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We study a Yang-Baxter integrable quantum spin-1/2 chain with random interactions. The Hamiltonian is
local and involves two- and three-spin interactions with random parameters. We show that the energy eigenstates
of the model are never localized and in fact exhibit perfect energy and spin transport at both zero and infinite
temperatures. By considering the vicinity of a free fermion point in the model we demonstrate that this behavior
persists under deformations that break Yang-Baxter integrability but preserve the free fermion nature of the
Hamiltonian. In this case the ballistic behavior can be understood as arising from the correlated nature of the
disorder in the model. We conjecture that the model belongs to a broad class of models avoiding localization
in 1D.
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I. INTRODUCTION

After the fundamental paper by Anderson [1] it was believed
for a long time that in one-dimensional random potentials
all eigenstates are localized in the thermodynamic limit for
arbitrarily weak disorder [2–4]. If Azbel resonances [5,6],
which form a set of measure zero, are neglected, the above
statement is rigorously speaking valid only for white-noise
spatially uncorrelated randomness [7]. Later it was realized that
the spatial correlations of the disorder potential can profoundly
influence Anderson localization [8–10]. In this case localiza-
tion can be partially suppressed, at least for weak disorder [11].
In this context a delocalization-localization transition in 1D for
long-range correlated disorder potentials has been intensively
discussed in the literature [12–17]. On the other hand, it was
found that models with specific short-range correlated disorder,
so-called dimer models, exhibit conducting states [18–21]. In
recent years considerable efforts have been made to understand
the combined effects of disorder and interactions, which leads
to the phenomenon of many-body localization (MBL) [22–29];
see Refs. [31–35] for recent reviews. The MBL transition
generally occurs at finite energy densities and is characterized
by ergodicity breaking, the existence of an extensive number of
quasilocal integrals of motion in the localized phase [28–30],
and Poissonian level statistics. This is reminiscent of Yang-
Baxter integrable many-body systems [36,37], which also
feature Poissonian level statistics and extensive numbers of
conservation laws. In Yang-Baxter integrable systems the con-
served charges are extensive but have (quasi)local densities. An
interesting question is then whether there are any connections
between Yang-Baxter integrability and MBL. An example of
a Yang-Baxter integrable model that is localized is provided
by disordered Richardson models [38]. However, this class of
models is infinite-ranged whereas studies of MBL have focused
on models like the spin-1/2 Heisenberg chain with a random
white-noise correlated magnetic field. Other forms of disorder
such as random exchange interactions [39,40] have been
explored as well [41–43], and there appears to be a widespread

belief that MBL behavior is a rather generic phenomenon in the
strong-disorder regime. Non-MBL behavior has been found in
a disordered Hubbard chain [44], but this could be related to
the presence of non-Abelian symmetries [43,45]. Another little
explored issue is what effects correlations in the disorder have
on MBL [46–48].

In this work we study a Yang-Baxter integrable model of
a Heisenberg-like spin chain with tuneable randomness and
Abelian symmetry. We employ a number of standard tools
used to probe for (many-body) localized behavior: inverse
participation ratios, local quantum quench dynamics, and
transport properties in energy eigenstates. All methods point to
the same conclusion: the model does not exhibit any traces of
localization irrespective of the magnitudes of the interactions
and disorder. On the contrary, we find that the model is an ideal
conductor for both spin and energy. Moreover, we show in a
noninteracting limit that by deforming the model by tuning
the correlations between the random interaction parameters
(the resulting model is no longer Yang-Baxter integrable) it is
possible to induce localization. This suggests that the model
we study here is a particular example of a broader class of
strongly disordered models in one dimensions that do not
exhibit MBL.

II. THE MODEL

The Hamiltonian of our integrable chain contains nearest-
neighbor, next-nearest-neighbor, and three-spin interactions
with random couplings, cf. Fig. 1, and can be expressed in
the form

H =
L/2∑
j=1

J
(1)
2j

(
[�σ2j−1 · �σ2j ]�2j

+ [�σ2j · �σ2j+1]�2j

)
+K2j

(
[�σ2j · (�σ2j−1 × �σ2j+1)]�−1

2j
+ �−1

2j

)
+ J

(2)
2j (�σ2j−1 · �σ2j+1 − 1), (1)
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FIG. 1. Schematic representation of the disordered interacting
spin chain studied here. Three types of position-dependent inter-
actions with random parameters are present: a nearest-neighbor
exchange J

(1)
2j , a next-nearest-neighbor coupling J

(2)
2j , and a three-spin

interaction K2j . Explicit expressions for the various terms in the
Hamiltonian are given in the text. The ratios J

(1)
2j /J

(2)
2j and J

(1)
2j /K2j

are correlated.

