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Electrodynamics of ferroelectric films with negative capacitance
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We construct a theory of the electrodynamic response of ferroelectric thin films containing periodic domain
textures (PDTs) with 180◦ polarization-oriented domains. We demonstrate that a depolarization field induced by
PDTs gives rise to the negative capacitance of the ferroelectric film. We derive frequency-dependent dielectric
permittivity related to the PDT dynamics across the entire frequency range. We find the resonance mode of
domain oscillations in the terahertz (THz) spectral band and the singular points in the phase of the reflected THz
beam that are intimately related to the negative capacitance. Our findings provide a material platform for the THz
negative-capacitance-based optics of ferroelectric films and for epsilon-near-zero plasmonic THz metamaterials.
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I. INTRODUCTION

Functional properties of ferroelectric films and superlattices
are drastically different from those of the bulk materials.
Extensive experimental [1–7] and theoretical [8–14] studies
revealed new physics that emerges from the periodic domain
textures (PDTs) stabilized by the strains and the depolarization
fields. One of the most striking features of the PDTs is the
manifestation of negative capacitance [15], a phenomenon that
has been the subject of intense recent attention [16–22]. The
interest is motivated by both its fundamental importance and
its high potential for technological applications, in particular,
as a platform for novel low-dissipation field-effect transistors.

Another facet of emergent functionalities of ferroelectric
films arises due to the strain tunability of their multiscale
spontaneous polarization dynamics that provides a wide range
of operational frequencies from a few kilohertz to tens of
terahertz (1 THz = 1012 Hz). The spectral band 104 Hz to
0.3 THz is covered by the relaxation dynamics of the domain
walls (DWs) and polar clusters. The far-infrared spectral region
of 3–30 THz is governed by the soft-mode vibrations of the
polar ions. Recent studies suggested that oscillations of DWs
in PDTs occur in the frequency window of 0.3–3 THz [23–25],
i.e., within the least studied frequency range, referred to as a
THz gap.

Our work steps into the breach and demonstrates that the
resonant behavior of oscillations of PDTs is a collective effect
similar to plasmonic excitations in metals. We find that this
effect is governed by the stiffness of PDTs promoted by
the depolarization field and is a consequence of the negative
capacitance. Namely, the negative low-frequency effective
permittivity associated with the negative capacitance crosses
the zero value within the THz spectrum band, leading to a
resonance behavior in complete analogy with the plasmon
resonance. We investigate the THz optics of the PDT structure
and demonstrate the existence of the topologically protected
phase-singular points of the absolute darkness in the Fresnel
reflection coefficient. These points are a fingerprint of the
negative-capacitance phenomenon.

Formation of the PDT lowers the energy of the depolar-
ization field induced by surface depolarization charges that
appear at polarization termination points. Had the polariza-
tion maintained the same direction throughout the slab [see
Fig. 1(a)], the electrostatic energy stored by the depolarization
field would be proportional to the volume of the whole system
and hence huge. Splitting the system into the PDT implies
that the surface depolarization charges assume the form of
stripes with alternating signs. As a result, the depolarization
field becomes restricted to the near-surface shell [see Fig. 1(b)],
hence drastically diminishing the related electrostatic energy.
Although predicted already in earlier works by Landau and
Lifshitz [26,27] and Kittel [28] in the context of ferromagnetic
systems, the PDT in ferroelectric films has long been viewed as
unlikely until the recent direct experimental evidence of equi-
librium 180◦ stripe domains in strained ferroelectric thin films
of PbTiO3 (PTO) deposited on a SrTiO3 (STO) substrate [1,6]
[as sketched in Fig. 1(b)] and in PTO/STO superlattices [3,5]
[Fig. 1(c)]. The observed PDT behaviors appeared to follow
the theoretical predictions well [8–14]. In particular, it was
found that the monodomain z-oriented state in the unscreened
films is always unstable with respect to the PDT formation.

Imagine, however, that surfaces of the slab get short-
circuited, for example, by the metallic electrodes. Then charges
would acquire the capability of arbitrary sliding along the sur-
faces and flowing between the electrodes, thus compensating
the depolarization field inside the ferroelectric. As a result,
the depolarization energy is nullified, the domain walls creep
away, and the monodomain state stabilizes. This tendency of
a ferroelectric with the PDT to self-generate the charge at its
surfaces can be expressed by attributing to the ferroelectric slab
a negative capacitance. One should bear in mind, however, that
in reality, a slab that is not linked to the electrodes maintains
the PDT since charges cannot propagate across the dielectric
and the charge redistribution described above would not occur.

