input interface a− =
r+

in a+ + t−in b−, b+ = t+in a+ + r−
in b− and at the output interface

b−e−iαL = r+
outb

+eiαL + t−outc
−, c+ = t+oute

iαLb+ + r−
outc

−.
In [5], the reflectance Pr = |r+

in |2 of semi-infinite structures
is considered. Specifically, the following quantities are
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considered: (i) �Pr,d = |r+
in |2(kd ) − |r+

in |2(kd )0
measures the

sensitivity of the reflectance on the layer thickness d, with
(kd )0 ∼ 5 × 10−3 representing kd → 0 and (kd ) ∼ 0.1, and
(ii) �Pr,o = |r+

in |2a − |r+
in |2b measures the difference in the

reflectance of a structure starting with a layer of material a

with that of a structure starting with a layer of material b.
Those quantities are considered near the critical angle of total
reflection

θc = arcsin

√
〈ε〉
εin

. (8)

From (7), we have

|r+
in |2 
 1 − kd

dadb |εa − εb|√
3εin d2 cos θc

+ O[(kd )2], (9)

which leaves us with

�Pr,d ∼ −kd
dadb |εa − εb|√

3εin d2 cos θc
, �Pr,o = O[(kd )2]. (10)

The above estimates are in agreement with the findings
reported in [5]: �Pr,d has the same order of magnitude as
kd and is the same whenever the structure starts with a layer
of material a or a layer of material b; as a consequence, the
reflectances of structures starting with a layer a or with a layer
b do not differ significantly with �Pr,o vanishing up to (kd )2.

2. Reflection and transmission of a structure of finite extent

The scattering coefficients (R, T ) of a structure of finite
extent simply follow from the preceding section. Looking for
a solution to the scattering problem for a right-going incident
wave of amplitude unity of the form

E(x, z) = eiγ x

⎧⎨
⎩

eiαinz + Re−iαinz, z ∈ (−∞, 0)
Aeiαz + Be−iα(z−L), z ∈ (0, L)
T eiαout (z−L), z ∈ (L,+∞),

(R, T ) are given by

R = r+
in e−iαL + (

t+in t−in − r+
in r−

in

)
r+

out eiαL

e−iαL − r+
outr

−
in eiαL

,

T = t+in t+out

e−iαL − r+
outr

−
in eiαL

. (11)

Expectedly, the bulk effective permittivity εeff and the interface
effective permittivities (ε̂in, ε̂out ) do not play the same role:
while εeff affects the phase accumulation during wave prop-
agation through eiαL, ε̂in and ε̂out affect the local scattering
coefficients at the interfaces at z = 0 and L, respectively.

In general, the corrections in (kd ) due to (ε̂in, ε̂out ) and
that in (kd )2 due to εeff are small and the scattering is that
of a usual slab behaving as a Fabry-Perot interferometer.
However, near the critical angle θc, the wave number α goes
from real to imaginary in an intricate way. Indeed, denoting
δεk = εeff − 〈ε〉 ∝ (kd )2 the shift in the permittivity from
(4) and δεθ = εin sin2 θ − 〈ε〉 the shift in the incidence, the
pattern of α = k

√
δεk − δεθ in the (k, θ ) space is already quite

involved. The situation becomes even more involved when the
output medium is almost matched to the slab with εout = 〈ε〉 +
δεout; then, zout = k(

√
δεout − δεθ + ikdε̂out ) has also a (k, θ )

dependence. It results that the scattering coefficients (r+
out, t

+
out )

x
(n

m
)

E
(0

,z
)

4000 z (nm)z (nm) 4000

(a) d = 20 nm (b) d = 19.656 nm

2

−2

0

0

4000

EMA HM3HM2exact

0 0

FIG. 3. Fields E(x, z) and profiles E(0, z) for an incident wave
(θ = 60◦, εout = εeff) on multilayers of same extent L = 4000 nm
with two layer thicknesses which differ by less than 2% (in both
cases da = db = d/2). (a) |R|2 = 91% and (b) |R|2 = 25%.

at the output interface [see (7)] involve a combination of small
and (k, θ )-dependent terms, which allows us to anticipate
a complex shape of the spectrum. In particular, even for a
given output medium, it is impossible to provide approximate
expressions of (r+

out, t
+
out ) valid for any (k, θ ).

Eventually, note that the scattering coefficients (R, T ) in
(11) are valid except if α = 0 [θ = arcsin

√
εeff(k)/εin]; in this

case, the solution for z > 0 has to be sought with a linear
dependence in z. As this situation corresponds to a single point
in the (k, θ ) spectrum, it is disregarded in the present study.

III. CONVERGENCE/ACCURACY OF THE
HOMOGENIZED MODELS

We consider the same parameters as in [4]: k =
2π/(500 nm), εin = 4, εa = 5, εb = 1, and d = 20 nm with
da = db = d/2. We shall consider the critical conditions,
namely, in the vicinity of εout 
 〈ε〉 = 3 and θ 
 θc = 60◦.
Note that εeff = 3.053 and arcsin

√
εeff(k)/εin = 60.09◦ at this

frequency. Following [4], we term regular (respectively, re-
verse) order configuration that of a structure with L = Nd, N

integer, starting with an entire layer of material a (respectively,
material b).

