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Simulating electronically driven structural changes in silicon with
two-temperature molecular dynamics
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Radiation can drive the electrons in a material out of thermal equilibrium with the nuclei, producing
hot, transient electronic states that modify the interatomic potential energy surface. We present a rigorous
formulation of two-temperature molecular dynamics that can accommodate these electronic effects in the form
of electronic-temperature-dependent force fields. Such a force field is presented for silicon, which has been
constructed to reproduce the ab initio-derived thermodynamics of the diamond phase for electronic temperatures
up to 2.5 eV, as well as the structural dynamics observed experimentally under nonequilibrium conditions in
the femtosecond regime. This includes nonthermal melting on a subpicosecond timescale to a liquidlike state
for electronic temperatures above ∼1 eV. The methods presented in this paper lay a rigorous foundation for the
large-scale atomistic modeling of electronically driven structural dynamics with potential applications spanning
the entire domain of radiation damage.
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I. INTRODUCTION

When the electrons in a material are driven slowly relative
to the electron-phonon coupling timescale, the electrons and
nuclei will remain in thermal equilibrium with each other, with
much of the energy supplied to the electrons translating into
atomic motion. On the other hand, when electrons are driven
more rapidly than they can couple with the phonons, the elec-
trons and nuclei may be driven transiently from equilibrium,
producing hot electrons and cool nuclei. Hot electronic states
give rise to modified interatomic potential energy surfaces
which can induce rapid phase transitions. This is referred to
as a nonthermal process because it occurs before the electrons
and nuclei have thermalized with each other.

Nonthermal phase transitions have been observed in mul-
tiple semiconducting and dielectric materials: Si [1–6], Ge
[7,8], GaAs [9], InSb [10], Ge2Sb2Te5 [11], and C [12].
Band gap materials are particularly amenable to nonthermal
processes because their band gaps inhibit electronic relax-
ation. Moreover, their atomic interactions in the ground state
are determined by highly localized valence electrons whose
excitation across the Fermi surface can dramatically alter the
potential energy surface.

Silicon is a widely studied material in the context of
strongly driven phase transitions, both experimentally [1–6]
and theoretically [13–29], where it is found to melt on a
subpicosecond timescale at high excitations. Most theoretical
studies of nonthermal melting in silicon have employed ab
initio simulation methods. However, the cost of these tech-
niques make them unsuitable for studying large length or
timescale processes such as ablation and spallation. It is within
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this domain of large-scale atomistic modeling of radiation
damage that two-temperature molecular dynamics (2T-MD)
has prevailed as the method of choice [30].

The idea of 2T-MD is to decompose the system into two
subsystems: the nuclear coordinates and a continuous scalar
field representing the electronic temperature Te throughout
space. The nuclear coordinates are integrated over time using
Newton’s second law of motion, while the Te field evolves
according to a heat equation. The two subsystems are coupled
with a thermostat that serves to thermalize them, emulating the
nonadiabatic electron-phonon coupling mechanism.

Intrinsic to 2T-MD is the assumption that the electrons are
always thermalized, such that a temperature is always defined.
However, it is unclear how valid this approximation is. Initially,
when an irradiation event takes place, the electrons will consist
of thermalized low-energy electrons and a small number of
high-energy electrons. In metals, the electrons thermalize to
adopt a Fermi-Dirac distribution within ∼10 − 100 fs [31],
but in semiconductors, thermalization can take an order of
magnitude longer [3]. The electrons may, therefore, be out
of quasiequilibrium during the nonthermal melting phase,
in which case it would be dubious to assign an electronic
temperature.

Previous theoretical studies provide limited insight into
the significance of the electronic distribution. Most ab initio
studies of nonthermal melting in silicon have been built on two
assumptions: thermalized electrons and the Born-
Oppenheimer approximation, which excludes nonadiabatic
effects such as electron-phonon coupling, e.g., Refs. [16–22].
These studies do predict bond softening at high excitations
but they predict melting to occur at higher excitations than ex-
pected based on experiment. More recent methods [13,14] have
avoided these two assumptions and, consequently, predicted
melting at lower excitations. However, it is unclear to what ex-

2469-9950/2018/98(2)/024304(11) 024304-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.98.024304&domain=pdf&date_stamp=2018-07-13
https://doi.org/10.1103/PhysRevB.98.024304


DARKINS, MA, MURPHY, AND DUFFY PHYSICAL REVIEW B 98, 024304 (2018)

tent this is attributable to the more realistic electronic distribu-
tions versus the nonadiabatic effects. Despite this uncertainty,
we proceed with the assumption that the electrons instan-
teously thermalize, and find that the resulting model behaves
in good agreement with experiment and ab initio simulation.

To capture the effects of electronic excitations on atomic
interactions, it is necessary for the interatomic potentials to
vary as a function of Te. Deploying Te-dependent force fields
has been attempted for just four materials that we are aware of:
Si [32–34], W [35,36], Au [37], and Mo [38]. However, each
one of these studies has a significant flaw.

First, there is confusion regarding whether the interatomic
potentials should be optimized to reproduce the energy or the
free energy at finite temperatures. In the Si force field, the
potential was fitted to the energy, while the other three were all
fitted to the free energy. The source of confusion is that these
studies have involved optimizing the interatomic potentials
to fit data produced by finite-temperature density-functional
theory (DFT). Finite-temperature DFT ostensibly minimizes
the atomic structure with respect to the free energy, specifi-
cally the grand canonical potential, which might lead one to
assume the free energy should be reproduced. However, to
simplify the force evaluations at the implementation level, DFT
codes evaluate forces in the adiabatic limit. Minimizing the
free energy in the adiabatic limit is equivalent to minimizing
the energy under isothermal conditions [39,40], and so it is the
energy that should be reproduced by the interatomic potential,
not the free energy.