The origin of the negative capacitance is as follows [see
Fig. 1(d)]. In the absence of the applied electric field, the up-
and down-directed domains are of equal size; hence, both the
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FIG. 1. Formation and dynamics of the periodic domain texture
(PDT). (a) A single-domain state, the ferroelectric polarization and the
depolarization field are shown by the blue and red arrows, respectively.
The depolarization field traverses across the film. (b) The PDT with
the alternating 180◦ polarization domains. The depolarization field is
confined to the surface of the film. (c) A sketch of the ferroelectric-
paraelectric superlattice with PDT. (d) The response of the PDT
structure to variations of the voltage U applied to the ferroelectric-
paraelectric system. The applied voltage induces the electric displace-
ment D satisfying the continuity condition across the entire system.
The average electric field E within the ferroelectric film is directed
opposite the induced average polarization P and displacement D. This
manifests the effect of the negative capacitance. Stray fields are not
shown in order to avoid an overcrowded picture.

average polarization and the average depolarization field are
zero. The applied electric field displaces DWs, unbalancing
the sizes of the domains, which results in the onset of the
average polarization, oriented along the applied field. This,
in turn, generates the depolarization field penetrating the bulk
of the ferroelectric slab from the surface. The direction of the
depolarization field is opposite the polarization and hence to the
applied field and exceeds the latter by the absolute value. As a
result, the total field inside the slab is counterdirected to the in-
duced polarization, which is a hallmark of the negative permit-
tivity, hence the negative capacitance of the ferroelectric layer.

We calculate the permittivity of the PDT and explicitly
demonstrate that it assumes a negative value in the static limit.
Then, writing down the coupled PDT equations of motion
and Maxwell equations, we derive the frequency dependence
of the permittivity of the PDT in the entire frequency range
and find the corresponding resonance mode. We show that
this mode arises in the frequency band where the negative
permittivity changes sign. Finally, based on the calculated
frequency dependence of the permittivity, we derive the THz
optical properties of the ferroelectric layer.

II. RESULTS

A. Negative capacitance

We start the description of the domain electrodynamics with
the static limit and show that the PDT in response to the applied

field develops the fascinating negative dielectric permittivity
εf and, accordingly, the effective negative capacitance, C =
ε0εfS/(2af ), of the ferroelectric layer of surface area S and
thickness 2af .

The applied field is characterized by the electric displace-
ment vector D that is conserved all across the system [see
Fig. 1(d)] and generates the net polarization of the ferroelectric
layer, P ‖ z (the electrostatic fields in the ferroelectric slab with
domains are macroscopically averaged). In our ferroelectric
film the electric displacement is related to the electric field
through

D = ε0ε‖E + Pdw. (1)

Note that in the absence of the applied field, both terms on
the right-hand side of Eq. (1) are zero. The contribution Pdw

stems from the motion of the domain walls. In the absence
of the motion, Eq. (1) reduces to the standard electrostatic
relation between the electric field and electric displacement.
The dielectric constant ε‖ is the intrinsic permittivity of the
ferroelectric material along the polarization direction. The Pdw

term reflects the change in the overall polarization due to the
displacement of the DWs, thus altering the relative contribution
from the “up”- and “down”-oriented domains. This implies
the imbalance of the related depolarization charges of the
opposite sign leading to the nonzero average charge density
σ = Pdw. Thus, the depolarization field Edep = −(ε0ε‖)−1Pdw

penetrates the bulk of the slab and is directed opposite the
applied field D. This field, together with the driving field
ED = (ε0ε‖)−1D, which would settle down if the DWs were
immobile, contributes to the total field, E = ED + Edep .
Hence, the sign of the system’s dielectric permittivity, which
is defined as

εf = D

ε0E
, (2)

depends on the relative magnitude of the oppositely oriented
ED and Edep.