A. A typical example

To begin with, we report in Fig. 3 the fields E(x, z)
calculated numerically for two structures of same extent L =
4000 nm and a small change in d, from d = 20 nm (regular
order with L = 200d) to d = 19.656 nm. The scattering prop-
erties of these structures which differ by a relative change in
d less than 2% are unexpectedly different, from a quasiperfect
reflection to a quasiperfect transmission. Obviously, EMA
predicts erroneously the same properties for (a) and (b). Next,
because we kept at the entrance an entire layer of material
a, only ε̂out is changed in the effective problems HM2 and
HM3. With ε̂out = 0.5 for the regular order L = 200d (a)
and ε̂out = −0.5 since L = 203.5d for (b), HM2 detects a
difference but fails in predicting the right wave number α

within the structure, resulting in a large error. Eventually HM3

captures both effects accurately.
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x

(n
m

)
E

(0
,z

)

4000 z (nm)z (nm) 4000

2

−2

0

0

4000

0 0

stabilized solutionalmost stabilized solution
(a) d close to 10 nm, (b) d close to 2 nm,

FIG. 4. Same representation as in Fig. 3. (a) The almost stabilized
solution, with variations of 5% for variations in d of 2% around d =
10 nm (|R|2 
 95%). (b) The stabilized solution, with variations of
0.1% for variations in d of 2% around d = 2 nm (|R|2 = 98%).

Now we keep the same extent L but we consider smaller
layer thicknesses, with d = 10 nm and d = 9.828 nm. In this
case, the variation of 2% in the thickness does not much affect
the scattering properties of the structure, with a variation of
only 5%. The field for d = 10 nm reported in Fig. 4(a) is
undistinguishable from that for d = 9.828 nm (not reported).
For this almost stabilized solution, the predictions of EMA
and HM2 remain not very accurate when compared to that of
HM3. Eventually, for d of the order of 2 nm, the solution is
fully stabilized, with a variation in thickness of 2% producing a
variation in the scattering properties of 0.1% [Fig. 4(b)]. In this
case, EMA and HM2,3 have roughly the same good accuracy.

This example illustrates the fact that the EMA prediction
does not fail altogether but rather lacks in robustness when kd

increases above kd = 0.1, a fact already pointed out in [4].
Below, we further inspect this lack of robustness considering
the convergence of the homogenized models.

B. Convergence/accuracy of the models

When conducting an asymptotic analysis, it is assumed that
the solution can be expanded in power of the small parameter
kd [see, e.g., our expansions in (A2)]. The leading order for
kd = 0 has to be dominant; afterward, higher order terms in
the expansion can be accounted for to provide more accurate
predictions for nonzero kd. In particular, the convergence of the
leading order prediction when compared to the actual solution
is expected in kd; if the leading order fails in this convergence,
the whole analysis breaks down altogether and it is useless
to conduct the analysis at higher orders. Thus, it makes sense
to check that EMA follows the convergence expected in the
asymptotic analysis.

Figure 5(a) reports the variations of the transmission

PT = real

(
αout

αin
|T |2

)
(12)

against θ and kd (εout = εeff, regular order with L = 2000 nm).
With kd ∈ (10−2, 1), we inspect the very low frequency regime
up to the borderline case kd = 1. Figure 5(b) shows the
corresponding errors in the models at the orders 1–3, |�T/T |

10−2 10−1 100

log10 kd

(b) log10 |ΔT/T |

10

10

10

10

(a) PT

10−2 10−1 100

log10 kd

30

0

60

90

θ(◦)

(c)

10−4

10−2

100

10−6

10−2 10−1 100

log10 kd

10−2 10−1 100

log10 kd

log10 |ΔT/T |

θ = 20◦

1

2

EMA

HM3

HM2

1

0.8

θ = 60◦

10−2 10−1 100

log10 kd
10−2 10−1 100

log10 kd

30

0

60

90

θ(◦)

FIG. 5. Convergence of the models. (a) Transmission spectrum.
(b) Errors of the models (EMA, HM2, and HM3 from the left to the
right). (c) Error profiles for θ = 20◦ and 60◦; dashed gray lines show
the slopes 1 and 2.

(�T = T − Te) with the reference solution Te calculated
numerically. The EMA error presents scars corresponding to
phase mismatches at the boundaries which are removed with
HM2. In comparison, HM3 significantly reduces the error by
about two orders of magnitude.