Second, none of these studies deploy the Te-dependent
potentials in a way that conserves energy. Changes in the
temperature give rise to changes in the potential energy, but no
effort has been made to account for where this energy goes to or
comes from. This concern has been raised before [41] without
solution. In this paper, we present the solution for correctly
conserving energy in 2T-MD with Te-dependent potentials.
The solution is deceptively simple: rather than use a heat
capacity precomputed for a particular phase, the heat capacity
must be reevaluated for each nuclear configuration, which
can be done straightforwardly using the interatomic potentials
themselves. However, expressing the heat capacity in terms
of the interatomic potential places an implicit constraint on
the potential which, in general, may not be satisfied for all
configurations. To counter this, we introduce a potential energy
correction to the Hamiltonian that is designed specifically to
maintain a physically realistic heat capacity.

This new energy-conserving scheme is applied to silicon
for which a new Te-dependent potential is introduced. We do
not use the existing Si potential of Shokeen et al. [32–34]
because their potential is parameterized by high-degree poly-
nomials, which leads to rapid oscillations in the energy
and, consequently, negative heat capacities for the crystalline
phases. Futhermore, their potential gives rise to nonthermal
melting at much higher energies than predicted experimentally,
which our own analysis suggests is because their parameter
optimization was underdetermined. In constructing a new
potential, our objective was to accurately reproduce the ther-
modynamics of the diamond phase of silicon for a range
of electronic temperatures, as well as capture the structural
evolution of nonequilibrium silicon insofar as it is determined
experimentally.

II. THEORY

This section presents a rigorous formulation of 2T-MD
with Te-dependent potentials, revealing how the energy of the
system should be conserved. It is shown that some potentials
may not be suitable for the energy-conserving scheme, for
which a general-purpose many-body energy correction is
introduced.

For simplicity, this paper only considers a collection of
identical atoms with a uniform electronic temperature. How-
ever, the methods described may be extended straightforwardly
to multicomponent materials with a spatially inhomogeneous
electronic subsystem in the same way as existing 2T-MD
formalisms.

A. Two-temperature molecular dynamics

In our 2T-MD formalism, the Hamiltonian for the entire
system is assumed to take the form

H =
∑

i

1

2
mv2

i + U ({Ri},Te) + He(Te), (1)

where m is the atomic mass, vi are the atomic velocities,
U ({Ri},Te) is a Te-dependent interatomic potential, {Ri} are
the nuclear degrees of freedom, and He is the Hamiltonian for
the electronic subsystem. We need not specify the functional
form of He but assume its state to be solely determined by the
electronic temperature Te.

By parametrizing the electronic state with just a temper-
ature, we have implicitly deployed the Born-Oppenheimer
approximation and assumed instantaneous thermalization of
the electrons in response to nuclear motion, which gives rise to
an adiabatic potential energy surface. Since electron-phonon
coupling is a perturbative correction to this adiabatic approx-
imation, it does not naturally arise from the Hamiltonian.
Instead, electron-phonon coupling may be incorporated via
the Langevin equation of motion, which treats the nuclei as
experiencing fluctuation forces from the electronic thermal
reservoir,

m
dvi

dt
= − ∂U

∂ Ri

− γ vi + f i , (2)

where γ is a damping parameter and f i is a delta-correlated
stochastic force that satisfies the conditions 〈 f i〉 = 0
and 〈fiα(t)fjβ(t ′)〉 = μδij δαβδ(t − t ′). It follows from the
fluctuation-dissipation theorem [42–44] that when the elec-
trons and nuclei are in thermal equilibrium with each other,
μ = 2γ kBTe, where kB is Boltzmann’s constant. As with
previous work [45,46], we make the assumption that this
relation holds true even out of equilibrium. The damping
parameter γ may then be chosen such that the electronic and
nuclear temperatures converge on a desired timescale after
being driven from equilibrium.

It follows from the Hamiltonian in Eq. (1) that the time-
derivative for the total energy of the system will be

dE

dt
=

∑
i

vi · (−γ vi + f i) +
(

∂U

∂Te

+ dEe

dTe

)
dTe

dt
, (3)

where Ee is the energy of the electronic subsystem, and we
have substituted Eq. (2). The rate at which the energy of the
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system changes will equal the rate at which energy is dumped
into the system by an external heat source Q, and so Eq. (3)
begets the heat equation

Ce

dTe

dt
= −

∑
i

vi · (−γ vi + f i) + Q, (4)

where the first term on the right-hand side is to be interpreted
as the electron-phonon coupling power, and the electronic heat
capacity is

Ce = dEe

dTe

+ ∂U

∂Te

. (5)

The heat source Q only measures the power of the absorbed
energy over time. It is indifferent to the nature of the source,
whether laser or swift heavy ion, and to the mechanism of
absorption. Note that, to model a spatially inhomogeneous
electronic subsystem with thermal conductivity κ , a diffusion
flux ∇ · κ∇Te should be added to Eq. (4).

At this stage, Eqs. (1), (2), (4), and (5) provide a Te-
dependent 2T-MD formalism that conserves energy. Where
it differs from previous applications of 2T-MD, which fail to
conserve energy, is that the heat capacity Ce has an explicit
∂U/∂Te component, making it a function of both Te and the
nuclear configuration {Ri}, rather than a function of Te alone.

