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Anderson localization at the hybridization gap in a plasmonic system
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Disorder-induced Anderson localization in quasiparticle transport is a challenging problem to address, even
more so in the presence of dissipation, as the symptoms of disorder-induced localization are very closely simulated
by the absorption in a system. Following up on recent experimental studies, we numerically study the occurrence
of Anderson localization in plasmonic systems at terahertz frequencies. The low losses in the material at these
frequencies allow us to separately quantify the localization length and the loss length in the system. We measure
a nonmonotonic variation of loss length as a function of disorder, and attribute it to the participation ratio of
the localized modes and resulting light occupancy in the metal. Next, we identify a unique behavior of the
gap-state frequencies and the density of states under disorder. We observe that the maximally displaced gap-state
frequencies have a propensity to remain pinned to the frequency of the gap center. Even under strong disorder, the
gap does not close, and the density of states profile continues to remain peaked in the gap, unlike in conventionally
studied disordered systems. The origins of this behavior are traced to the nature of the quasiparticle dispersion.
In our case, the quasiparticles are identified to be hybrid plasmons generated due to the hybridization of surface
plasmon polaritons at a metal-dielectric interface and cavity resonances at subwavelength apertures thereon. This
situation is akin to the Kondo systems, where dispersive conduction electrons hybridze with a localized impurity
state opening a hybridization gap. Our results provide new insights on the elusive problem of the interplay of loss
and localization, and underlines interesting physics at the hybridization gap in hybrid plasmonic systems.
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I. INTRODUCTION

Anderson localization, proposed in the context of electronic
transport [1], is a wave-interference phenomenon in disordered
systems wherein transport is inhibited due to scattering. While
the experimental achievement of localization has been done
in various different scenarios such as sound waves [2], matter
waves [3], and light waves [4], the last system has seen an
explosion of research activity in recent years [5–20]. Recent
literature on Anderson localization has progressed well beyond
the mere demonstration of localization, and has dealt with,
among others, cavity quantum electrodynamics [11], quantum
optics [12], nonlinearity [13], lasing [14,15], and temporal
complexity [15] of Anderson localizing systems. In all these
studies, the most commonly used structures consist of dielec-
tric materials, presumably due to the absence of absorption
that obfuscates the effects of localization [21,22]. Notably,
despite such advances in investigations on localization, there
are still no systematic studies on the physics of dissipative
localizing systems. The primary detriment of dissipation is the
fact that it induces an exponential decay in the transmitted
field, which, otherwise, would be the signature of Ander-
son localization. Such exponential decays have been directly
demonstrated in low-dimensional systems [13,15,19,20]. An
advantage of lower-dimensional systems is the relative ease of
obtaining localization, as against three-dimensional structures
where a critical degree of disorder is necessary. A particularly
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interesting route for achieving low-dimensionality is surface
plasmons, which are inherently low-dimensional entities. In-
deed, several works have addressed transport in disordered
plasmonic structures such as random planar metal dielectric
composite [23–25], metal nanosphere arrays [26], fractal and
random nonfractal clusters [27–29], subwavelength hole arrays
on metal films [20,30], etc. However, conventional plasmonic
materials such as silver and gold, at conventional plasmonic
frequencies, have a major issue related to the very strong
absorption.