Eventually, we report in (c) the profiles of the errors for θ =
20◦ and 60◦. The convergences observed are those expected
from the asymptotic analysis: the EMA error increases as
(kd ) and the HM2 error as (kd )2. Next our HM3 model is
hybrid and fails in the (kd )3 convergence, being penalized
by the correction truncated at the order 2 in the transmission
conditions (see Appendix A 2); as such its error increases as
(kd )2. It turns out that HM2 does not significantly improve the
accuracy of EMA while HM3 does. More importantly, at the
critical angle θ = θc, the errors in EMA and in HM2 become
significant as soon as kd = 10−2 (about 10%) and overcomes
100% for kd = 0.1. In comparison, HM3 has an accuracy of
0.1% up to kd = 0.1 and does not exceed 10% up to kd = 1.
While the running case with k = 2π/(500 nm) corresponds to
kd 
 0.25 where the error is very low, it has been stressed in [4]
that structures with d ∼ λ/10, hence kd ∼ 0.6 tends to unity,
could be interesting from an applications-oriented perspective
since they should be less sensitive to disorder and loss. This
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N = L/d

θ(
◦ )

N = L/d

(a) regular order (b) reversed order

0 500
59
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0 500

0

0.9

FIG. 6. Discrete transmission spectra; L = Nd varies with d

increment.

intermediate regime is clearly a limiting case of the asymptotic
analysis which assumes small values of kd; it is commented
further in Appendix B. From what has been seen, the hierarchy
expected in the homogenized models is verified, which fully
justifies their use. In the critical conditions and for kd > 0.1,
both the boundary layer effects and the correction of α in the
bulk have to be accounted for, hence only HM3 has a low error.

IV. COMPLEXITY OF THE SPECTRUM WITHIN
DISCRETE/CONTINUOUS VARIATIONS OF THE

STRUCTURE EXTENT

Many illustrations of the EMA failure have been given in
the initial paper of Sheinfux and co-workers [4] and later on
in [5,11,13]. Most of the reported features concern structures
made of an integer number of layers, which is within a discrete
description of the problem. However, it was already reported
in [4] that the transmission is very sensitive to the length of the
terminating layer, hence to a variation smaller than d. This
suggests that going toward a continuous description of the
problem can be of interest.

In this section, we start by reporting illustrations of the sen-
sitivity of the spectrum within the usual discrete description.
Next, we move to its continuous counterpart, which reveals a
much stronger complexity.

A. A version of the spectrum with d increment

We consider the spectrum produced by structures of in-
creasing extent L = Nd, with N integer. Figure 6 shows
the transmission spectra for structures with the regular order
(succession a–b at the entrance) and with the reverse order
(succession b–a at the entrance); in both cases, the first layer is
complete of thickness d. Each spectrum resembles the classical
spectrum of a homogeneous slab; however, the regular or
reversed order cases are different, exchanging the locations
of their maximum transmissions and reflections. This unusual
feature already pointed out in [4] is attributable to the boundary
layer effects at both extremities, with ε̂in = −ε̂out = −0.5 for
the regular order and ε̂in = −ε̂out = 0.5 for the reversed one.
Note that the same spectra would be obtained in the regular
and reversed orders for structures starting with a half-layer of
material a or b (thus εin,out = 0).

Obviously, the EMA fails in predicting these transmission
properties (see Fig. 7). The critical angle is underestimated
(θ = 60◦ in Fig. 7), and below the critical angle, the periodicity

EMA HM3HM2exact

1 θ = 59.5◦

θ = 60◦
(a) regular order (b) reversed order

N = L/d0 500
0

N = L/d0 500

1

0

FIG. 7. Transmission against N (integers) at θ = 60◦ and 59.5◦,
from the discrete transmission spectra in Fig. 6.

1/α of PT is overestimated. Capturing the boundary layer
effects in HM2 is the first necessary improvement and it is
sufficient for small structures, say αL up to few unities [here for
N up to 1/(αd ) ∼ 55]. Eventually, HM3 recovering in addition
the correct, small, α value corrects the two drawbacks with an
accuracy of 0.2% in the reported case.

To better understand the difference in the spectra for the
regular and reversed orders, a continuous variation of the
terminating layer is considered. In [4] this was done by
increasing the thickness of the terminating layer resulting in
changes from L = Nd to L = (N + 1)d [see Fig. 3(b) in this
reference]. Here we keep L = Nd, with N integer, and we
shift of δ ∈ (0, d ) all the layers within the structure; the direct
order δ = 0 and reverse order δ = d/2 are now borderline
cases. Doing so, we modify the boundary layer effects only, the
effective permittivity in the bulk remaining identical. Besides,
since L is a multiple of d, we simply have ε̂in = −ε̂out and we
shall see that this is not incidental. The resulting variations in
the transmission PT against δ and N are reported in Fig. 8.
The transmission PT varies significantly from almost 0 to
about 0.8, with extrema reached at δ = 0 and d/2 which
correspond to the strongest boundary layer effects. Next the
pattern of the transmission is periodically repeated along N ,
with a periodicity dictated by αNd, in the present case for
N ∼ 172. The accuracy of HM3 to reproduce this pattern is
illustrated by splitting the plot and by reporting the numerical
solution for δ/d > 0.5 and the HM3 prediction δ < 0.5; the
discrepancy between both is less than 0.5%.