As is common practice, we replace the electron-phonon
coupling power in Eq. (4) with its ensemble average, which
can be derived by applying the Furutsu-Novikov theorem to
the term containing the stochastic force [47–49], resulting in〈

−
∑

i

vi · (−γ vi + f i)

〉
= 3γ kBN

m
(Tn − Te), (6)

where Tn is the nuclear temperature and N the number
of atoms. Phillips et al. [50] have cautioned against this
substitution since it introduces energy drift into the system.
However, for the large system sizes used in the present
paper, we found the drift to be indistinguishable from that
produced by the symplectic integrator. Moreover, using the
ensemble average has the advantage that the heat Eq. (4)
may be numerically integrated more efficiently with use of
Suzuki-Trotter decomposition [51].

Some previous efforts [26,27,41,52] to model silicon with a
two-temperature model have been based on the framework of
van Driel [23], which parametrizes the system with the carrier
density, in addition to the usual electronic and nuclear tem-
peratures. The carrier density evolves according to a separate
differential equation that captures carrier generation, diffusion,
and recombination. This approach has the advantage that the
electronic heat capacity may be expressed as a function of
the carrier density, and the optical properties of the material
are more straightforwardly accounted for by using the carrier
density to attenuate the radiation intensity as it passes through
the material. However, as previously noted [30], explicitly
including a term for the carrier density is superfluous since the
carrier density has a one-to-one relationship with the electronic
temperature under (quasi)equilibrium conditions. It follows
that any function of the carrier density may instead be written
as a function of electronic temperature. Moreover, expressing
the electronic heat capacity as a function of the carrier density
fails to give rise to a configuration-dependence, and so such a

model is ill-suited to modeling phase transitions. In any case,
we do not model radiation attenuation in this paper and so do
not require an explicit carrier density.

B. On-the-fly energy correction

One of the challenges with deploying the energy-conserving
formalism described above is that it is necessary for the heat
capacity Ce to always be positive, as one would expect on
purely physical grounds. Even more strictly, the heat capacity
should not be able to become arbitrarily close to zero for
any configuration or electronic temperature. It is therefore
necessary for the heat capacity to have a finite lower bound
ε(Te) that holds for all nuclear configurations. This gives rise
to the following constraint on the potential U :

min
{Ri }

∂U

∂Te

({Ri},Te) � ε(Te) − dEe

dTe

(Te). (7)

In general, a Te-dependent potential will not satisfy this
constraint and so it must be explicitly imposed. Typically, this
will not be possible through careful parametrization alone,
but will instead demand changes to the functional form of
the potential. To illustrate the need for such an intervention,
consider a simple Te-dependent pairwise potential of the form
U = ∑

i<j A(Te)φR(rij ) − B(Te)φA(rij ), where φR (φA) are
repulsive (attractive) functions of the atomic separations rij .
The Te-dependence of A and B might reasonably exhibit, for
some Te, the property dA/dTe = 0 and dB/dTe > 0. In this
case, given an arbitrary number of atoms packed arbitrarily
densely, one could make the per-atom value of ∂U/∂Te

arbitrarily negative, and thus no minimum for ∂U/∂Te would
even exist. But this is not just a hypothetical problem that arises
for extreme configurations. Rather, the derivative ∂U/∂Te may
become too negative for entirely plausible configurations, as
will be shown to be the case for the silicon potential introduced
later in this paper.

To understand why this problem should arise at all, note that
interatomic potential functional forms, and their parametriza-
tions, are generally constructed to reproduce the potential
energy surface of materials near to crystalline phases. It is not
surprising then that they should behave unphysically for, say,
certain highly-dense amorphous configurations with highly
excited electrons.

In the absence of more accurate many-body potentials, we
resolve the issue by introducing a general many-body energy
correction W ({Ri},Te) that is added to the Hamiltonian of
Eq. (1). The correction is general in the sense that it is evaluated
numerically on-the-fly at each integration time-step and works
for any potential U . The correction takes the form

W ({Ri},Te) =
∫ Te

0
w(Ce({Ri},T ′

e ),ε(T ′
e )) dT ′

e , (8)

where w is specifically constructed to satisfy

Ce + w(Ce,ε) � ε. (9)

This correction leads to the heat capacity Ce in the heat
Eq. (4) being replaced with Ce + w, which is now guaranteed
to be not less than ε, per Eq. (9). It also gives rise to auxiliary
atomic forces which depend on the forces from the interatomic
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potential U ,

− ∂W

∂ Rk

= − ∂w

∂Ce

∂U

∂ Rk

+
∫ Te

0

∂2w

∂T ′
e ∂Ce

∂U

∂ Rk

dT ′
e . (10)

The derivation is provided in Appendix A, where it has been
assumed that ∂U/∂Te(Te = 0) ≡ 0.

The precise functional form of w is of little significance,
but it should be twice-differentiable and satisfy

w(Ce � 0,ε) = ε − Ce, (11)

w(Ce � f ε,ε) = 0, (12)

−1 � ∂w

∂Ce

(0 < Ce < f ε,ε) � 0, (13)

for some constant f in the interval

1 < f � min
Te

1

ε(Te)

dEe

dTe

(Te). (14)

The value of f determines how hard or soft the energy
correction is as Ce approaches the lower bound. In the limit
f → 1+, the corrective energy becomes hard, giving rise to
infinitely large forces. It is bounded from above to ensure that
W = 0 for the isolated system. A suitable expression for w is
provided in Appendix A which has an f value of 2.

The action of the auxiliary forces in Eq. (10) may be
understood as follows. For a given configuration, if Te changes
such that Ce becomes too close to ε, or even smaller than
ε, then the forces −∂U (Te)/∂ Rk are smoothly switched off
and replaced with an average of forces that would act at
lower electronic temperatures in regions where Ce is above
ε. Essentially, the energy landscape is perturbed towards its
form at lower electronic temperatures where the potential is
better behaved.