Toward a meaningful investigation of dissipative localizing
systems, a thoughtful choice of materials needs to be made such
that the inherent dissipation is not forbidding. To that end, tera-
hertz frequencies in metallic systems are promising candidates.
The terahertz range of frequencies lies at the boundary between
low-frequency and high-frequency radiation. The latter radi-
ation realizes highly dissipative plasmons on metal surfaces,
while the former (low frequency) does not penetrate the metal
due to its diverging conductivity. At terahertz frequencies, real
metals respond with large but finite conductivities [31], and
hence can sustain surface-bound plasmons with a low loss. In
this case, the presence of a subwavelength structure realizes hy-
brid plasmons [32]. We have recently experimentally demon-
strated Anderson localization in a hybrid-plasmonic system at
terahertz frequencies [20], and directly imaged the localized
wave functions. The structure comprised waveguides formed
by coupled subwavelength holes in a thin metal sheet. We mea-
sured the dissipation length in the structures, and showed that
the eigenfunction decay primarily arose through localization.
While this was the first such demonstration in the terahertz
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frequency domain, the experimental limitations restricted cer-
tain measurements despite state-of-the-art techniques. In the
finite-sized system, the transmission bands comprise spectrally
separated collective modes, which undergo localization under
disorder. These individual modes within the bands could not
be frequency-resolved and only the modes outside the Bragg
frequency could be measured where no bands exist. The rarity
of such modes preclude the identification of any systemic
trends. Furthermore, the dissipative behavior associated with
the individual localized modes cannot be identified. This
experimental study is the motivation of the current theoretical
work. In this study, we approach the plasmonic localization
from the physics of dispersion of hybrid plasmons. To that
end, we use a finite-element eigensolver which computes
the eigenvalues and eigenfunctions of the structure. We first
identify the transmission bands of the infinite periodic device
and then resolve one band into the fundamental resonances
of a finite structure as used in experiments. Next, we analyze
the effect of disorder on these modes at a frequency resolution
inaccessible in the experiments and diagnose the frequency
shifts, localized eigenfunctions, and the losses separately.
Finally, we observe that the unique dispersion in the system
manifests unusual behavior of the density of states (DoS) at
the band edges and in the band gap. This is elucidated through
a comparative study of the disorder-induced localization of
hybrid plasmons with conventional Anderson localization in
coupled dielectric cavities. This paper is arranged as follows:
In Sec. II, we describe the physical structure and the generation
and dispersion of the hybrid plasmons. Section III is aimed at
explaining the experimental results, but at spectral resolutions
inaccessible in experiments, and thereby assess the loss-
localization behavior at an individual modal level. Section IV
takes the analysis into the unusual behavior of the band gap, and
its origins in the dispersion of plasmons. Section V closes with
conclusions.

II. PHYSICAL STRUCTURE

Figure 1(a) shows the plasmonic system under investiga-
tion. It consists of a 1-D periodic rectangular through-hole
array etched in a 500-μm-thick stainless steel sheet. The inset
in Fig. 1(b) shows the unit cell of the array. The dimensions
of the hole, h, s, and a, determine the cavity resonances. They
cannot couple with each other directly because of the metal
region between the cavities. The coupling is accomplished via
a propagating linear-dispersive plasmon parallel to the metal
surface. Finite element analysis of the fields in the structure
were carried out using the software COMSOL MULTIPHYSICS,
using a measured dielectric behavior of stainless steel at
terahertz frequencies [31].

The technique involves computing the eigenmodes of any
particular structure defined on a virtual grid. This is achieved
by solving the following eigenvalue problem derived from the
Maxwell’s equations:

{∇ × μ−1∇×}E = εω2/c2E, (1)

where μ and ε are the relative permeability and permittivity
defined at each point of the grid, which realizes the structure.
The eigenvalue equation is solved employing appropriate
boundary conditions. Thus, the eigenfrequencies ω + i� and

FIG. 1. (a) Schematic of the 1D rectangular hole array in the
periodic configuration. (b) The inset shows the schematic of the unit
cell, witha = 150 μm,h = 500 μm, s = 500 μm, andd = 250 μm.
The main plot shows the calculated band structure of the infinite
periodic rectangular hole array. The dashed line represents the first
uncoupled-cavity resonance and the tilted solid line is the plasmon
dispersion. Their hybridization results into a lower [marked as (i)]
and upper band, shown by the ◦ markers and � markers, respectively.
The � markers and � markers show the lower bands [marked as
(ii) and (iii)] corresponding to the hybridization with the second
and third order cavity resonances. See text for (iv). (c) Normalized
transmission spectrum of the periodic system as computed from the
band structure in (b). The peaks corresponding to each band are
marked. (d) Simulated cross-sectional intensity distributions in the
yz plane at the center of a subwavelength hole, for the first (i), second
(ii), and third (iii) bands. Grey rectangles depict the metal region.

the corresponding eigenfunctions of the system are obtained.
The imaginary part of the eigenfrequency (�) yields the
temporal decay, which is converted to loss length as c/�.
Both the periodic and the disordered systems will have their
characteristic loss lengths, as determined by the field in the
metal. In case of an infinite periodic system, a single unit
cell is discretized and a periodic boundary condition along
one direction is applied, along with a perfectly matched layer
(PML) along the other two directions. In case of the finite
ordered/disordered systems discussed later, the entire structure
is discretized and enclosed within PMLs. The virtual grid in
this computation is implemented by adaptive meshing, whose
maximum and minimum length scales were kept equal to, re-
spectively, one-eighth and one-tenth of the lowest wavelength
considered in the THz spectra.