where [�σj · �σk]� = σx
j σ x

k +σ
y

j σ
y

k +�(σ z
j σ z

k −1). The exchange
couplings are parametrized as

J
(1)
2j = sin2 η cosh ξ2j

sin2 η + sinh2 ξ2j

, J
(2)
2j = cos η sinh2 ξ2j

sin2 η + sinh2 ξ2j

,

K2j = sin η cos η sinh ξ2j

sin2 η + sinh2 ξ2j

, �2j = cos η

cosh ξ2j

, (2)

where ξ2j and � = cos(η) are free parameters of the model.
By construction we recover the spin-1/2 Heisenberg XXZ
Hamiltonian if we set all inhomogeneities to zero ξ2 = ξ4 =
· · · = ξL = 0. In the following we mainly consider the case
where ξ2k are independent random variables drawn from a flat
distribution

PW (ξ ) = 1

2W
θ (W − |ξ |). (3)

The derivation of the Hamiltonian (1) is summarized in
Appendix A. The model (1) is a variant of a class of disordered
impurity models previously studied by Klümper and Zvyagin
[49], who in particular determined thermodynamic properties
[49–53]. Yang-Baxter integrability imposes severe restrictions
on the form of the Hamiltonian. This results in all three kinds
of interactions involving the same random parameters and can
be viewed as short-range correlated disorder in a model of
interacting spins.

As a sufficiently strong next-nearest-neighbor exchange can
induce dimerization our model can in some sense be considered
as an interacting analog of the “dimer models” mentioned
above.

Higher conservation laws

As shown in Appendix A the Hamiltonian (1) is related
to the transfer matrix τ (μ) of an inhomogeneous six-vertex
model. This connection is useful for constructing higher
conservation laws, which are a characteristic feature of Yang-
Baxter integrable models. In the case at hand they can be
obtained by taking logarithmic derivatives of the transfer
matrix at μ = 0:

Q(n) = in
dn−1

dμn−1

∣∣∣∣
μ=0

ln [τ (μ)], n = 2, 3, . . . . (4)

The Hamiltonian is by construction proportional to Q(2):

H = −2i sin η Q(2). (5)

Importantly the higher conservation laws are also (ultra)local
in the following sense: they can be expressed in the form

Q(n) =
L∑

j=1

Q
(n)
j , (6)

where Q
(n)
j act nontrivially only on a finite number of neigh-

boring sites. We note that the structure of these conservation
laws is very different from that on the “l bits” in many-body
localized systems.

In the following we will make use of the first higher
conservation law Q(3). To that end we require an explicit
expression in terms of the L operator (A2) and its derivatives.
For the operator Q(2) this is readily done:

Q(2) = −
L/2∑
j=1

Q
(2,1)
2j−1,2j + Q

(2,2)
2j−1,2j,2j+1, (7)

where[
Q

(2,2)
1,2,3

]β1β2β3

α1α2α3
= [L(−x2)]α1c

α2d
[L′(0)]cβ3

α3e
[L(x2)]eβ1

dβ2
,[

Q
(2,1)
1,2

]β1β2

α1α2
= [L′(−x2)]α1c

α2d
[L(x2)]cβ1

dβ2
. (8)

The conservation law Q(3) can be expressed as a sum of terms
that involve spin interactions on two, three, four, and five
neighboring sites, respectively:

Q(3) = −i

L/2∑
j=1

[
Q

(3,1)
2j−1,2j + Q

(3,2)
2j−1,2j,2j+1

+Q
(3,3)
2j−1,2j,2j+1,2j+2 + Q

(3,4)
2j−1,2j,2j+1,2j+2,2j+3

]
, (9)

where(
Q

(3,1)
1,2

)β1β2

α1α2
= [L′′(−x2)]α1c

α2d
[L(x2)]cβ1

dβ2
−[

Q
(2,1)
1,2 Q

(2,1)
1,2

]β1β2

α1α2
,(

Q
(3,2)
1,2,3

)β1β2β3

α1α2α3
= 2[L′(−x2)]α1c

α2d
[L′(0)]cβ3

α3e
[L(x2)]eβ1

dβ2

− [
Q

(2,1)
1,2 Q

(2,2)
1,2,3 + Q

(2,2)
1,2,3Q

(2,1)
1,2

]β1β2β3

α1α2α3
,

Q
(3,3)
1,2,3,4 = Q

(2,1)
3,4 Q

(2,2)
1,2,3 − Q

(2,2)
1,2,3 Q

(2,1)
3,4 ,

Q
(3,4)
1,2,3,4,5 = Q

(2,2)
3,4,5 Q

(2,2)
1,2,3 − Q

(2,2)
1,2,3 Q

(2,2)
3,4,5. (10)

The operator Q(3) can be expressed in terms of Pauli matrices
using (A2), but this is not particularly useful for our purposes.