To summarize, any Te-dependent potential U may be safely
deployed in an energy-conserving 2T-MD scheme without
further modification, so long as the energy correction W

described above is incorporated. And while it is true that
this correction is ad hoc with the purpose of producing more
physically realistic heat capacities, its use can be further
justified with a few observations: First, the heat capacity will
only become too small if the potential energy U decreases too
rapidly. The correction therefore gives rise to more physically
realistic potential energies U + W than produced by U

alone. Second, the correction will typically only be activated
under highly nonequilibrium conditions for which the true
structure and dynamics are seldom known. Third, interatomic
potentials are themselves approximations, and so introducing
an approximate correction is not antithetical to the molecular
mechanics enterprise. Finally, the alternative approaches to
satisfying Eq. (7) appear to be highly nontrivial, although
future research may reveal better solutions.

It is worth lingering briefly on the implementation details for
this energy correction since it effectively requires that, at each
integration time-step, the energy U and all of the atomic forces
−∂U/∂ Rk are known at all electronic temperatures ranging
from 0 K up to the prevailing temperature Te. At first glance,
one might expect this to incur a tremendous computational
burden, but there exist optimizations; in particular, the energy

and atomic forces do need to be evaluated over a discrete
set of electronic temperatures, but this can be done with
little additional cost if evaluated concurrently such that the
Te-independent parts of the force field are not reevaluated
for each temperature. The energies and forces may then be
obtained over a continuous temperature range through cubic
spline interpolation. In our particular code implementation, a
small energy drift still exists due to numerical errors, but was
found to be on the order of 0.1% of the energy dumped into
the system by the external heat source.

III. Te-DEPENDENT SILICON FORCE FIELD

In this section, a new Te-dependent force field for silicon is
presented. It is described in enough detail to be understood, but
the complete functional form and parametrization is provided
in Appendix B.

The MOD [53] version of the Tersoff potential [54] for
silicon is well-established and known [55,56] to reasonably
reproduce the experimental cohesive energy, crystalline and
liquid heat capacities, elasticity properties, latent heat of
melting, and melting temperature of the diamond phase, as
well as ab initio defect energies. Its functional form is

U = 1

2

∑
i 	=j

fc(rij )(Ae−λ1rij − bijBe−λ2rij ), (15)

where rij is the ij atomic distance and fc is a cutoff function
which smoothly switches off interactions between the cutoff
radii R1 and R2. There is also a bond order bij which makes U

a many-body potential and takes the form

bij = (
1 + ζ

η

ij

)−δ
, (16)

ζij =
∑
k 	=i,j

fc(rik)g(θijk)eα(rij −rik )β , (17)

where θijk is the angle between the ij and ik bonds, and
the angle-dependence g(θijk) serves to emulate directional
bonding. All other terms are parameters.

In this paper, the same functional form for the ground
state (Te = 0) is adopted. To introduce a Te-dependence into
the potential, the parameters A and B are assumed to vary
with Te and will thus need to be optimized over a range
of different electronic temperatures, while all of the other
parameters are held constant. However, while scaling A and
B will reproduce the energy in the crystal phase, it alone will
not reduce the activation barriers between the diamond and
amorphous phases, and so a further modification is required to
induce nonthermal melting.

Observe that the electronic structure in the ground state of
the diamond silicon phase consists of sp3 hybridized orbitals
which are responsible for the tetrahedral bond geometry. When
the electrons become excited, this bond directionality will
diminish, thus destabilizing the crystal structure and inducing
the phase transition. To incorporate the softening of the bond
directions into the potential, the bond-angle dependence g(θ )
in Eq. (17) is substituted with the function

g(θijk) ← g(θijk) − �(g(θijk) − g0,λ(Te)), (18)
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FIG. 1. (a) The dependence of the A and B force field parameters
on electronic temperature Te. (b) The interatomic potential U for
a range of atomic volumes in the diamond phase, and for Te = 0,
1.5, and 2 eV. The lines are the 2T-MD interatomic potential while
the circles are the ab initio calculations. (c) The evolution of the
nuclear temperature Tn in response to a low-fluence excitation at
t = 0. The line is the 2T-MD calculation, the circles are experimental
data points [1]. (d) The modified angle-dependence for λ = 0,0.2,0.4,
corresponding to a weakening of bond directionality. The inset shows
the dependence of λ on electronic temperature.

where g0 = g(cos−1(−1/3)) is the value of g for tetrahe-
dral geometry, and the � function is constructed such that
�(|�g| � λ,λ) = sgn(�g)λ and�(|�g| � λ,λ) = �g, with
a smooth variation between these two bounds.

The purpose of this modification is to shift g(θ ) closer to
the constant g0 by an amount no greater than λ(Te), and to do
so in a differentiable manner. To clarify, Fig. 1(d) shows a plot
of g(θ ) − �(g(θ ) − g0,λ) for λ = 0 (in which case � = 0),
0.2, and 0.4. The consequence is that, as λ increases from 0
to its finite value at higher electronic temperatures, the angle
dependence within the potential flattens out in the region where
g(θ ) = g0. This amounts to a softening of the directionality of
the bonding, which helps to destabilize the diamond structure
and induce rapid nonthermal melting.

Parameter fitting

Following Shokeen et al. [33], the ground state parameters
are chosen to match those of the MOD potential, except the
cutoff radii are increased to R1 = 3.1 and R2 = 3.4 Å and the
α parameter is adjusted to a value of 1.9 to improve the melting
temperature.

As described in the previous section, the Te-dependent
parameters in our potential are A(Te), B(Te), and λ(Te). In
addition to these, the Langevin damping constant γ and the
lower bound on the heat capacity ε(Te) are also required. In
the diamond phase, where the bonds exhibit perfect tetrahedral
geometry, λ is designed to have no effect on the potential.
The parameters A and B may therefore be optimized for the
diamond phase independently of λ.