Making use of the relation (1), one obtains

εf = ε‖D
D − Pdw

. (3)

To derive εf , we have to know how the polarization related
to the DW displacement depends on the applied field D. The
calculations presented in the Appendix result in

εf = ε‖ − πς

4 ln 2

(
ε⊥
ε‖

)1/2 2af

d
ε‖, (4)

where the first term stems from the positive intrinsic con-
tribution of ED, whereas the second term, the negative one,
is generated by the depolarizing field Edep, reflecting the
effect of the moving DW. The depolarizing term outweighs
the intrinsic term; hence, the negative dielectric permittivity
settles, provided the film thickness 2af exceeds the domain
width d. The equilibrium value of d can be either taken from the
experiment [1,5] or estimated by the Landau-Kittel square-root
law [26–28] specifically adapted for ferroelectrics in [8,12,29],

d �
√

3.53(ε⊥/ε‖)1/2ςδ2af . (5)
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The resulting typical domain configuration for PTO films is
shown in Fig. 1(b). The DW thickness δ is about 1 nm [30].
In the above formulas ς = 1 + εp/(ε‖ε⊥)1/2, and the values
of intrinsic permittivities along and across the polarization
direction, ε‖ and ε⊥, and of the paraelectric layer, εp, are
specified below; in the experimental range 1 � ς � 4. If the
sandwiching paraelectric layers possess different permittivi-
ties, ε+

p and ε−
p , the effective parameter ςeff is defined by

the relation ς−1
eff = 1

2 [ς−1(ε+
p ) + ς−1(ε−

p )]. In particular, if the
ferroelectric film is deposited on the metallic substrate so that
ε−

p = 1 and ε+
p = ∞, one has ςeff � 2. The polarization profile

in this case can be obtained with the image method.

B. DW oscillations

To quantify the electromagnetic behavior of PDTs, we
derive the dynamic response function γ (ω), defined by the
relation Pdw ω = γ (ω)Dω, for the periodic structure of the do-
main stripes aligned along the y axis which forms in the
ferroelectric layer. The polarization axis, z, is perpendicular
to the film plane, while the in-plane DW motion occurs along
the x axis and the index ω indicates the Fourier transforms
of the respective quantities. We neglect the longitudinal DW
fluctuations, which can broaden the resonance peak [31].

In the harmonic oscillator approximation [32] the driven
dynamics of DWs is given by

μ
..
x(t ) + η

.
x(t ) + kx(t ) = 2PsED(t ), (6)

where x is the coordinate of alternating DW displacements
[Fig. 1(d)], the coefficients k, μ, and η are calculated per unit
of DW area, and 2PsED(t ) is the pressure due to the electric
displacement-induced driving field forcing the DW to move
to flip the surrounding spontaneous polarization from −Ps

to +Ps.
We calculate k as a coefficient at the restoring force

that pushes the domain walls back in order to reduce the
depolarization field, Edep = −�Ps/ε0 = −2(x/ε0d )Ps, aris-
ing upon the displacement of the DW from equilibrium. This
field is induced by the extra depolarization surface charges,
σ = ±�Ps, appearing due to the spontaneous polarization
excess, �Ps = 2(x/d )Ps, and is directed antiparallel to �Ps.
We evaluate the depolarization energy of the system as the elec-
trostatic energy of the dielectric slab with permittivity ε‖ and
with surface charges σ = 2(x/d )Ps as W = (2afσ

2/2ε0ε‖)S,
where S is the surface area. The corresponding energy per unit
area of the displaced DW is w = (d/2Saf )W . Relating it to
the harmonic oscillator stiffness energy kx2/2, we find

k = 4P 2
s

ε0ε‖d
g, g � 1 − 4 ln 2

πς

(
ε‖
ε⊥

)1/2
d

2af
. (7)

The factor g, calculated in the Appendix and confined to the
interval 0 < g � 1, takes into account the nonuniform part
of the depolarization field near the surface caused by the
stepwise distribution of the depolarization surface charges. In
the realistic cases that we consider here, namely, PTO films
with 2af � 10–30 nm, it varies from 0.4 to 0.9.

Equation (6) presumes that the DW is rigid and atomically
narrow. However, in thin films tens of nanometers thick
the DW broadens significantly, especially when approaching
the film surface, due to depolarization effects in the broad

range of temperatures (yet the effective thickness of the DWs
remains smaller than the distance between them as long as the
model holds) [12,14,33,34]. Upon the DW displacement, the
polarization first reverses at the surface and then propagates
into the interior of the film [23]. As a result of the DW
broadening, the underlying pinning potential for the DW due
to the periodic atomic structure gets essentially reduced and
becomes relevant only at low temperatures.