III. NONINTERACTING LIMIT

The particular case η = π/2 maps to noninteracting spin-
less fermions by means of a Jordan-Wigner transformation
[54]. The resulting Hamiltonian (1) is block-diagonal H =
P+H+ + P−H−, where P± = 1

2 [1 ± (−1)F ] are projection
operators onto the subspaces with even and odd numbers of
fermions, respectively (F is the fermion number operator). We
find

H+ =
L∑

j<k=1

c
†
jAjkck + H.c., (11)
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FIG. 2. Histograms of the inverse participation ratios for single-
particle energy eigenstates for system sizes L = 64 (yellow) and L =
128 (blue) averaged over 1000 disorder realizations with probability
distribution for inhomogeneities given by the box distribution with
W = 3. Inset: Same for eigenstates of (11), (13) with s = 0, s ′ = 0.2.

where A1,L−1 = 2i tanh(ξL), A1,L = 2
cosh(ξL ) , and

A2j±1,2j = − 2

cosh(ξ2j )
, A2j−1,2j+1 = 2i tanh(ξ2j ). (12)

Fermions tunnel between neighboring sites with amplitudes
that are random apart from the constraints A2j−1,2j = A2j,2j+1.
In addition there is a next-nearest-neighbor hopping on the
sublattice of all odd sites. Importantly the corresponding
tunneling amplitudes A2j−1,2j+1 are not independent random
variables, but are related to the amplitudes A2j−1,2j . The
fermion hopping (12) can therefore be thought of as realizing a
particular kind of correlated disorder. As we will see, this has
important consequences for the physical properties of energy
eigenstates. Single-particle energy eigenstates are constructed
as |�n〉 = ∑L

j=1 φn,j c
†
j |0〉, where φn are the (orthonormal)

eigenvectors of the matrix A and |0〉 is the state without
fermions. In order to investigate whether the model (11) is
localized we have determined the inverse participation ratio
(IPR) of single-particle energy eigenstates In = ∑L

j=1 |φn,j |4.
We have considered several probability distributions of the
random parameters ξ2j , all of which lead to the same conclu-
sion. We therefore focus on (3). In Fig. 2 we show normalized
histograms of In averaged over 1000 disorder realizations for
W = 3 and two different system sizes. We see that the inverse
participation ratios are strongly peaked at a value that we find
to scale inversely with system size as 1/L. This indicates that
the eigenstates are not localized. At this point the question
arises of whether the model (11), (12) is delocalized as a result
of fine-tuning, or whether it is representative of a broader class
of theories. To investigate this issue we have considered free
fermion models of the type (11) with tunneling amplitudes

A2j±1,2j = −2|x2j |,
A2j−1,2j+1 = 2is sgn(x2j )

√
1 − x2

2j + s ′y2j , (13)

where we take x2j and y2j to be independent random variables
with probability distribution P1(x) (3). The tuning parameters
0 � s, s ′ � 1 allow us to interpolate between the “Yang-

FIG. 3. Left plot: 〈Sz
� (t )〉 averaged over 30 disorder realizations

from the box probability distribution for a system of size L = 128
and initial thermal state with β = 1. There is a clear light-cone effect.
Right plot: The same for the modified free fermion model (13) with
s = s ′ = 0, L = 64. Picture is consistent with localization.

Baxter” case in which the next-nearest-neighbor tunneling
amplitudes A2j−1,2j+1 are fixed in terms of the A2j,2j+1 and
the limit in which they become independent random variables.
We have analyzed IPRs for a range of values s and s ′. The
results suggest that for s ≈ 1 and small values of s ′, i.e.,
Hamiltonians close to the Yang-Baxter point, eigenstates are
delocalized. On the other hand for small values of s and s ′, i.e.,
weak uncorrelated next-nearest-neighbor tunneling, the data
are more consistent with localization as shown in the inset
of Fig. 2. This suggests that the “Yang-Baxter” model (11),
(12) does not correspond to an isolated point in parameter
space but is representative of a delocalized region that arises
as a result of the correlation between the nearest-neighbor and
next-nearest-neighbor tunneling.

Local quantum quench

A second way of investigating localization properties in
energy eigenstates is by considering the spreading of correla-
tions after a local quantum quench. We prepare the system in
the initial finite energy density state and then overturn two
neighboring spins. This choice of initial state allows us to
work in the even fermion parity sector of the Hilbert space,
(−1)F̂ = 1. In order to investigate the spreading of correlations
we determine the expectation value of the z component of spin
at site �. Using Wick’s theorem we obtain compact expressions
for Sz

� (t ) that can be evaluated numerically for systems of
hundreds of spins. In Fig. 3 we show results for a representative
example, where a system of size L = 128 is initially prepared
in an energy eigenstate corresponding to inverse temperature
β = 1. We see that the perturbation, which is initially localized
at sites L/2 and L/2 + 1, propagates ballistically through the
system, as can be seen from the presence of a “light cone”
outside of which our observable remains negligibly small. The
velocity characterizing this ballistic propagation depends on
the disorder distribution and can be determined exactly in the
thermodynamic limit. The spreading of a local perturbation in
energy eigenstates of the modified free fermion model (13) can
be analyzed in an analogous way. As shown in Fig. 3, for small
values of s and s ′ the perturbation remains localized at sites L/2
and L/2 + 1 in an extended time window even though a weak
light-cone effect occurs at early times. This again indicates that
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FIG. 4. Spreading of a single spin flip on top of the saturated
ferromagnetic state for L = 100 and η = 0 in (1), averaged over 50
disorder realizations with distribution P1(ξ ).

the modified free fermion model is localized at small values of
s, s ′.