To this end, ab initio methods were used to compute the
potential Uab for the diamond phase over the range 0 � Te �
2.5 eV in increments of 0.05 eV. This involved two steps.
First, for each Te, the energy Eab({Ri},Te) was computed for

atomic volumes ranging from 12 to 43 Å
3
. And second, for

the same temperature range, the energy of the isolated system,
E0

ab(Te), where the atoms are effectively separated to infinity,
was computed. The ab initio potential may then be computed as
Uab({Ri},Te) = Eab({Ri},Te) − E0

ab(Te), while the energy of
the electronic subsystem is Ee(Te) = E0

ab(Te) − E0
ab(0). This

necessarily fulfils the requirement that when the system is
isolated at Te = 0, both Uab and Ee will equal zero.

Recall that the potential U has already been chosen for the
ground state. It would be unlikely for this U to perfectly align
with the ab initio potential Uab at Te = 0. The parameters A

and B are therefore instead fitted such that U ({Ri},Te) repro-
duces Uab({Ri},Te) + U ({Ri},0) − Uab({Ri},0). This way, our
ground state potential is preserved while the Te-dependence
obtained from the ab initio calculations is reproduced.

The ab initio calculations were performed using the Vienna
Ab initio Simulation Package (VASP) [57–60]. The diamond
crystal was represented with two atoms per unit cell, with four
valence electrons per atom. The plane wave cutoff energy was
400 eV with 21 × 21 × 21 k-points used for the crystal phase.
The isolated system was modelled with a single atom in a
9 × 9 × 9 Å box and only the �-point sampled. An electronic
temperature is introduced by treating the electronic states as
distributed according to the Fermi-Dirac distribution [61]. We
used the M06-L [62] exchange-correlation functional, which
produces a band gap of 1.12 eV [63] in good agreement with
the experimental band gap of 1.11 eV [64]. By contrast, the
GGA-PBE [65] functional produces a band gap of 0.75 eV,
while the hybrid functional is an order of magnitude slower to
execute than M06-L.

The resulting Te-dependence of A and B is shown in
Fig. 1(a). At low Te, both parameters are constant, with a
steady increase in B as the temperature increases, followed
by a rapid increase in both A and B at high temperatures.
The result is a potential energy surface that deepens with
increasing electronic temperature, with a minor reduction
in the equilibrium atomic volume, as shown in Fig. 1(b).
The deepening of the potential is presumably a result of the
electrons becoming less localized, leading to the positively
charged nuclei being exposed to a greater negative charge.

Before optimizing the λ function, it is necessary to obtain
the Langevin damping parameter γ , which characterizes the
electron-phonon coupling rate. For this, we turn to the exper-
imental data of Harb et al. [1,2] who measured the structural
response of silicon nanofilms to ultrafast photoexcitations. The
relevant details of their experiment along with our approach to
modeling it can be found in Appendix C. In one particular
experiment, the nuclear temperature was recorded with fem-
tosecond resolution following a laser irradiation event with an
absorbed fluence of � = 5.6 mJ/cm2. This fluence is below
the damage threshold and excites the lattice thermally, and
so the parameter λ may be fixed to zero at this stage. The
damping parameter γ could then be optimized such that the
nuclear temperature evolves over the same timescale as seen
experimentally. Excellent agreement was achieved with a value
of γ = 1 g/mol/ps, as shown in Fig. 1(c).
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The next parameter to optimize is the function λ(Te), which
is responsible for inducing rapid nonthermal melting. There
is currently not enough information available to optimize
λ for each individual temperature. Instead, it is constructed
somewhat arbitrarily to satisfy certain constraints. In the
ground state λ is necessarily 0, but to establish its value in
excited states we return to the experimental data of Harb
et al. (cf. Appendix C). Experimentally, a damage threshold
was observed at an absorbed fluence of � = 6 mJ/cm2, below
which the Bragg peaks decay in accordance with the Debye-
Waller factor. One might therefore predict that the shape of the
potential begins to change around the damage threshold. Based
on the value of γ previously obtained, the damage threshold
in our model was found to correspond to a peak electronic
temperature of 0.45 eV. It is at this temperature, therefore, that
λ will begin to increase from 0. Another data point is that, above
an absorbed fluence of approximately � = 30 mJ/cm2, the
crystal melts nonthermally in under a picosecond. In our model,
it is found that λ � 0.2 is sufficient to induce rapid melting,
and that the reported fluence corresponds to a peak electronic
temperature of 1 eV. In summary, the parameter λ should
satisfy λ(Te � 0.45 eV) = 0 and pass through λ(1 eV) = 0.2.
With use of a polynomial, a smooth curve satisfying these
conditions was constructed, and it can be seen in the inset of
Fig. 1(d).

The final function to be optimized is ε(Te), which imposes
a lower bound on the electronic heat capacities. Based on the
shape of the w function that we employed, ε must satisfy the
constraint ε(Te) � 1

2
dEe

dTe
(Te), per Eq. (14). It should also be

small enough that Ce � 2ε [and thus W = 0 per Eq. (12)] for
the diamond crystal structures for which U was optimized,
since U was tacitly optimized under the assumption that
W = 0. To satisfy these constraints and estimate a lower bound
on the heat capacity, the minimum value for Ce was computed
for each temperature from the ab initio data ∂Eab/∂Te over the
range of atomic volumes sampled, and the results were halved.
It was found that ε(Te) = 1

7
dEe

dTe
(Te) provided a reasonable

estimate while satisfying the constraints specified.