Under periodic boundary conditions, the band structure
calculated from the eigensolutions of the infinite periodic array
is shown in Fig. 1(b). The dispersion of the resulting band
is essentially determined by the hybridization of the spatially
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localized cavity resonance, represented by the horizontal dot-
ted line and the surface plasmon, whose dispersion is shown
as a solid straight line. We note that, at these frequencies, the
surface plasmon dispersion almost overlaps with the light line.
The anticrossing resulting from the hybridization realizes a
band gap. An example of the anticrossing and gap formation
is shown in Fig. 1(b), where the ◦ markers and � markers
designate the lower band [marked as (i)] and upper band
realized due to the hybridization with the first cavity resonance.
The � markers and � markers show the lower bands [marked
as (ii) and (iii)] corresponding to the hybridization with the
second- and third-order cavity resonances. The upper bands
form above the light line and are radiative, while the lower
bands are nonradiative and hence support surface transport.
The frequencies at which band gap occurs, i.e., the anticrossing
points, are completely determined by the resonant frequencies
of the cavity and are independent of the periodicity. The
periodicity d determines the Bragg frequency of the system,
given by c/2d, which, in our case, is 0.6 THz. The bands
exhibit a linear dispersion close to k = 0 and saturate close
to the edge of the Brillouin zone, i.e., k = π/a. Close to the
Bragg frequency, an indistinct cluster of bands [labeled as
(iv)] is formed through the coupling of various higher-order
resonances of the cavity. Using the real and imaginary fre-
quencies extracted from the eigensolutions, the longitudinally
transmitted intensity spectrum is calculated as the sum of
Lorentzian peaks located at the respective frequencies of the
system. As shown in Fig. 1(c), the spectrum shows asymmetric
peaks corresponding to each individual band. A broad peak,
corresponding to the collection of bands, occurs close to the
Bragg frequency. The peak amplitudes fall with increasing
order of the band, evidently due to the fewer modes in the
higher bands. Figure 1(d) shows their intensity distribution in
the unit cell, computed at the yz plane at the center of a hole.
Penetration of the terahertz intensity in the higher order bands
[(iv), not shown here] in air is extremely weak, and hence,
these bands escape experimental detection methods that rely
on index modulation of electro-optic crystals [20].

We note that this system has qualitative equivalence in
Kondo systems, wherein magnetic impurities in a metallic
crystal create a hybridization of the conduction band of the
d orbital, which is dispersive, and the spatially localized f

electrons, which has a zero-dispersion profile. This hybridiza-
tion opens up a gap. In our system, the dispersionless band is
simply provided by the cavity resonance. The dispersive band
is provided by the surface plasmon polariton (SPP) dispersion,
which, at terahertz frequencies, is extremely close to linear
dispersion that almost overlaps the light line. In this paper, we
call the hybridized band the hybrid plasmon. Interestingly, for
higher conductivities such as in perfect metals or at microwave
frequencies, the linear dispersion represents the low-frequency
limit of a SPP wave, known as the Sommerfeld-Zenneck wave.
This wave essentially constitutes an electric field oscillation in
the dielectric medium propagating parallel to metal-dielectric
interface. In this case, precisely because the coupled disper-
sion behavior is similar to surface plasmons, they have been
identified as spoof plasmons [32,33]. This unique transversally
confined yet laterally propagating plasmon has attracted a
lot of attention in recent years, and has extended plasmonics
into the low-frequency regime [34–38]. The analysis that we

FIG. 2. (a) Transmission peak of band (iii) of the finite periodic
system (solid red line) and infinite periodic system (dotted red line).
Black spectra indicate the underlying resonances of the system. Inset
shows the fraction of the field inside the metal. (b) Effect of disorder:
Black spectra show the resonances of the disordered array. The red
spectrum shows the transmission peak composing the resonances.
Blue spectrum shows the peak averaged over 40 configurations.
(c) Intensity (on a linear scale) as a function of position. The
plot illustrates the evolution of the fundamental resonance with
increasing disorder, showing the exponential decay in the wings due
to localization.

present in this paper is expected to be valid also for the spoof
plasmons.