IV. STRONGLY INTERACTING REGIME

Examination of the IPR of (1) away from the free fermion
point for small system sizes L = 10, 12 is compatible with
delocalized behavior of energy eigenstates. We also have stud-
ied the spreading of local perturbations in energy eigenstates.
(i) We have considered a single spin flip at an odd site on
top of the saturated ferromagnetic state. Representative results
for the subsequent dynamics on an L = 100 site system are
shown in Fig. 4. There is a clear light-cone effect that signals
ballistic spreading of the perturbation. (ii) We have flipped
two neighboring spins in the ground state; cf. Ref. [55] for a
discussion of the analogous protocol in the clean system. In
this case however our numerics are limited to small systems
of up to L = 16. We find that there again is a clear light-cone
effect; see Fig. 5.

V. BOUNDS ON SPIN AND ENERGY TRANSPORT

We will now demonstrate that the eigenstates of (1) exhibit
ballistic energy and spin transport for any anisotropy η and
disorder strength W . We employ a combination of two meth-

FIG. 5. Spreading of spin flips at two neighboring sites on top of
the ground state for N = 16 and cos(η) = 2 in (1), averaged over 20
disorder realizations with distribution P20(ξ ).

ods: the first is based on Mazur’s inequality [56] and was
previously employed to establish the existence of a finite-
temperature Drude weight in the clean case [57], while the
second is based on the recently developed hydrodynamic
approach to transport in integrable models [58–61]. The
starting point of the first approach is the existence of a set
of conserved quantities [H,Qn] = 0 that are orthogonal in
the sense that 〈Qn Qm〉β = δn,m〈Q2

n〉β. Here 〈.〉β denotes
a thermal expectation value. As the z component of total
spin σ z = ∑L

j=1 σ z
j is a conserved quantity in our model we

employ a magnetic field term to fix the magnetization in our
thermal ensemble. Given an operator A = A† with 〈A〉β = 0
the following inequality due to Mazur [56] then holds:

lim
T0→∞

1

T0

∫ T0

0
dt 〈A(t )A〉β �

∑
n

〈AQn〉2
β

〈(Qn)2〉β . (14)

A positive bound for the right-hand side of (14) implies that
the autocorrelation function of the operator A does not decay
to zero at late times. This implies that the Fourier transform
has a nonvanishing (generalized) Drude weight:

1

L

∫ ∞

0
dt cos(ωt )〈A(t )A〉β = 2πDAδ(ω) + · · · . (15)

When A is the spin current or the energy current operator
the nondecay of the autocorrelation functions shows that the
system is an ideal conductor of spin/energy. The Hamiltonian
(1) has an extensive number of integrals of motion Q(n)

(4). The conservation laws relevant to us here have local
densities and we focus on the most local of these, Q(3),
which involves interactions between spins on at most five
neighboring sites; cf. Eq. (9). We furthermore constrain our
discussion to infinite temperatures β = 0. For local operators
the corresponding thermal average equals the expectation value
in typical energy eigenstates at the associated energy density,
which allows us to draw conclusions about the local properties
of the eigenstates of (1). In order to use the Mazur inequality
(14) we carry out a subtraction Q3 = Q(3) − 〈Q(3)〉β=0, which
ensures that the expectation value of Q2

3 is extensive, i.e.,
limL→∞ L−1〈Q2

3〉β=0 = a1 > 0. The expression for a1 is very
cumbersome so that we do not report it here.

The spin and energy current operators J S,E associated with
the Hamiltonian (1) H = ∑

j H2j−1,2j,2j+1 are obtained from
the continuity equations

i

�∑
j=−∞

[
σ z

j ,H
] = J S

� ,

i

�∑
j=−∞

[H2j−1,2j,2j+1,H ] = J E
2�. (16)

Evaluating the commutators and then summing over all sites
gives

J E = 4i sin2(η)
∑

j

Q
(3,3)
2j−1,2j,2j+1,2j+2

+Q
(3,4)
2j−1,2j,2j+1,2j+2,2j+3, (17)
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where Q(3,3) and Q(3,4) are given in (10). The spin current
operator can be written in the form

J S = 2
∑

j

J
(1)
2j

(
T

xy

2j−1,2j − T
yx

2j−1,2j + T
xy

2j,2j+1 − T
yx

2j,2j+1

)

+ 2J
(2)
2j

(
T

xy

2j−1,2j+1 − T
yx

2j−1,2j+1

)
− 2K2j

�2j

(
T xzx

2j−1,2j,2j+1 + T
yzy

2j−1,2j,2j+1

)
+K2j

(
T zxx

2j−1,2j,2j+1 + T
zyy

2j−1,2j,2j+1 + T
yyz

2j−1,2j,2j+1

+ T xxz
2j−1,2j,2j+1

)
, (18)

where we have defined

T
α1...αn

j1,...,jn
=

n∏
k=1

σ
αk

jk
. (19)

We find that in contrast to the homogeneous case, the energy
current is not conserved; i.e., [H, JE] 	= 0.