IV. DISCUSSION

Having presented a new Te-dependent force field for silicon
(Sec. III), and a formalism for conserving energy (Sec. II),
this section answers the following questions: How does the
predicted structural evolution of irradiated silicon compare
to experiment? How does the system evolve during a phase
transition? How is energy conserved and how do the results
compare to analogous simulations that fail to conserve energy?
And what effect does the on-the-fly energy correction have on
the dynamics of the system?

The structural evolution of silicon in response to electronic
excitation displays two distinct domains: thermal agitation
at low excitations and rapid melting at high excitations that
sufficiently modify the potential energy surface. In the ex-
periments of Harb et al. (cf. Appendix C) the Bragg peak
response was measured for silicon nanofilms irradiated with
an ultrafast laser pulse across both the low and high fluence
domains. Figure 2(a) shows the evolution of several normalized
Bragg peaks for a low absorbed fluence of � = 5.6 mJ/cm2,
as predicted by our model (lines) along with the corresponding

FIG. 2. (a) Several normalized Bragg peaks decaying in response
to a low-fluence laser pulse at t = 0. The lines are predicted from
2T-MD while the circles are experimental measurements [1]. From
top to bottom, the peaks are: (111), (220), (311), (331), (531), (620).
(b) The normalized response of the (220) Bragg peak to a high-fluence
laser pulse that nonthermally melts the crystal. The ab initio data
(dashed line) was taken from [13] and the experimental data (circles)
from Ref. [2].

experimental measurements (circles). There is generally very
good agreement.

The experiments also determined that above a fluence of
approximately 30 mJ/cm2, the crystal structure melts rapidly.
Our force field was constructed specifically to satisfy this
condition, and the evolution of the (220) peak at a fluence
of 65 mJ/cm2 is shown (solid line) in Fig. 2(b) along with the
experimental measurements (circle). Also shown is the (220)
peak decay computed with real-time time-dependent DFT by
Lian et al. [13] for the same level of excitation. The peak
rapidly decays within a picosecond in all cases, although the
simulations both predict a quicker collapse of the structure
than the experimental data would imply. However, in the
experiment, the optical pump and the probe have overlapping
distributions such that the probe is really measuring the average
decay over a range of fluences, with the reported fluence
being the average. This could explain the observed discrepancy
between experiment and simulation, and would be supported
by earlier experiments that found the crystal structure to melt
within only 150 fs [5].

To see how the system evolves over time for a broad range of
fluences, simulations of the ultrafast irradiation of nanofilms
(as described in Appendix C) were performed for absorbed
fluences 0 � � � 60 mJ/cm2 and over a time interval −1 �
t � 10 ps, where the excitation event occurs at t = 0. The
degree of order in the atomic structure over this (�,t)-space
can be quantified with the centrosymmetry order parameter
[26] as shown in Fig. 3(a). When modeling phase transitions
with a femtosecond temporal resolution, it is not practical
to define a hard threshold that demarcates the crystalline
phase from the melt. Nevertheless, a qualitative change in
the order parameter can be seen to occur in the vicinity of
∼30 mJ/cm2, indicative of a phase transition, as expected.
Further information about the melting process can be gleaned
from the root-mean-square deviation (RMSD) of the atomic
positions over time, shown in Fig. 4. For the fluences that do not
give rise to nonthermal melting (� < 30 mJ/cm2), the RMSD
is confined to approximately 0.35 Å of deviation, which is the
same bound estimated from nonadiabatic ab initio simulation
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FIG. 3. The evolution of the centrosymmetry order parameter
in response to an ultrafast laser pulse at t = 0 for a range of
absorbed fluences for simulations that (a) conserve energy and (b)
do not conserve energy. A larger value corresponds to more order
(centrosymmetry), but note the inverted axis.

[13]. The nonlinearity of the RMSD in the initial ∼150 fs after
the excitation indicates that a small activation barrier to melting
remains, in general agreement with Refs. [2,13]. The steady
and rapid rise of the RMSD after the structure has melted is
indicative of a liquidlike phase rather than an amorphous solid,
as previously established to be true [2,13,14].

Having deployed an energy-conserving 2T-MD scheme,
it is insightful to see how the individual components of the
Hamiltonian evolve in response to an electronic excitation.
Figure 5 shows this for (a) the electronic energy Ee, (b) the
nuclear kinetic energy, (c) the interatomic potential energy U ,
and (d) the on-the-fly correction W . Also shown is (e) the
electronic temperature Te and (f) the nuclear temperature Tn.
The initial excitation produces a jump in the electronic energy
Ee and temperature Te, as well as a drop in the potential energy
U due to its Te-dependence. This excitation is attenuated by
the electron-phonon coupling which leads to an increase in the
nuclear kinetic energy. As previously described, for the fluence
range � � 30 mJ/cm2, the change in the potential energy
surface leads to the formation of a disordered liquidlike phase.
This disordering of the configuration results in a significant
decline in the heat capacity Ce, as evidenced by the more rapid

FIG. 4. The root-mean-square deviation of the atomic positions
in response to a laser pulse at t = 0 with the absorbed fluence labeled.

decline in Ee than Te. This means that, while the electronic
temperature remains high, the energy content stored in the
electrons has greatly diminished due to the disordering of the
atomic structure. The electronic energy is therefore depleted
much more rapidly by its exchange with the phonons, leading to
a rapid drop in Te at high fluences and an equilibration with the
nuclei within several picoseconds. Note that an initial increase
of the fluence across the ∼30 mJ/cm2 threshold causes a
decrease in the nuclear temperature by up to 400 K. This
nonmonotonicity of Tn with respect to � is a result of the
structure melting to form a higher-energy configuration, which
necessarily leads to a decline in the nuclear velocities. The
energy component W will be discussed further below.