III. DISSIPATION AND LOCALIZATION

In a finite hole array as is used in any experiment, each
band will split into multiple collective modes determined by the
length of the system. To recreate the experimental situation, we
investigated a finite-sized hole array and analyzed the resulting
discrete collective modes. In this case, the simulated structure
consisted of 60 holes, creating a length of 15 mm, further
enclosed by metallic padding of 2.5 mm on either side. This
realized the total structure of length 20 mm (system size L).
The transverse dimensions remain the same as the infinite
structure. We discuss here the behavior of band (iii) as it
provides clutter-free individual modes; however, the behavior
is the same for all bands. Figure 2 discusses the spectral
behavior at a high-frequency resolution typically inaccessible
in the experiments. In Fig. 2(a), the black spectra show discrete
Lorentzians which represent the individual collective modes
of the finite system that add together to form the continuous
spectrum (solid red line). For comparison, the dotted red
line shows the spectrum for the infinite array. Interestingly,
the mode at the band edge (marked by the horizontal dotted
line) is essentially the first-order mode of the finite system
and the order increases further away from the band edge.
Correspondingly, the width of the Lorentzian reduces toward
the higher order. This is in contrast to dielectric (loss-less) finite
periodic systems, where the first-order mode shows the highest
quality factor and hence the lowest width. This originates from
the metallic losses associated with the mode. We analyzed
the light intensity resident in the metallic region for every
mode, and the result is shown in the inset of Fig. 2(a). Clearly,
the intensity inside the metal is maximum at the band edge
and reduces monotonically further from it. The range of wave
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vectors shown here covers all the discrete modes shown in the
main plot, and the behavior was observed to be monotonically
decreasing for further k (not shown). Thus, the metallic losses
dominate for the modes away from the light line, whereas the
mode along the light line incur lesser metallic losses, resulting
in the broadening of modes closest to the band edge.

Next, disorder was introduced in the finite system by the fol-
lowing procedure. The position of each resonator is displaced
by an amount determined by a uniformly distributed random
number in the set [−δ ∗ d/2,δ ∗ d/2], where δ ranges from
0 � δ � 1. For each disorder strength δ, 40 configurations
were simulated. Figure 2(b) discusses the behavior for an
individual configuration at δ = 0.3. In general, the individual
discrete modes were observed to blueshift toward and across
the band edge. The amount of the shift is variable for different
modes. For instance, the band-edge mode at 0.525 THz shifted
to 0.531 THz, incurring a shift of 0.006 THz, compared to
the highest-order mode that shifted by ∼0.002 THz. The
spectral width of the modes also changes upon introduction of
disorder, with some modes broadening and others narrowing
down, depending on the metallic losses in the modes. The total
spectral line (shown in red) is effectively blueshifted, but the
shift is of a small magnitude in comparison to its width, and
hence can be expected to escape experimental detection. The
blue line shows the configurationally averaged spectrum over
40 configurations.

Anderson localization of the modes can be seen in the spatial
distribution of intensity, which shows a clear transformation.
Figure 2(c) shows the intensity distribution for the fundamental
mode (band-edge mode) for four disorder strengths. For the
periodic structure, the distribution shows a perfect sinusoidal
with a single maximum as expected in the first-order mode of
a finite system. However, as disorder increases (δ = 0 − 0.3),
the distribution transforms into one with exponential tails in
either wings of the form exp −(|x − x0|)/ξ , where ξ is the
decay length. Such a spatial exponential decay is a clear
indication of Anderson localization. On fitting the exponential
for the band-edge mode, the ξ turns out to be 4.8 mm. This
computed spatial distribution has no contribution from the
intrinsic (metallic and radiative) losses of the system and the
calculated decay here is purely due to the localization. The
computed imaginary part of the eigenvalue of the mode yields
the decay length of 13.7 cm, which is a factor of ∼25 larger
than the localization length ξ .

These numbers, however, only represent a single configura-
tion, and the complete picture is only seen after configurational
averaging. Figure 3(a) quantifies the shift in the resonant
frequencies over 40 configurations at δ = 0.3, where the �
markers depict the fundamental mode (band-edge mode) and
the ◦ marker depicts the eighth-order mode. The dissimilar
shifts result in widening of the spectral peak. Further, the
amplitude of the peak also drops correspondingly, as seen
in the plot with blue � markers. Figure 3(b) shows the
behavior of the localization length and the loss length of the
band-edge (first-order) modes over 40 configurations. In this
paper, we focus only on the band-edge mode because the loss
is maximum for the band-edge mode, and it reduces further
from the band edge. So the band-edge mode is sufficiently
representative of the systemic loss. Clear exponential fits were
only achievable at and above δ = 0.2, shown in black �

FIG. 3. (a) Red�’s show the translation of the resonant frequency
(left Y axis) of the fundamental resonance, while the red ◦’s show
the same for the eighth-order resonance. The resultant peak in the
spectrum shows a decreasing peak amplitude (blue � markers, right
Y axis). (b) Average localization length (black � markers) reduces
with increasing disorder. The average metallic loss lengths (red �
markers, right Y axis) increase, and the fluctuations in the losses also
increase.

markers. The average localization length drops with increasing
disorder, as is common with any Anderson-localizing system.
The fluctuations of the localization length (quantified by the
error bars signifying the standard deviation in ξ ) also reduce
with disorder strength. The red � markers indicate the loss
length of the band-edge modes, and is seen to increase with
disorder indicating reduced losses. The fluctuations in the loss,
however, increase with disorder. The reason thereof is that, as in
dielectric systems, the quality of localized modes depends upon
their location vis-à-vis the edges of the system. Some modes
manifest close to the edge and hence are strongly coupled to
the environment, and incur larger losses, compared to those
that are centrally located. This location-dependent loss is over
and above the metallic losses that depend on the field extent
inside the metal, which, in turn, is determined by the strength of
localization of the mode. This study emphasizes the interesting
interplay of loss and localization in hybrid plasmonic systems.

At this stage, we briefly address the experimental mea-
surements of Anderson-localized modes in such a system. As
mentioned earlier, the experimental techniques in the terahertz
domain employ electro-optic devices that inherently determine
the capability of detection of the modes. In the transmission
bands below the Bragg frequency, the modes are all spectrally
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FIG. 4. Intensity distribution of three localized modes extracted
beyond the Bragg frequency under disorder of δ = 0.3. The frequen-
cies of the localized modes 1, 2, and 3 are 0.6121 THz, 0.6124 THz,
and 0.6125 THz, respectively, and the losses are 18.7 ns−1, 19.5 ns−1,
and 19.6 ns−1, respectively. The corresponding ξ are 1.8 mm, 1.2 mm,
and 0.9 mm. Each inset shows the corresponding cross-sectional field
distribution, in the same perspective as in Fig. 1(d). The field decay
into air (along the white dotted line) is shown in (d), and yields a
decay length of 231 μm, 207 μm, and 83 μm, respectively, for the
three modes.

and spatially bunched too close for detection. In this region,
broad features such as spectral shifts and broadening, as
observed above, can be noticed in experiments. The situation,
however, can be different in the region of the Bragg frequency,
where there are no preexisting modes. At an appropriate
disorder strength, some modes from the bands transit beyond
the Bragg frequency. Figure 4 depicts three localized modes,
each one being the band-edge mode of the respective band,
in a single configuration of δ = 0.3, all observed outside the
Bragg frequency. Each mode is the highest-quality factor mode
in its respective band, whose field distribution is shown (inset)
in the same perspective as in Fig. 1(d). Subplot (d) shows the
decay of the field into the air, along the white dotted lines
shown in each inset. Clearly, modes 1 and 2 have a better
penetration into the air above, compared to mode 3, which
is more tightly bound to the surface. However, mode 1 has
the minimum loss among all four, primarily due to its central
placement compared to the other modes that are closer to
the edge and hence leaky. Under such conditions, mode 1
will be preferentially detected, providing a clean measurement
of an isolated Anderson localized mode beyond the Bragg
frequency. Such a clean isolated mode was indeed observed in
the experiments outside the Bragg cutoff [20]. The localization
length for this mode is calculated to be 1.8 mm. Thus, the ratio
of ξ/L is 0.09 at a disorder strength of 0.3, which is very much
in agreement with the experimentally measured ξ/L, which
was 0.1 at σ = 0.25. It must be emphasized that the localized
modes will also exist in regions below the Bragg frequency,
but a clean and unambiguous detection is possible only above
the Bragg frequency.

IV. LOCALIZED MODES IN THE HYBRIDIZATION GAP

While weak disorder mostly realizes modes in the vicinity
of the band edge, stronger disorder tends to create modes
deeper into the band gap. So, we extend our study to disorder
strengths ranging from δ = 0.3 to 0.9, whose observations

FIG. 5. (a) Black �’s show the mode size that reduces with
increasing disorder. Red �’s indicate the average modal losses whose
variation follows the mode size. Error bars show the standard deviation
in the parameters, that were configurationally averaged over 40
configurations. (b) Blue �’s show the migration of the deepest gap
mode as a function of the disorder strength.