In general, the PDT can be viewed as a meandering two-
dimensional crystal with the spatially nearly random in-plane
orientation of stripes [4]. The elasticity of such a structure is
described by the Landau-Peierls elastic free energy, which is
similar to that of the layered liquid crystal, smectic-A [35]. This
implies that the compression deformations (corresponding to
THz oscillations in our case) are much more rigid than the
bending deformations. The latter is a generic property of
layered systems following from their symmetry. As a result,
the longitudinal dispersion of the PDT stiffness k(q ), with q

being a wave vector along the DW, is small in the long-wave
limit. Therefore, k is not too sensitive to the possible roughness
of the DW on scales much less than the domain size, and the
THz PDT oscillations can be described by the one-dimensional
model given by Eq. (6). Moreover, a purely electrostatic origin
of the stiffness k makes oscillations weakly sensitive to the
orientation of the PDT with respect to crystallographic axes.

The effective DW mass μ and the viscosity η in Eq. (6)
are related to the motion of the material-constituent polar ions
during the displacement of the DWs [36] and to the piezo-
electric effect of the time-varying depolarization field [32].
The magnitude of μ was calculated in ab initio simulations
of DW dynamics in the sub-THz range [23]. We propose
an interpolation formula μ [kg/m2] � 1.3

√
2af [nm] × 10−9,

which matches well the numerical result. Viscosity η is
expressed through the damping factor of the DW motion,
� = η/μ. Since a consistent theory for � is not available,
we chose the value of � that comes from the measurements
of the soft-mode relaxation of polar ions, which has the
characteristic damping time of the order of a few picoseconds.
This time is much shorter than the typical switching time of
the PDT [4] of hundreds of nanoseconds and serves therefore
as a characteristic time restricting the damping of oscillatory
dynamics from below.

C. THZ resonance

In what follows we calculate the complex dynamic permit-
tivity of PDT εf (ω). The resulting plots of the real, Reεf (ω),
and imaginary, Imεf (ω), parts of the dispersion εf (ω) for a
30-nm-thick film of PTO are shown in Fig. 2(a).

The reaction of the ferroelectric layer to the time-dependent
applied field D(t ) = ∫

dω Dωe−iωt is characterized by the
linear response function γ (ω). Solving Eq. (6) by Fourier
transformation, we find

γ (ω) = g−1 ω2
0

ω2
0 − ω2 − i�ω

, ω0 =
(

4P 2
s g

μdε0ε‖

)1/2

, (8)

where the characteristic oscillation frequency is the usual ω0 =
(k/μ)1/2, with k and μ related to the system parameters, as
discussed above. When deriving Eq. (8), we took into account
that Pdw ω = 2Ps (xω/d )z and Dω = ε0ε‖ED ω.
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FIG. 2. Dynamical properties of the PDT. Real and imaginary parts of the frequency-dependent response are shown in red and blue,
respectively. Dashed lines depict the behavior of the system in the absence of dissipation. (a) Dielectric permittivity of the 30-nm-thick film of
the PTO. (b) Response function, defined as Pdw ω = γ (ω)Dω, for the same film. (c) Dielectric permittivity for either the 30-/50-nm sandwich of
the PTO/STO layers or the equivalent superlattice.

Shown in Fig. 2(b) are the real and imaginary parts of
γ (ω) for our sample exhibiting a characteristic Lorentzian-type
form. The latter is a legacy of a singularity at ω0, which
would have been exhibited by a system without the dissipation,
illustrated by the dashed lines. The emergence of the resonance
response to the applied field is clearly demonstrated by the
frequency dependence of the absolute value of the response
function |γ (ω)| for different film thicknesses [see Fig. 3(a)],
reaching its maximum at the resonance frequency ω2

r = ω2
0 −

�2/2 . The dependence of ωr upon the film thickness 2af is
shown in Fig. 3(b). Shown by the blue line in the same panel
is the Landau-Kittel dependence of the domain width d on the
film thickness given by Eq. (5).