B. Continuous variation of L—A complex cooperation between
the bulk and the boundaries

We shall now see that the patterns observed in Figs. 6 and 8
are deeply modified when the increment �L in L is decreased;
up to now we had �L = d. We start with the spectrum of Fig. 8
where the layers were shifted within a structure of extent L.
Figure 9(a) reproduces the pattern of Fig. 8 over roughly a
period L/d ∈ (0, 175) and �L = d. Next, we decrease the
increment to �L = d/2, d/4 and to a continuous version. We
define this continuous version for �L � d/40 producing a
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δ/d

N

δ

d = 20 nm

d = 20 nm

L = Nd

0

1

5000 400300200100

exact

HM3

FIG. 8. Variations in the transmission against integers N = L/d

and δ/d for θ = 60◦; each vertical line corresponds to increasing shifts
of the layers within a structure of extent L; δ = 0 is the regular order.
The plot reports the numerical calculation for δ/d > 0.5 and the HM3

prediction for δ/d < 0.5 (the overall discrepancy is of 0.4%).

spectrum which differs by less than 5% from its interpolated
version with a step 2�L; this means that further decreasing

(d) continuous version

L/d

(a) d-increment

0 175

δ/d

0

1

(b) d/2-increment

(c) d/4- increment

L/d
0 175

δ/d

0

1

FIG. 9. Spectrum patterns for decreasing pixelization �L below
d . The pattern (a) is a zoom of Fig. 8 in a period L/d ∈ (0175); θ =
60◦, δ = 0 corresponds to the regular order.

L/d
0 17535 70 105 140

PT

0

0.2

0.4

0.6

0.8

ΔL → 0

ΔL = d

ΔL = d/2
ΔL = d/4

FIG. 10. Profiles of the transmission against L for δ = 0, from
Fig. 9; �L → 0 means equal d/40 (continuous version).

�L does not produce a significant change in the spectrum. The
resulting patterns in Figs. 9(a)–9(d) strongly differ revealing
a high sensitivity to these different pixelizations. Of course,
the vertical lines for L/d integer are conserved from (a) to
(d); however, strong fluctuations of the transmission occur in
between them. For instance, the region around δ = d/2 and
L/d > 100 with low transmission in (a) reveals strong local
maxima in (b)–(d).

To understand this behavior, let us comment on the vari-
ations of (ε̂in, ε̂out ) in the plane (L, δ). By construction,
d̂in = (d − δ) produces ε̂in(δ) independent of L. Next, with
L = Nd + d ′ and d ′ ∈ (0, d ), we have d̂out = δ + d ′ for δ ∈
(0, d − d ′) and d̂out = δ + d ′ − d for δ ∈ (d − d ′, d ) (note that
the variations of d̂in and d̂out would be even more involved for
da �= db). It results that ε̂out against L is d periodic but for, e.g.,
L = d, it varies with δ according to ε̂out = −ε̂in, the regular
order. Hence, the pattern of ε̂out is composed of inclined layers
in the (L, δ) plane. Among the couples (ε̂in, ε̂out ), an increment
�L = d selects those with ε̂out = −ε̂in and as such it misses the
infinity of other combinations. By decreasing �L we get more
and more back which complement the spectrum. This is further
illustrated in Fig. 10 where we report the profiles of PT against
L for decreasing increments. The various couples (ε̂in, ε̂out )
varying within d produce strong variations of the scattering,
beyond the apparent relative simplicity of the d-increment
version. Note that our model HM3 reproduces the continuous
version of the spectrum in Figs. 9 and 10 with a discrepancy
less than 1%. It is worth noting that in the present case, for
kd ∼ 0.25 the HM3 prediction remains very accurate for large
N values; additional results in the intermediate regime kd ∼ 1
are reported in Appendix B which reveals an increase in the
error for increasing L/d value, in addition to the expected
increasing error for increasing kd.

Now, we consider the spectrum reported in Fig. 6 for
d-incremented extent of the structure, and we move to its
continuous version. We focus on a tiny region of Fig. 6 corre-
sponding to L/d ∈ (490, 500) and small variations of the angle
near the critical angle. The result is shown in Fig. 11: in (a) a
zoom of Fig. 6 with �L = d and in (b) its continuous version
with �L = d/50. The difference between both patterns is
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exact HM3

θ(◦)

59.4

60.1

500500L/d L/d490490

(a) d-increment (b) continuous version

FIG. 11. Modification of the spectrum pattern for (a) the discrete
version of the spectrum �L = d and (b) for its continuous counter-
part, �L = d/50; same representation as in Fig. 6 for the regular
order. In (b), the numerical solution is reported for L/d < 495 and
the HM3 prediction is reported for L/d > 495.

again impressive but amusingly, the tiny pixelization reveals
now a nice complex structuration due to strong fluctuations
in the transmission within the scale d. Here, the variations of
(ε̂in, ε̂out ) are simpler than previously. As L increases while
keeping the regular order at z = 0, ε̂in = −0.5 is constant and
ε̂out varies continuously with L being otherwise independent
of θ .