At infinite temperature and finite magnetization m a tedious
but straightforward calculation gives the following result for
the overlap of the spin current with the third conserved charge:

〈J SQ3〉β=0 = �

1 − �2

∑
n

4m
(
1 − 4m2

)
f (ξ2n)

[cosh(2ξ2n) − (cos(2η))]3
, (20)

where

f (z) = cos(2η) cosh(6z)

− 2[cos(4η) − cos(2η) + 3] cosh(4z)

+ [6 cos(4η) − cos(6η) + 10] cosh(2z)

− 18 cos(2η) + 2 cos(4η) + 6. (21)

For a very large system we may replace the sum by an integral
so that

〈J SQ3〉β=0 = aSL + o(L),

aS = �

1 − �2

∫
dξ

4m(1 − 4m2)f (ξ )P (ξ )

[cosh(2ξ ) − cos(2η)]3
. (22)

Here P (ξ ) is the probability distribution on the random
variables ξ2n. Importantly we have aS 	= 0 unless we fine-tune
the probability distribution. This in turn provides a positive
bound for the Mazur inequality:

lim
L→∞

lim
T0→∞

1

T0L

∫ T0

0
dt 〈J S(t )J S〉β=0 � a2

S

a1
. (23)

In the case of the energy current for simplicity we consider the
zero-magnetization sector m = 0. Applying Mazur’s inequal-
ity we find

lim
L→∞

lim
T0→∞

1

T0L

∫ T0

0
dt 〈J E(t )J E〉β=0

� lim
L→∞

1

L

〈J EQ3〉2
β=0

〈Q2
3〉β=0

= 64[2 + 2 cos(2η)]2

16 sin4(η)a1
. (24)

Interestingly the bound (24) is independent of the inhomo-
geneities. The generalization to m 	= 0 is very tedious but
straightforward and provides a nonzero bound as well.

The above calculation proves that at energy densities cor-
responding to infinite temperature the model (1) exhibits (i) a
nonzero Drude weight at any finite magnetization; (ii) ballistic
energy transport.

VI. SPIN AND ENERGY TRANSPORT FROM
GENERALIZED HYDRODYNAMICS

Generalized Drude weights (15) can be analyzed in full by
means of the approach introduced in Ref. [58]. The starting
point is the existence of a basis of local charges Q̂i and
associated currents Ji . Using these charges a generalized
Gibbs ensemble is defined by the density matrix ρGGE ∼
exp(−∑

n μnQ̂n), where μi are “chemical potentials.” The
generalized Drude weights DA are then obtained from appro-
priate expectation values in this ensemble and are determined
by using the thermodynamic Bethe ansatz (TBA) method
[62]. According to Ref. [58], in integrable models DA can be
expressed as

DA =
∑

n

∫
dλ

ηn(λ)

ρ tot
n (λ)

(
ε′
n(λ)qeff

A (λ)

2π [1 + ηn(λ)]

)2

, (25)

where ηn(λ) = ρ̄n(λ)/ρn(λ) is the ratio of hole and particle
densities, ρ tot

n (λ, {ξ2j }) = ρn + ρ̄n, εn(λ) are the energies of
n-string excitations over the state of thermal equilibrium
[63], and qeff

A = ∂μA
ln ηn are effective transport charges. The

implementation of this approach in our “inhomogeneous” case
reveals (see Appendix B for more details) that the disorder
merely renormalizes the Drude weight through the disorder
dependence of the velocity of the elementary excitations over
the equilibrium state under consideration, which enters (15) via
the factor 1/ρ tot

n (λ). It follows then that the disorder average
can be exchanged with the integration and summation in (25).
The disorder-averaged Drude weight is then given by

DA =
∑

n

∫
dλ

[
ρ tot

n (λ)
]−1

ηn(λ)

[
ε′
n(λ)qeff

A (λ)

2π [1 + ηn(λ)]

]2

, (26)

where [ρ tot
n (λ)]−1 = ∫

P ({ξ}) 1
ρtot

n (λ,{ξ}) denotes the disorder
average with probability distribution function P (ξ ). As the
total density ρ tot

n (λ) is a positive quantity this average is
nonzero for generic P (ξ ). Therefore, the Drude weight is only
renormalized due to the disorder dependence of string particle
and hole densities. We note that in contrast to the Mazur bound
calculation the TBA approach takes into account the full set
of conserved quantities. These observations can be universally
extended to any integrable model with disorder of the type
described here.