are provided in Fig. 5. We first quantify the loss at strong
disorder, and study its correspondence with the modal extent.
We note that the localization length ξ only characterizes
the decay of the tail, and not the total spatial extent of a
mode. Therefore, we measured a mode size, equivalent to the
inverse of the inverse participation ratio (IPR). The IPR is

defined as L × (
∑N

i=1 ψ2
i )2

∑N
i=1 ψ4

i

, where ψi is the value of the wave

function at the i th site and L is the system size. Figure 5(a)
shows variation of the mode size (black �’s) and the average
modal losses (red �’s) that reduces with increase in disorder
strength, averaged over 40 configurations. Not only does the
averaged loss, but also the fluctuations in the loss show a strong
correlation with the mode size. At low disorder δ =< 0.2, the
mode size varies only weakly with disorder. At these disorder
strengths, the modes typically occupy the entire sample size,
and hence the mode size is determined by the system size,
which becomes the limiting length scale here. At intermediate
disorders (δ = 0.3 to 0.7) the mode size drops rapidly as the
localization length reduces. Since the modes that occur at these
disorder strengths are tighter, their peak positions largely vary
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from one configuration to another. Whenever the modes are
closer to the edge, the mode size is smaller compared to those
peaking at the center. As a consequence, the mode size and
modal loss show stronger fluctuations as seen from Fig. 5(a)
close to δ ∼ 0.3. At higher disorder, δ > 0.4, the mode size
tends to saturate, driven by the limiting length scale of the
average interhole separation. Interestingly, at high disorder
strengths, the localization lengths are approximately an order
of magnitude smaller than the system size, and a majority of the
modes occur in the bulk of the system away from the boundary.
As a result, the fluctuations in the mode size and loss also
reduce.

Figure 5(b) discusses the frequency of the gap mode that is
generated deepest into the band gap, beyond δ = 0.3. The data
are averaged over 40 configurations. At intermediate disorder,
migration of the frequency into the band gap accelerates.
However, at higher disorder, the shift slows down and the
resonant frequency of the deepest mode actually saturates. In
this case, the average frequency at which the mode gets pinned
is observed to be ∼0.57 THz. Such pinning of modes at high
disorder strength is not observed in usual PARS systems made
of coupled dielectric cavities or wave guides, where the band
originates from direct coupling (either evanescent or radiative)
of cavity resonances. To understand this behavior, we compare
a hybrid plasmon band with that of a coupled dielectric cavity
array under disorder.

To compute the DoS, a larger system size is necessary to
be simulated. Hence, we performed these calculations using
the tight-binding model [39]. In this calculation, the actual
shape or size of the resonance is not relevant, but just the
resonant frequency is invoked in a Hamiltonian formalism.
The Hamiltonian consists of cavities coupled with each other
through a collective band (representing the plasmon) to simu-
late a single-band hybrid plasmonic cavity excitation as

Hhp =
∑

i

ti,i+1c
†
Peff

(xi)cPeff (xi+1)

+
∑

i

Ecav(xi)f
†
cav(xi)fcav(xi)

+
∑

i

Vic
†
Peff

(xi)fcav(xi) + c.c., (2)

where cPeff (xi) is the annihilation operator of the effective
Hamiltonian for the plasmon, fcav is the annihilation operator
associated with the cavity resonance, t is the hopping strength,
and Ecav is the cavity resonance frequency. Vi represents
the hybridization amplitude of the plasmon with the cavity
at each site. This Hamiltonian is matricized into a finite
near-diagonal matrix consisting of 1 000 unit cells. Disorder
in the spacing between the cavities is invoked as random
hopping probabilities or the off-diagonal terms in the above
Hamiltonian. The randomness in the hopping parameter was
calculated as follows. First, in the finite system discussed in
Sec. III, we calculated the maximum and minimum overlap
integral of the field in any configuration, signifying the nearest
and the farthest cavities, respectively. A uniformly distributed
random number between these two values was employed as
the hopping parameter at each site. Thus, a homogeneity
was maintained between the definition of disorder strength

in the earlier computation and the current tight-binding one.
The Ecav is kept constant in this simulation. One thousand
configurations were implemented at each disorder strength for
configurational averaging. The matrices with different disorder
strengths are diagonalized to obtain the eigenfrequencies and
eigenfunctions. The DoS are calculated from the eigenvalues.