For these large extents, the observed pattern results from co-
operation between the bulk of the structure and its boundaries.
On the one hand, interferences of the Fabry-Perot type take
place, being dictated by the variations of αL. Several maxima
in transmission are visible within a small range in θ just below
θ ′

c realizing sin2 θ ′
c 
 εeff/εin; with α in (6), a fuzzy estimation

gives θ ∼ θ ′
c − (nπ/kL)2 which are nearly constant angles

with a small increase in L, as captured in (a); the same shape
would be obtained for εout far from εeff. On the other hand,
varying ε̂out affects the values of θ realizing these maxima. For
εout far from εeff, these changes are incidental; for εout close
to εeff, they are sufficient to structure the spectrum below the
size d. This effect is further illustrated in Appendix C where
we report results on the influence of the layer thickness.

Eventually, the spectrum is also very sensitive to εout in
the vicinity of εeff; this is illustrated in Fig. 12 where we
report the patterns for εout = 3.001 and εout = εeff = 3.053. In
the vicinity of the critical conditions, the scattering properties
become sensitive to any small change in the wave incidence
and in the length of the structure, but also in a small change in
the permittivity of the output medium.

V. CONCLUSIONS

In this study, we have presented a model based on homoge-
nization of finite extent structure and whose high accuracy has
been exemplified; the model is fully local, both in the wave
equation and the transmission conditions, of the Robin’s type.
It involves a permittivity εeff in the bulk of the effective material
and two effective boundary parameters (ε̂in, ε̂out ). In the present
case, the bulk parameter εeff in (4) contains a correction in (kd )2

already derived in [3,13]. The boundary parameters (ε̂in, ε̂out )
in (5) enter in unusual transmission conditions which are
corrections in (kd ) of the usual continuity conditions; they do

494

L/d

490

θ(◦)

60.1

60.03
492

exact HM3

θ(◦)

60.1

60.03

FIG. 12. Details of the transmission patterns near the critical
angle for εout = 3.001 (top panel) and εout = εeff = 3.053 (bottom
panel).

not depend on the surrounding materials, which is an exception
rather than the rule, but only on the arrangement of the layers
at the structure boundaries. These boundary layer effects are
the key point to explain the unusual scattering properties of
multilayered metamaterials. Eventually, guided by our model,
we have exemplified the extreme sensitivity of the spectra
at a scale smaller than d well beyond the sensitivity usually
reported using a discretization of L with d as unit of measure.
It is worth noting that the high accuracy of the presented model
allows us to capture these strong variations.

Extensions of the present work include the case of TM polar-
ization for which nonlocality is expected, and layers alternating
negative and positive index materials, as for metal-dielectric
multilayered metamaterial. It would also be interesting to see
if recent approaches based on homogenization for so-called
quasiperiodic [22] or locally periodic [23] systems can be
applied to periodic structures in the presence of disorder to
explain the recent results of [8] on the interplay between
evanescent waves and Anderson localization.
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APPENDIX A: HIGH-ORDER HOMOGENIZATION

In this Appendix we detail the asymptotic analysis which
provides the homogenized models HM1,2,3. The model HM1

coincides with the EMA; the model used in our analysis is
HM3, corresponding to Eqs. (3). A similar derivation can be
found in [17] (up to the second order but for a multilayered
structure which is cut across the layers).

1. Homogenization in the bulk, the parameter εeff

We start by writing the wave equation (1) in a slightly
different way. Specifically we introduce the vector field C such
as (1) takes the form

C = ∇E, divC + εk2E = 0, (A1)
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hence C is related to the magnetic field. The above formu-
lation is not strictly necessary but it allows for shortcuts
in the calculations. The two-scale asymptotic analysis relies
on the definition of a rapid scale associated to the periodicity d

of the structure, and small means small compared to the wave-
length. Without loss of generality, we can choose k = O(1),
hence η = d � 1. To this scale is associated a coordinate, in
the present one-dimensional case, ξ = z/η. Next, the solution
(E, C) is thought in terms of the expansions

E = E0(x, ξ ) + ηE1(x, ξ ) + η2E2(x, ξ ) + · · · ,

C = C0(x, ξ ) + ηC1(x, ξ ) + η2C2(x, ξ ) + · · · , (A2)

with the (En, Cn) being 1-periodic with respect to ξ [by
construction, ξ ∈ (−1/2, 1/2)]. In the bulk of the structure,
the differential operator now reads as

∇ → ∇x + 1

η

∂

∂ξ
ez. (A3)

Plugging the asymptotic expansions (A2) into (A1) along with
(A3), we obtain at the leading order that ∂ξC

0
z = ∂ξE

0 = 0,
from which E0(x) and C0

z (x) do not depend on the rapid scale
ξ . Then, at each order n = 0, 1, . . ., the system (A1) becomes