VII. CONCLUSIONS

In this paper we studied a Yang-Baxter integrable interact-
ing spin system with controllable short-range correlated disor-
der. Using a combination of diagnostics we have demonstrated
the absence of many-body localization. We find that the model
is in fact an ideal conductor for both energy and magnetization.
For particular parameter values the model can be mapped to
noninteracting fermions and we have established the absence
of Anderson localization in this case. In contrast, a sufficiently
strong deformation of the free-fermion Hamiltonian away from
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the Yang-Baxter point shows signatures of localization. We
expect that in the interacting case small perturbations away
from the Yang-Baxter point will lead to diffusive behavior,
while sufficiently strong deformations will be required to
induce an MBL transition.

ACKNOWLEDGMENTS

We are grateful to M. Brockmann, J.-S. Caux, and E. Ilievski
for collaboration in the early stages of this project. We thank
W. Buijsman, A. de Luca, A. Pal, S. Parameswaran, and V.
Yudson for very helpful discussions. This work was supported
by the EPSRC under Grant No. EP/N01930X (F.H.L.E.) and
the Delta-ITP consortium (V.G.), a program of the Netherlands
Organization for Scientific Research funded by the Dutch
Ministry of Education, Culture, and Science.

APPENDIX A: INHOMOGENEOUS XXZ CHAIN

The quantum inverse scattering method (QISM) [36] pro-
vides a simple way of introducing “impurities” into Yang-
Baxter integrable models. This has been used in the literature
to construct a variety of models with impurities embedded
in both noninteracting and correlated hosts [64–73], as well
as models with “disorder” [49–53]. Here we focus on the
simplest case, which is related to the spin-1/2 Heisenberg XXZ
chain. The basic ingredients in the QISM are the R matrix
R(μ) ∈ End(VA ⊗ VA) and the L operator L(μ) ∈ End(VA ⊗
VQ), where VA and VQ are finite-dimensional “auxiliary” and
“quantum” vector spaces. In the cases we are interested in the
Yang-Baxter relations read

R(λ − μ)[L(λ) ⊗ L(μ)] = [L(μ) ⊗ L(λ)]R(λ − μ). (A1)

In the case of the spin-1/2 XXZ chain we have [36]

[(L(λ)]ab
αβ = 1 + τ z

abσ
z
αβ

2
+ b(λ)

1 − τ z
abσ

z
αβ

2

+ c(λ)(τ−
abσ

+
αβ + τ+

abσ
−
αβ ),

b(λ) = sinh(λ)

sinh(λ + iη)
, c(λ) = i sin(η)

sinh(λ + iη)
, (A2)

where η is a free parameter and τα , σα are Pauli matrices
acting on the auxiliary and quantum spaces respectively. The
QISM provides a commuting family of transfer matrices
[τ (μ), τ (λ)] = 0 of the form

τ (μ)β1,...,βL

α1,...,αL
=

L∏
j=1

[L(μ − ξj )]
cj cj+1

αj βj
, (A3)

where the free parameters ξj are known as “inhomogeneities”
and where we have defined cL+1 = c1. In order to obtain a local
Hamiltonian we now set

ξ2j+1 = 0, (A4)

and then take the logarithmic derivative of the transfer matrix
at μ = 0

H = 2i sin η
d

dμ

∣∣∣
μ=0

ln[τ (μ)]. (A5)

The explicit expression for the resulting Hamiltonian is given
by (1).

Spectral properties

The Hamiltonian (1) is readily diagonalized by algebraic
Bethe ansatz [36]. The energy eigenvalues are given by

E = −
N∑

j=1

4 sin2(η)

cosh(2λj ) − cos(η)
, (A6)

where the rapidities λ1, . . . , λN are solutions of the Bethe
ansatz equations

(
sinh(λj + iη/2)

sinh(λj − iη/2)

) L
2

L/2∏
k=1

sinh(λj − ξ2k + iη/2)

sinh(λj − ξ2k − iη/2)

=
∏
k 	=j

sinh(λj − λk + iη)

sinh(λj − λk − iη)
, j = 1, . . . , N. (A7)

Equations (A6) and (A7) establish a peculiar property of the
model (1): the spectrum is invariant under arbitrary permuta-
tions of the inhomogeneities {ξ2, ξ4, . . . , ξL}, i.e.,

spec H [{ξ2, . . . , ξL}] = spec H [{ξP (2), . . . , ξP (L)}] (A8)

for any permutation P of the integers 2, 4, . . . , L. This
property is not apparent from the explicit expression (1) and
Hamiltonians corresponding to different permutations of the
inhomogeneities generally do not commute.

a. Free fermion point

The Hamiltonian (1) has a free fermion point at η = π
2 . The

corresponding Hamiltonian is

H =
L/2∑
j=1

1

cosh(ξ2j )

∑
α=x,y

[
σα

2j−1σ
α
2j + σα

2j σ
α
2j+1

]

−
L/2∑
j=1

tanh(ξ2j )
[
σ

y

2j−1σ
z
2j σ

x
2j+1 − σx

2j−1σ
z
2j σ

y

2j+1

]
.