It is interesting to compare the evolution of the electronic
and nuclear temperatures in our model to those produced using
the same method as previous papers which fail to conserve
energy. This nonconserving approach involves precomputing
the heat capacity Ce(Te) for a zero-temperature crystal phase, in
our case the diamond phase, and also neglects theW correction.
The resulting temperature evolution is shown in Figs. 5(g)
and 5(h) and should be compared with the respective plots in
Figs. 5(e) and 5(f) for which the energy is correctly conserved.
Since the heat capacity is not a function of the configuration
in the nonconserving approach, it is unperturbed by the phase
transition, displaying a steady increase in Te with increasing
fluence, and a correspondingly large increase in the nuclear
temperature. Even after 10 ps the two subsystems have yet
to equilibrate, and yet the nuclear temperature has reached
twice its value in the conserved system. Taking care to correctly
conserve the energy, therefore, has significant consequence for
the evolution of the system.

In Sec. II B, a many-body energy correction W was intro-
duced to the Hamiltonian to compensate for the fact that certain
configurations produce, at certain electronic temperatures, heat
capacities Ce that are unphysically small or even negative.
This correction is indeed activated for our potential, as shown
in Fig. 5(d). Specifically, it is activated when the structure is
highly disordered and the electronic temperature sufficiently
elevated. The magnitude of W is visibly small, on the order of
one-tenth of the energy dumped into the system by the laser,
but it nevertheless has some observable dynamical effects.
Figure 3 shows the evolution of the centrosymmetry order
parameter for (a) when energy is conserved and the on-the-fly
energy correction enabled, and (b) when the energy is not
conserved and the correction disabled. In the latter case,
the order parameter initially spikes as the large Te flattens
the potential energy surface, permitting the exploration of
highly non-centrosymmetric configurations. As the electronic
temperature begins to drop, the atomic forces are partially
restored, driving the configuration back towards increased
centrosymmetry. Thereafter, the nuclei heat up through
electron-phonon coupling, providing enough energy for the
structure to access regions of greater disorder (less cen-
trosymmetry). This initial spike is not seen when the on-
the-fly correction is enabled, because W increases the energy
cost of such highly disordered (highly non-centrosymmetric)
structures, making them inaccessible at the prevailing nuclear
temperatures.

The activation of W for these highly non-centrosymmetric
structures indicates that the potential energy U declines too
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FIG. 5. (a)–(d) The time evolution of the four Hamiltonian components in response to an ultrafast laser pulse at t = 0 for a range of absorbed
fluences �, as well as the (e) electronic temperature and (f) nuclear temperature. (g) and (h) are the same as (e) and (f), respectively, but for
simulations that do not conserve energy.

rapidly with respect to Te for those particular structures.
The fact that the functional form and parametrization of our
interatomic potential should exhibit an unphysical drop in U

for these particular structures is not obvious a priori, and
demonstrates the expediency of an on-the-fly correction.

V. CONCLUSIONS

When radiation is delivered on a femtosecond timescale,
it can drive the electrons and nuclei out of equilibrium,

TABLE I. The force field parameters employed in this work, taken
from Refs. [33,53]. The parameters A, B, and λ are provided as Te-
dependent tabulations in the Supplemental Material [66].

Parameter Value

λ1 (Å
−1

) 3.2300135

λ2 (Å
−1

) 1.3457970
η 1
δ 0.53298909
α 1.9
β 1
c1 0.20173476
c2 730418.72
c3 1000000
c4 1
c5 26
h −0.365
R1 (Å) 3.1
R2 (Å) 3.4

producing hot electrons and cool nuclei. The hot electrons
modify the potential energy surface and can induce rapid
phase transitions. Such electronic effects can be incorporated
into two-temperature molecular simulation with the use of
electronic-temperature-dependent force fields. However, pre-
vious attempts to deploy such force fields have failed to
conserve energy.

In this paper, a rigorous formulation for 2T-MD with
electronic-temperature-dependent force fields has been pre-
sented, revealing that the interatomic potential energy forms a
component of the electronic heat capacity, and that evaluating
the heat capacity as a function of the atomic configuration leads
to conserved energy. It transpires, however, that an energy-
conserving scheme imposes a constraint on the interatomic
potential which, in general, may not be satisfied. To resolve
this, we advocate for the use of an on-the-fly correction to the
Hamiltonian that introduces an energy penalty where necessary
so as to retain a physical electronic heat capacity.

Within this energy-conserving framework, a new semiem-
pirical force field has been derived for silicon. The force field
was optimized to reproduce ab initio data in the diamond phase,
and to melt to form a liquidlike phase at the same excitation
observed experimentally. The melting is induced by relaxing
the directionality of the bonding, allowing the centrosymmetry
of the structure to collapse.

The new force field will enable the accurate simula-
tion of nonthermal processes in strongly driven silicon
systems on large length and timescales. More generally,
the new formalism developed in this paper lays a foun-
dation for the study of ultrafast dynamics in response
to extreme irradiation conditions over large length and
timescales.
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APPENDIX A: ON-THE-FLY ENERGY CORRECTION: FUNCTIONAL FORM AND FORCE DERIVATION

In this paper, the Hamiltonian contains a many-body energy correction W , which is expressed in terms of its Te-derivative w.
As described in Sec. II B, the precise functional form of w is of little significance, but it must be twice-differentiable and satisfy
the conditions set out in Eqs. (11)–(13). In this paper, we employ the following function:

w(Ce,ε > 0) =

⎧⎪⎨
⎪⎩

ε − Ce Ce � 0

ε − 9
8

ε
π

sin
(

π
2

Ce

ε

) + 1
8

ε
3π

sin
(

3π
2

Ce

ε

) − 1
2Ce 0 < Ce < 2ε

0 Ce � 2ε

, (A1)

which has a corresponding f value of 2.
The auxiliary forces that arise from the energy correction W are given in Eq. (10). Here we provide a derivation that follows

on from Eq. (8):