Cn
x = ∂En

∂x
, Cn

z = ∂En

∂z
+ ∂En+1

∂ξ
, (A4)

and after averaging over ξ ∈ (−1/2, 1/2), we obtain

〈
Cn

x

〉
(x) = ∂〈En〉

∂x
(x),

〈
Cn

z

〉
(x) = ∂〈En〉

∂z
(x). (A5)

We also have

∂Cn+1
z

∂ξ
+ divxCn + k2εEn = 0, (A6)

which after averaging leaves us with

divx〈Cn〉 + k2〈εEn〉 = 0. (A7)

From (A5) and (A7), we see that a nontrivial wave equation
appears if, in (A7), 〈εEn〉 �= 〈ε〉〈En〉 and we shall see that this
happens for n � 2. For the time being, we use (A4) for n = 0
to get

C0
z (x) = ∂E0

∂z
(x) + ∂E1

∂ξ
(x, ξ ), (A8)

which shows that

C0
z (x) = ∂E0

∂z
(x) and E1(x) (A9)

do not depend on the rapid scale. From (A5) to (A7), the wave
equations for n = 0, 1 simply involve the average 〈ε〉 of ε(ξ ).

To find a nontrivial wave equation, we need E2, hence we
need also C1

z . With n = 0 in (A6), and after integration, we
find that

C1
z (x, ξ ) = ε̂(ξ )k2E0(x) + 〈

C1
z

〉
(x),

with ε̂(ξ ) =
∫ ξ

−1/2
[〈ε〉 − ε(χ )]dχ. (A10)

To get the above expression, we have used divxC0(x) =
−k2〈ε〉E0(x) from (A7). We also used 〈ε̂〉 = 0 and introduced

ε̃(ξ)ε̂(ξ)

da/d

ε ε(ξ)

0 1/2-1/2
ξ

0 1/2-1/2
ξ

0 1/2-1/2
ξ

FIG. 13. Functions ε̂ and ε̃ in (A15) and (A16) for da = db = d/2.

the mean value 〈C1
z 〉 of C1

z . Next, we use C1
z in (A4) with n = 1,

namely,

C1
z (x, ξ ) = ∂E1

∂z
(x) + ∂E2

∂ξ
(x, ξ ), (A11)

from which

E2(x, ξ ) = [ε̃(ξ ) − 〈ε̃〉]E0(x) + 〈E2〉(x),

with ε̃(ξ ) =
∫ ξ

−1/2
ε̂(χ )dχ, (A12)

and we used that 〈C1
z 〉(x) = ∂zE

1(x) from (A5). In (A7), we
have now 〈εE2〉 �= 〈ε〉〈E2〉, since (A7) reads as

divx〈C2〉 + k2[〈ε〉〈E2〉 + (〈εε̃〉 − 〈ε〉〈ε̃〉)E0(x)] = 0, (A13)

while for n = 0, 1, we had divx〈Cn〉 + k2〈ε〉〈En〉 = 0. It is
sufficient to consider the truncation E 
 E0 + ηE1 + η2E2

which satisfies an effective wave equation with the permittivity
εeff,

�E + k2εeff(k)E = 0,

with εeff(k) = 〈ε〉 + (kd )2(〈εε̃〉 − 〈ε〉〈ε̃〉). (A14)

The functions ε̂ and ε̃ are defined for ξ ∈ (−1/2, 1/2) and they
read as

ε̂(ξ )

(εa − εb )
=

⎧⎪⎪⎨
⎪⎪⎩

da

d
(ξ + 1/2), ξ < − da

2d
,

db

d
ξ, |ξ | < da

2d
,

da

d
(ξ − 1/2), ξ > da

2d
,

(A15)

ε̃(ξ )

(εa − εb )
=

⎧⎪⎪⎨
⎪⎪⎩

da

2d
(ξ + 1/2)2, ξ < − da

2d
,

db

2d

(
da

4d
− ξ 2

)
, |ξ | < da

2d
,

da

2d
(ξ − 1/2)2, ξ > da

2d

(A16)

(see Fig. 13).
Eventually, we get

(〈εε̃〉 − 〈ε〉〈ε̃〉) = 1

12
(εa − εb )2 d2

a d2
b

d4
, (A17)

hence

εeff(k) = 〈ε〉 + k2

12
(εa − εb )2 d2

a d2
b

d2
, (A18)

in agreement with the findings of [13]. The effective wave
equations at the orders 1 and 2 (n = 0, 1) involve 〈ε〉; in the
paper they are called HM1, which coincides with EMA and
HM2. At the third order, HM3 involves a high-order correction
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(A18). We shall now see that HM2 (whence HM3) differs from
EMA by the transmission conditions at the boundaries of a
finite extent structure.