(A9)

By applying the Jordan-Wigner transformation one can bring
Eq. (A9) into the form of Eq. (11).

b. Isotropic (XXX) limit

The SU(2) invariant versions of the Hamiltonian and the
Bethe ansatz equations are obtained by redefining

λj = η

2
�j , ξ2j = η

2
γj , (A10)

and then taking the limit η → 0. This gives a Hamiltonian of
the form

H =
∑

j

4

γ 2
j + 4

[�σ2j−1 · �σ2j + �σ2j · �σ2j+1 − 2]

−
∑

j

2γj

γ 2
j + 4

�σ2j · (�σ2j−1 × �σ2j+1)

+
∑

j

γ 2
j

γ 2
j + 4

(�σ2j−1 · �σ2j+1 − 1). (A11)
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The Bethe ansatz equations become

(
�j − i

�j + i

)M
2

M/2∏
k=1

�j − γk − i

�j − γk + i
=

∏
k 	=j

�j − �k − 2i

�j − �k + 2i
. (A12)

The energy corresponding to a solution of (A12) is

E = −
∑

j

8

�2
j + 1

. (A13)

APPENDIX B: DRUDE WEIGHTS
FROM THE TBA CALCULATIONS

Let us consider first the case of |�| > 1. While any eigenstate
in a finite system of size L is assigned a unique set of rapidities
{λj }Nk=1 taken from solutions of Bethe equations (A7), in
the thermodynamic limit (defined as L → ∞, N → ∞ with
N/L finite), the solutions to Bethe equations organize into
regular patters which indicate the presence of well-defined
particle excitations. These correspond to magnons and their
bound states, so-called Bethe strings [62]. A general string
solution reads {λk,m

α } = {λk
α + (k + 1 − 2m) iη

2 }, where m =
1, 2, . . . , k; α numerates different k strings; and m runs over
internal rapidities. Scattering of different magnonic particles
is characterized by the amplitudes

Sj = sin
(
λ − j

iη

2

)
sin

(
λ + j

iη

2

) , Sjk =
k−1

2∏
m=− k−1

2

j−1
2∏

n=− j−1
2

S2m+2n+2

= S|j−k|Sj+k

min(j,k)−1∏
m=1

S2
|j−k|+2m, (B1)

with the convention that S0 ≡ 1. In the thermodynamic limit
particle rapidities become densely distributed along the real
axis in the rapidity plane. This permits us to introduce dis-
tributions ρk (λ) of k-string particles, along with the dual
hole distributions ρ̄k (λ) (holes are solutions to Bethe ansatz
equations which differ from Bethe roots λk). The discrete
Bethe equations (A7) get replaced by the integral Bethe-Yang
equations. Assuming validity of the string solution in the
presence of M inhomogeneities (M/N � 1/2), we can write
these integral equations for the densities of string particles and
holes in the thermodynamic limit of the inhomogeneous case.
The Bethe-Yang equations for particles ρn(λ) and holes ρ̄n(λ)
are given by

1

N

⎛
⎝ M∑

j=1

an(λ + ξj ) + (N − M )an(λ)

⎞
⎠

= ρ̄n(λ) + Anm � ρm(λ). (B2)

Here, the explicit form of the functions an(λ) and Anm(λ) =
δnmδ(λ) + anm, which depend on the anisotropy parameter �,
can be obtained from the following relations:

an(λ) = 1

2πi
∂λ ln Sn(λ),

anm(λ) = 1

2πi
∂λ ln Snm(λ), (B3)

where indexes n,m label corresponding stringy content. The
� operation refers to the convolution with the kernel Anm,

Amn � ρm(x) ≡
∑
m

∫ Q

−Q

dyAmn(x − y)ρm(y), (B4)

where the integration and summation limits depend on the
value of anisotropy parameter. Explicitly, for � > 1 we have

an(λ) = 1

2π

η sinh(nη)

cosh(nη) − cos(ηλ)
. (B5)

For the isotropic (XXX) situation, when η → 0, the driving
function and the kernel are given by

an(λ) = 1

π

n

(n2) + λ2
, (B6)

Anm(λ) = δ(λ)δnm + (1 − δnm)a|n−m|(λ)

+ 2a|n−m|+2(λ) + · · · + 2an+m−2(λ) + an+m(λ),

(B7)

while in this case Q = ∞ and sum runs to infinity as well.
Classification of the particle content in the gapless regime

|�| < 1 is more involved; details can be found in [62,74].
Here, in addition to the magnon-type label k, an extra parity
label v ∈ ± is required. Importantly, integers k now no longer
coincide with the length of a string, i.e., a number of magnons
forming a bound state. Instead, the kth particle consists of
nk Bethe roots and carries parity vk (see [74] for further
details). Setting � = cos(γ ), where γ /π = m/l (with m, l

co-prime integers) is a root of unity, the number of distinct
particles in the spectrum is finite. Changing the parametrization
λ → iλ, η → iγ and incorporating the additional parity label,
the elementary scattering amplitudes and kernels read