For comparison, a dielectric cavity array was simulated by
the standard tight-binding hamiltonian as

Hdc =
∑

i

pi,i+1c
†
i ci+1 + c.c., (3)

where the ci is the annihilation operator of the coupled cavity
mode and p is the hopping probability between the cavities.
The comparison is provided in Fig. 6. In a dielectric cavity
array [Fig. 6(a)], the band gap and the band edges are spectrally
distant from the resonant frequency of the cavity, which
is positioned deep inside the band. Here, the dashed line
represents the cavity resonance whereas the dotted black line
shows the band obtained by solving the tight-binding model
for the periodic system. Upon introduction of disorder, the
band-edge modes migrate into the gap [blue continuous line in
Fig. 6(a)]. The behavior of the hybrid plasmon is fundamentally
different from this. The hybridization of the cavity resonance
and the SPP dispersion line realizes the avoided crossing at
the resonant frequency of the cavity. Hence, the band gap
or the hybridization gap is formed exactly at this resonant
frequency as seen in Fig. 6(b). The bands will reach the
resonant frequency of the cavity resonance asymptotically far
away from the k values of that of the anticrossing point, and will
close the gap. However, the finite k space of the periodic system
precludes the closing of the gap and results in the hybridization
gap at the cavity frequency. Upon introduction of disorder, the
deepest gap modes do migrate into this gap [red continuous
lines in Fig. 6(b)]. However, even at highest disorder strength
(δ = 0.95), the migrating modes only reach the cavity resonant
frequency. The inset emphasizes the Brillouin zone boundary.
Figure 7 compares the deepest gap modes in the dielectric and
hybrid plasmonic systems. In the latter system (red circles),
the deepest modes are pinned below the resonant frequency
of the cavity resonance. The resonant frequency of the cavity
here is 0.58 THz, and the frequency of the gap mode is seen to
get pinned at 0.57 THz. In comparison, the migrated modes
of the dielectric system (blue squares) do not get pinned
down.

The behavior of the bands suggests an immediate influ-
ence on the density of states. For this analysis, we choose
the first band in Fig. 1(a). We choose the dielectric and
plasmonic systems such that the plasmonic hybridization gap
[Fig. 8(a), red line] matches dielectric band gap (blue line).
The corresponding DoS for the dielectric system are depicted
in Fig. 8(b). In the periodic limit, Van Hove singularities occur
at the band edges (dotted lines). As the disorder increases,
the modes migrate into the gap resulting in the Lifshitz tail
(dashed blue line) and realize a finite nonzero DoS at the center
of the gap. At strong disorder, the DoS has a flat profile. On
the contrary, in the hybrid plasmonic system [Fig. 8(c)], no
flattening is seen at any disorder. The Van Hove singularities
in the periodic limit are smoothened, but no such signature of
a Lifshitz tail can be identified, and the DoS at the middle
of the gap remains zero (dashed red line) at any disorder.
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FIG. 6. (a) Dielectric coupled resonator system: Horizontal
dashed line represents the cavity resonance of a single dielectric
resonator. Dotted black line depicts the band arising due to the
coupling of multiple such resonators, as computed from the tight-
binding model. Blue continuous line shows the effect of 95% disorder
on the band. (b) Plasmonic coupled resonator system: Horizontal
dashed line shows the individual cavity resonance, while the angled
dashed line indicates the surface plasmon dispersion. Dotted black
lines show the hybridized bands creating a band gap at the resonance
frequency. Continuous red lines indicate effect of disorder on the
bands, where the lower band is limited by the resonance frequency,
as emphasized in the inset.

The inset in Fig. 8(c) shows the systematic evolution of the
gap width with disorder. In the case of hybrid plasmons (red
squares), the width of the gap never reaches zero, and in fact
at strong disorder, the gap width asymptotically saturates to
a finite value. In comparison, in the dielectric system (blue
circles), the gap closes at δ = 0.5.

Finally, we briefly address the situation wherein the cavities
are not all alike, i.e., the resonant frequencies of the cavities
themselves are random. This case is theoretically treated by
randomising the Ecav in Eq. (2). Here, we only show the result
at strong disorder. Specifically, at each diagonal site, an energy
value was assigned by picking a uniform random number
in the interval [Ecav − 0.95�E/2,Ecav + 0.95�E/2]. Here,

FIG. 7. Blue squares show the frequency of the mode localized
deepest in the band gap for the dielectric system for increasing
disorder. Red circles show the same for the plasmon system, where the
saturation of the mode below the frequency of the cavity resonance
(gray dashed line) is clearly seen.

the �E is the width of the hybridization gap. This resulted
in diagonal disorder in addition to the earlier off-diagonal
disorder. The result is seen in Fig. 9, where the gap in the DoS
profile is seen to close. But the DoS are clearly enhanced at
the hybridization frequency. As can be envisaged, the closure
of the gap in the DoS is a systematic process such that, at
weaker disorder, the gap is still open (not shown). This behavior
differs from conventional Anderson localization. Interestingly,
we note that exactly such a situation arises in low-dimensional
condensed matter systems such as graphene in presence of
adatoms [40].