2. Homogenization at a boundary, the parameter ε̂

Here, we shall derive the effective transmission conditions
at the dominant nontrivial order, which is the order 2. The fields
in the vicinity of one boundary of the multilayered structure
are written using new expansions which hold in the vicinity of
that boundary only; far from it, they have to coincide with the
expansions sought in (A2). Specifically, we consider

E = e0(x, ξ ) + ηe1(x, ξ ) + · · · ,

C = c0(x, ξ ) + ηc1(x, ξ ) + · · · . (A19)

The matching with the solution (A2) is written using z = ηξ

and reexpanding (hence for large ξ and z → 0); we get the
matching conditions at the dominant order

E0(x, 0±) = lim
ξ→±∞

e0(x, ξ ), C0(x, 0±) = lim
ξ→±∞

c0(x, ξ ),

(A20)

and at the next order

E1(x, 0±) = lim
ξ→±∞

(
e1(x, ξ ) − ξ

∂E0

∂z
(x, 0±)

)
, (A21)

where we used that at this order C0(x) and E1(x) do not depend
on ξ within the layered structure (and obviously not outside).
For the matching on C1, we have to distinguish the two limits
ξ → ±∞, specifically

C1(x, 0−) = lim
ξ→−∞

(
c1(x, ξ ) − ξ

∂C0

∂z
(x, 0−)

)
,

C1(x, 0+, ξ ) = lim
ξ→+∞

(
c1(x, ξ ) − ξ

∂C0

∂z
(x, 0+)

)
. (A22)

Near the boundary, the differential operator reads as

∇ → ∂

∂x
ex + 1

η

∂

∂ξ
ez. (A23)

We plug (A19) into (A1) along with (A23); at the dominant
order, we obtain ∂ξ e

0 = ∂ξ c
0
z = 0, hence e0(x) and c0

z (x) do
not depend on the rapid scale. Next, the chain rule applies for
n = 0, 1, . . .,

cn
x (x, ξ ) = ∂en

∂x
(x, ξ ), cn

z (x, ξ ) = ∂en+1

∂ξ
(x, ξ ), (A24)

and

∂cn+1
z

∂ξ
+ ∂cn

x

∂x
+ k2εen = 0, (A25)

where ε depends on ξ , with ε = εin for ξ < 0 and ε = εa, εb

being periodic for ξ > 0. To begin with, we get immediately
from (A20) that

E0(x, 0±) = e0(x), ⇒ [[E0]] = 0,

C0
z (x, 0±) = c0

z (x), ⇒ [[
C0

z

]] = 0,
(A26)

where [[f ]] = f (x, 0+) − f (x, 0−). We find at this order
the intuitive (and trivial) continuity of the electric field

εa εbεin

ξx 0

dbl

d

εεεbb

db

d

da

d

+∞

FIG. 14. Boundary layer thickness involved in (A31).

and of the tangential component of the magnetic field. We
now move to the next order. From n = 0 in (A24), we
get that ∂ξ e

1 = c0
z (x), hence e1(x, ξ ) = ξc0

z (x) + e1(x, 0) =
ξC0

z (x) + e1(x, 0), and from (A9) and (A26)

e1(x, ξ ) = ξ
∂E0

∂z
(x, 0) + e1(x, 0). (A27)

It is sufficient to use (A21) to get

E1(x, 0±) = e1(x, 0), ⇒ [[E1]] = 0. (A28)

The last step consists in integrating (A25) for n = 0 between
−ξ and ξ , along with c0

x (x) = ∂xe
0(x) = ∂xE

0(x, 0) [from
(A24) and (A26)]. We get that

c1
z (x,+ξ ) − c1

z (x,−ξ ) + I−(ξ ) + I+(ξ ) = 0, (A29)

where we have defined

I−(ξ ) =
∫ 0

−ξ

(
∂C0

x

∂x
(x, 0) + k2εinE

0(x, 0)

)
dχ,

I+(ξ ) =
∫ ξ

0

(
∂C0

x

∂x
(x, 0) + k2ε(χ )E0(x, 0)

)
dχ. (A30)

Obviously, we have I−(ξ ) = −ξ∂zC
0
z (x, 0) since (A1) applies

outside the structure, at each order. Next with E0(x) and C0(x)
inside the structure, and hence divxC0 + k2〈ε〉E0 = 0, from
(A7), we also have

I+(ξ ) = −ξ
∂C0

z

∂z
(x, 0) + k2E0(x, 0)

∫ ξ

0
[ε(χ ) − 〈ε〉]dχ.

Eventually, using the matching conditions (A22) in (A29) in
the limit ξ → +∞, the terms ξ∂zC

0
z (x, 0) (linear in ξ ) cancel

and we get that [[
C1

z

]] = k2ε̂E0(x, 0),

with ε̂ =
∫ ∞

0
[〈ε〉 − ε(χ )]dχ, (A31)

depends on the arrangement of the layer terminating the struc-
ture (Fig. 14). We shall now specify the form of ε̂. Obviously,
the integral in (A31) is bounded since the integral of ε over the
cell equals its mean. Hence we simply have

ε̂ =
∫ dbl/d

0
[〈ε〉 − ε(χ )]dχ, (A32)

where dbl < d is the distance from the boundary of the structure
at z = 0 up to the entrance of the first complete unit cell with
our convention of the unit cell being centered on the layer of
material a. It is easy to see that the expressions given in (5)
using d̂in,out coincide with (A32). Eventually it is worth noting
that the result does not depend on which material is used to
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FIG. 15. Transmission as a function of L/d for kd = 0.5 and
increasing L/d ranges: L/d ∈ (0, 10), (100, 110), and (500,510).
The error in the HM3 model remains smaller than 1.5%.

center the unit cell and that the same result can be derived
using a noncentered elementary cell.