Sk (λ) → S(nj ,vj ) = sinh
[
λ − nj

iγ

2 + (1 − vj ) iπ
4

]
sinh

[
u + nj

iγ

2 + (1 − vj ) iπ
4

] , (B8)

and the whole set of scattering kernels is obtained, as in the case
of � > 1, from Eqs. (B1) and (B3). The Bethe-Yang equations
become modified,

aj (x) = sgn(qj )(ρj + ρ̄j ) + ajk � ρk, (B9)

where the summation in the convolution expression runs from 1
to ml defined as m0 = 0, mi = ∑i

k=1 νk , and numbers ν1, . . . ,

νl−1 � 1, νl � 2 participate in the continuum fraction expres-
sion for γ /π , e.g., γ /π = 1/{ν1 + 1/[ν2 + 1/(ν3 + . . .)]}.
Numbers qj are defined recursively as [62], q0 = π/γ , and

qj = 1
2 [(1 − δmi,j )qj−1 + qj+1], mi � j � mi+1 − 2,

qj = (1 − 2δmi−1,j )qj−1 + qj+1, j = mi − 1, i < l.

Explicitly, the kernels aj (λ) are given by

aj (λ) = 1

2π

γ sin(γ qj )

cosh(γ λ) + cos(γ qj )
. (B10)

The most important thing to notice here is that the left-
hand side (driving terms) of the Bethe-Yang equations depends
on the inhomogeneities while the right-hand side (convolution
kernel) does not depend on inhomogeneities. This can also
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be checked by explicit re-derivation of steps leading to these
equations (B2).

The second set of equations is derived using the variation
of the free energy (per particle) f = e − T s with respect to ρn

and ρ̄n. Here

e = 2π
∑

n

an(λ)ρn(λ) (B11)

is the energy density and the entropy density is

s =
∞∑

n=1

∫ ∞

−∞
dλ[(ρn + ρ̄n) ln(ρn + ρ̄n)

− ρn ln ρn − ρ̄n ln ρ̄n]. (B12)

Variation of (B2) leads to the relationship between δρn and
δρ̄n,

δρ̄n = −Anm � δρn, (B13)

which finally leads to the second TBA equation

ln(1 + ηn) = 2πJ

T
an + Anm � ln

(
1 + η−1

m

)
, (B14)

where ηn = ρ̄n/ρn. Importantly, since the right-hand side of
(B2) does not depend on δρn or on δρ̄n, Eq. (B14) and hence
ηn are independent of the inhomogeneities. It is customary to
recast (B14) in terms of the dressed energies defined by εn =
T ln(ηn),

εj

T
= ε

(0)
j

T
+ anm � ln(1 + e−εm/T ), (B15)

where the bare energies are ε
(0)
j = 2πJan. In [58] a hydrody-

namic approach to the Drude weight(s) has been formulated
based on the TBA approach. The starting point is the existence
of a basis of local charges Q̂i and associated currents Ji . Using
these charges a generalized Gibbs ensemble is defined by the
density matrix

ρGGE ∼ exp

(
−

∑
n

μnQ̂n

)
, (B16)

where μi are “chemical potentials.” The generalized Drude
weights DA are then obtained from appropriate expectation

values in this ensemble and are determined by using the TBA
method [62]. According to Ref. [58] in integrable models DA

can be expressed as

DA =
∑

n

∫
dλ

ηn(λ)

ρ tot
n (λ)

(
ε′
n(λ)qeff

A (λ)

2π [1 + ηn(λ)]

)2

, (B17)

where

qeff
A = ∂μA

ln ηn (B18)

are effective transport charges. The functions ε′
n are derivatives

of the energies of elementary excitations over the state of
thermal equilibrium and were calculated in Ref [63]. They are
obtained from the dressed energies by solving a set of linear
integral equations:

ε′
j ∗ (1 − K )jk (λ) = dε

(0)
k (λ)

dλ
,

Kjk (x, y) = −sgn(qj )ajk (x − y)
(
1 + eεj /T

)−1
.

(B19)

The only quantities in (B17) that depend on the inhomo-
geneities ξ2j are the total densities ρ tot

n (λ). This can be seen
from (B2) once the disorder-independent equations (B14) for
ηn have been solved. It follows that the disorder averaging of
the generalized Drude weights can be interchanged with the
integration and summation in (B17). Introducing(

1

ρ tot
n (λ)

)
=

∫
P ({ξ})

1

ρ tot
n (λ, {ξ})

, (B20)

where P (ξ ) is a disorder probability distribution, we then can
express disorder-averaged Drude weights in the form

DA =
∑

n

∫
dλ

(
1

ρ tot
n (λ)

)
ηn(λ)

(
ε′
n(λ)qeff

A (λ)

2π [1 + ηn(λ)]

)2

.

As the total density ρ tot
n (λ) is a positive quantity DA is only

renormalized due to the dependence of the string particle and
string hole densities on disorder, and will not vanish unless the
disorder probability distribution is fine-tuned.
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