− ∂W

∂ Rk

({Ri},Te) = −
∫ Te

0

∂w

∂ Rk

(Ce({Ri},T ′
e ),ε(T ′

e )) dT ′
e (A2)

= −
∫ Te

0

∂w

∂Ce

(Ce({Ri},T ′
e ),ε(T ′

e ))
∂2U

∂ Rk∂T ′
e

({Ri},T ′
e ) dT ′

e (A3)

= − ∂w

∂Ce

(Ce({Ri},Te),ε(Te))
∂U

∂ Rk

({Ri},Te) + ∂w

∂Ce

(Ce({Ri},0),ε(0))
∂U

∂ Rk

({Ri},0)

+
∫ Te

0

∂2w

∂T ′
e ∂Ce

(Ce({Ri},T ′
e ),ε(T ′

e ))
∂U

∂ Rk

({Ri},T ′
e ) dT ′

e , (A4)

where partial integration has been applied to Eq. (A3) to obtain Eq. (A4). If we assume ∂U/∂Te(Te = 0) ≡ 0, then Ce({Ri},0) =
dEe/dTe(0), which is greater than or equal to f ε(0) per Eq. (14). It then follows from Eq. (12) and the differentiability of w that
∂w/∂Ce(Te = 0) ≡ 0 and thus the second term in Eq. (A4) is zero, giving rise to the expression for the auxiliary forces given in
Eq. (10).

APPENDIX B: Te-DEPENDENT SILICON FORCE FIELD IN FULL

Here we assemble the Te-dependent silicon force field presented in this paper, including all of the functions and parameters,
except for the functions A(Te), B(Te), and λ(Te), which are provided as tabulations in the Supplemental Material [66].

The equations that collectively define the Te-dependent interatomic potential U are as follows:

U ({Ri},Te) = 1

2

∑
i 	=j

fc(rij )(A(Te)e−λ1rij − bij ({Ri},Te)B(Te)e−λ2rij ), (B1)

bij ({Ri},Te) = (1 + ζij ({Ri},Te)η)−δ, (B2)

ζij ({Ri},Te) =
∑
k 	=i,j

fc(rik)[g(θijk) − �(g(θijk) − g0,λ(Te))]eα(rij −rik )β , (B3)

g0 = g(cos−1(−1/3)), (B4)

g(θ ) = c1 + c2(h − cos θ )2

c3 + (h − cos θ )2

(
1 + c4e

−c5(h−cos θ)2)
, (B5)
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�(x,y � 0) = sgn(x)

⎧⎪⎪⎨
⎪⎪⎩

|x| |x| � y/
√

2√
y2 − (y

√
2 − |x|)2 y/

√
2 < |x| < y

√
2

y |x| � y
√

2

, (B6)

fc(r) =

⎧⎪⎨
⎪⎩

1 r � R1

1
2 + 9

16 cos
(
π r−R1

R2−R1

)
− 1

16 cos
(

3π r−R1
R2−R1

)
R1 < r < R2

0 r � R2

. (B7)

A general description of this force field can be found in Sec. III. The value of each parameter is provided in Table I, where the
values were taken from Ref. [53] except for R1, R2, and α, which were taken from Ref. [33].

Also required to apply our 2T-MD model is the Langevin damping parameter γ = 1 g/mol/ps, which determines the electron-
phonon coupling rate; a lower bound on the electronic heat capacity, for which we use ε(Te) = 1

7
dEe

dTe
(Te); and the following

function for the electronic energy Ee(Te) was obtained by fitting to the ab initio data:

Ee(Te) = (10−3)Te + (1.05125)T 2
e + (0.0770416)T 4

e , (B8)

where Te is assumed to be in units of eV, and Ee has units of eV/atom.

APPENDIX C: SIMULATION OF LASER-IRRADIATED NANOFILMS

The simulations in this paper are intended to reproduce the system studied experimentally by Harb et al. [1,2], which involved
50-nm-thick Si nanofilms irradiated with a single ultrafast optical pulse. The pulse had a spot size of 230 μm and a temporal full
width at half maximum (FWHM) of 150 fs.

We model this setup using 2T-MD, the theoretical details of which are presented in Sec. II. Our simulation cell consists of a
50 × 50 × 92 silicon lattice composed of 1,840,000 atoms, with a lattice parameter of 5.431 Å. The cell is periodic only in the
xy plane so as to represent a 50-nm-thick nanofilm that extends infinitely laterally. The nuclei and electrons are equilibrated at
300 K, after which the configuration is integrated in the microcanonical ensemble.

The laser pulse is delivered with a Gaussian temporal profile and is assumed to excite the crystal uniformly. This is justified by
the following observations: The experimental probe observes a smaller spot size than the pulse, and on the picosecond timescale,
there will be negligible lateral thermal diffusion over the ∼102 μm length scale. Regarding the deposition as a function of depth,
previous modeling [26] of silicon nanofilm irradiation that accounts for the temperature-dependence of the optical properties
indicates a near-uniform excitation within the first 50 nm. In our model, the energy is delivered to the electrons via the heat source
Q in the electronic heat Eq. (4),

Q(t) = �

tph

√
4 log 2

π
exp

( − 4 log 2(t − t0)2/t2
p

)
, (C1)

where � is the absorbed fluence, h is the thickness of the nanofilm, t0 is the time at which the pulse is at a maximum, and tp is
the FWHM.

The method, including the Te-dependent force field, has been implemented into an in-house LAMMPS [67] package, which
is available upon request.
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