APPENDIX B: RESULTS IN THE INTERMEDIATE
REGIME kd ∼ 1

Most of the results reported in this study concern the running
case kd 
 0.25 for which the HM3 prediction is very accurate.
As already illustrated in the Fig. 5, the error in the model
increases when kd increases and in Fig. 5, with L/d = 200,
it remains reasonable (less than 10%) up to kd ∼ 1. In [4],
it is said that this intermediate regime where kd becomes
close to unity can be of practical interest since it would be
less sensitive to disorder and loss. Here, we illustrate the
difficulty to reach accurately such regime for a large extent of
the structure. To begin with, we have checked for the running
case kd 
 0.25 that the error in the HM3 model does not
exceed 2% up to L/d = 100 000. Next, we report in Fig. 15 the
transmission PT as a function of L/d for three different ranges
L/d ∈ (0, 10), (100, 110), and (500,510) for kd = 0.5, hence
slightly higher than our running case. The accuracy in the HM3

remains very good at about 1% in all cases. Nevertheless, the
error increases significantly for very large extent L/d: 10%
for L/d ∼ 5000 and 30% for L/d ∼ 10 000 (results are not
reported). This is attributable to an increase in the error on the
phase accumulation of the wave as already reported for the
model HM2 in Sec. IV A (see Fig. 7).

Eventually, the error becomes visible even for not too large
structures for kd = 1 (see Fig. 16). At this higher frequency,
the increase in the error with the structure extent L/d follows

HM3exact

PT

0

1

500
L/d

0 10

510

110100

PT

0

1

PT

0

1

FIG. 16. Same representation as in Fig. 15 for kd = 1. The error
in the HM3 model increases for increasing L/d: 3% for L/d ∈ (0, 10),
10% for L/d ∈ (100, 110), and 55% for L/d ∈ (500, 510).

the same tendency as for kd = 0.5 but starting with a higher
error of 3% for L/d ∈ (0, 10), it becomes significant for larger
extent: 10% in (100,110) and 55% in (500, 510).
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FIG. 17. Transmission dictated by the boundary layer effects
(L = 200 nm, εout = εeff, θ = 60◦); the layers have a small variability
in thickness d ∈ (dr/2, 2dr ) with dr = 20 nm. The inset shows the
ε̂out against d/dr .
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L = 2 000 nm
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FIG. 18. Same representation as in Fig. 17 for L = 100dr .

From what we have seen, it is difficult to anticipate up
to which frequency a homogenized model will be accurate
(only the convergence rate against kd can be anticipated). In
the present case, the slow phase accumulation during wave
propagation produces a significant error. Specifically, for the
configuration considered in [4], we found that the error is
reasonable in the intermediate regime kd ∼ 0.5 for structures
whose extent does not exceed about 1000d and kd ∼ 1 for
structures whose extent does not exceed about 100d.

APPENDIX C: INFLUENCE OF THE LAYER THICKNESS

In this Appendix, we provide additional results on the
unexpected scattering properties of multilayered structure and
the accuracy of HM3 to capture it. Here we shall interrogate
the influence of the layer thickness; doing so, we modify
both the boundary layer effects and the effective permittivity
in the bulk.

We first consider a structure of relatively small extent
L = 200 nm, hence N = 20 layers in the reference case
where d = dr = 20 nm, and we introduce a small variability
in the layer thickness with d ∈ (dr/2, 2dr ). Within the same
extent L, we kept a complete layer at the entrance resulting
in a constant value of ε̂in while ε̂out varies with d. The
resulting variations of the power transmission PT are reported
in Fig. 17. For such a small extent, the phase accumulation
during wave propagation is negligible, hence the relatively
large variations are attributable to the boundary layer effects
only (the variations of ε̂out are reported in the inset); this is
confirmed by the ability of HM2 to describe them. It is worth
noting that the constant value predicted by EMA (dotted blue
line) corresponds to the limit of vanishing d.

We now consider a larger structure L = 2000 nm (Fig. 18).
In this case, cooperation between boundary layer effects and
the phase accumulation produces a more complex spectrum,
with rapid variations dictated by d through ε̂out and smooth
variations due to phase accumulation since αL is of the order
unity; for θ = θc, α = k2d/

√
12 reaches π for d/dr ∼ 1.7.

This phase accumulation is not accounted for properly in EMA
and HM2 which fails in predicting the large-scale variations (in
comparison HM3 has an overall accuracy of 0.5%).
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