V. CONCLUSIONS AND DISCUSSIONS

In conclusion, we have theoretically studied Anderson
localization in a hybrid-plasmonic structure consisting of a
coupled array of subwavelength resonators. The system works
at terahertz wavelengths, at which the high conductivity in
metals allows for low losses. Therefore, systematic studies
of simultaneous Anderson localization and dissipation can be
carried out. We have approached the study starting with the
band formation through hybridization of surface plasmons and
cavity resonances. Upon introduction of disorder, Anderson
localized modes are observed at the edge of the hybridization
gap. The finite-element algorithm enables us to identify the
loss length independently from the localization length. The
latter is measured using wave-function profile, which shows
a clear exponential decay originating from the disorder. The
theoretically observed behavior is consistent with our earlier
experimental observation in a terahertz coupled cavity system,
wherein Anderson localization was observed. We have further
studied the regime of strong disorder, wherein previously
unknown behavior was observed. Hitherto, most common
studies on Anderson localization have been carried out in
loss-less dielectric systems, wherein band gaps are formed
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FIG. 8. (a) Dotted red lines show the hybrid plasmonic bands
corresponding to the first plasmon band in Fig. 1. Solid blue lines
indicate dielectric bands for a system designed for a matching band
gap. (b) Evolution of the density of states (DoS) of the dielectric
system with disorder, showing a smoothening of the Van Hove
singularity and flattening of the DoS profile. (c) DoS for the hybrid
plasmonic system shows that the two peaks at the band edges never
merge under disorder and the DoS at the gap center (matching the
cavity resonance frequency 0.28 THz) remains zero. Inset: Systematic
evolution of the gap width, which closes at δ = 0.5 for the dielectric
system (blue circles), but only saturates to a nonzero value for the
plasmonic system (red �’s) even at highest disorder.

through direct or evanescent coupling of resonators, and the
band-gap frequencies are distant from the resonant frequency.
In the plasmonic case, however, the band gap is centered
at the cavity resonant frequency, which forces an unusual
situation wherein the deepest modes in the hybridization gap
cannot transgress the cavity resonant frequency. This also
manifests an interesting behavior of the DoS, in that the
DoS profile never flattens despite the strong disorder. The
number of modes at the center of the hybridization gap remains
zero, disregarding the degree of disorder. Even in systems
with spoof plasmons such as at even lower frequencies, we
expect the gap modes to behave similarly. To our knowledge,
such behavior under Anderson localizing conditions is yet
unstudied. It originates from the nature of the dispersion, which
is similar to the Kondo-like hybridization in metal crystals with

FIG. 9. Density of states of the hybrid plasmon system with strong
disorder (solid blue line) in both, the cavity position and its resonance.
For comparison, the periodic limit (dashed red line) is shown. The DoS
profile shows a maximum at the hybridization frequency.

magnetic impurities. It is of interest to investigate whether con-
densed matter systems with magnetic impurities exhibit similar
consequences.

A natural progression of these studies concerns the obser-
vation of localization in two dimensions. Two-dimensional
disordered systems are interesting due to the existence of
diffuse-localized transition determined by the sample size,
which does not exist in one-dimensional systems. Exponential
decays can be measurable when the individual modes are
isolated in space and frequency. From the above studies, there
is a clear motivation to realize smaller system sizes to access
the component modes of the system that undergo localization
under disorder. However, a tradeoff will have to be made
regarding the system size to cross the transition between light
diffusion and Anderson localization. Taking into account the
effect of aperture shapes on the transmission bands [41], the
subwavelength hole dimensions should be designed so as to
maintain a clear separation in frequency between various bands
so that the modes close to the band edge remain accessible. An
added factor to consider would be the metallic losses. These
can be intuitively assumed to be maximum in the diffusion
regime, given that the plasmonic field will have maximum
spatial extent therein. In the localized regime, as seen from
the above computations, the losses will reduce with increased
disorder as the spatial extent reduces.
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