Equation (8) enables optimization of the material pa-
rameters and the film thickness to make sure that ωr falls
within the desired THz frequency range. In particular, for the
strained films of the PTO with high spontaneous polarization,
Ps � 0.65 C m−2 (see [37]), relatively low permittivities ε‖ �
100 and ε⊥ � 30, soft-mode damping factor � � 20 cm−1

(0.6 THz) [38], and μ defined as above, the resonance fre-
quency ωr decreases and spans the range from 1.5 to 0.75 THz

FIG. 3. Resonance in the PDT. (a) Resonance behavior of the am-
plitude of the response function |γ (ω)| for different film thicknesses
of the PTO. (b) Dependence of the domain resonance frequency ωr ,
of the damping frequency ωd, and of the domain width d upon the
film thickness. The solid red line stands for ωr of the PTO; the dashed
red line shows ωd of the PTO. The solid and dashed green lines show
ωr and ωd, respectively, for PZT. Green squares display the results of
the ab initio simulations for PZT [23]. The blue solid line displays
the behavior of the domain width d .

when 2af increases from 10 to 40 nm. We find the damping
frequency, ω2

d = ω2
0 − �2/4, of the attenuated oscillations of

domains in PTO, x(t ) = x0e
−(�/2)t sin ωdt , which is slightly

larger than ωr [see Fig. 3(b)]. Remarkably, our formulas
perfectly describe the results of ab initio simulations of DW
oscillations in lead zirconic titanate (PZT) freestanding ultra-
thin films [23]. The calculated damping frequency ωd is shown
by the dashed line in Fig. 3(b); the symbols display the results
of the simulations. Here we used the following parameters
for PZT: Ps � 0.40 C m−2 [37], ε‖, ε⊥ � 350, � � 27 cm−1

(0.8 THz) [39], and the same value for DW mass μ. At the same
time, the resonance frequency of PZT ωr drops rapidly with the
thickness and vanishes above 4 nm. The data in this paragraph
are given for ceramic samples. The values for strained films
can be slightly different.

Making use of the relation γ (ω) = 1 − ε‖/εf (ω) that fol-
lows directly from Eq. (1), we obtain the dynamic permittivity
of a ferroelectric layer:

εf (ω) = ε‖
1 − γ (ω)

= ε‖
ω2

0 − ω2 − i�ω

(1 − g−1) ω2
0 − ω2 − i�ω

, (9)

with 1 − g−1 < 0. At small ω this yields the negative static
permittivity described by Eq. (4). We plot the real, Reεf (ω),
and imaginary, Imεf (ω), parts of complex dispersion εf (ω),
calculated for a 30-nm-thick film of PTO in a paraelectric en-
vironment [see Fig. 2(a)]. At low frequencies Reεf (ω) remains
negative. At high frequencies the oscillations of DWs freeze
out, and therefore, εf (ω) should become positive and equal to
intrinsic permittivity, Reεf (∞) = ε‖ > 0. At frequency ω =
ω0, the real part of the permittivity becomes zero, Reεf (ω0) =
0. This behavior of PDT permittivity resembles that of a metal
with the negative real part of the permittivity below the plasma
frequency at which it becomes equal to zero. Accordingly, this
will lead to the plasma resonance at ω = ω0 in a PDT as a
response to the driving field D.

The discovered resonance mode gives rise to the Drude-
Lorentz frequency response of a biased capacitor consisting of
the ferroelectric layer (of thickness 2af ) sandwiched between
paraelectric buffer layers (each with thickness ap and permittiv-
ity εp). The same response appears in the 2af/2ap ferroelectric-
paraelectric superlattice. The effective permittivity, calculated
for the system of in-series capacitors, ε−1

tot (ω) = αpε
−1
p +
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FIG. 4. Reflection characteristics of the PDT. The p-polarized THz beam reflects from the 2af � 30 nm thick PTO film deposited on the
STO dielectric substrate. (a) The dependence of the reflectance of the film on the substrate R and the dependence of the net reflectance of the
substrate R0 on the incidence angle θ calculated at the PDT oscillation frequency ω0/2π � 0.75 THz are shown by the blue solid and dashed
lines, respectively. The difference between the two is tiny, |�R| = |R0 − R| � 10−3, and, at the figure scale, is seen only under magnification.
In contrast, the reflectivity �R/R0 experiences a drastic variation of about unity and clearly displays a Lorentz-like spike at the Brewster angle
θB � 86.7◦, where R0 almost vanishes. This spike is a fingerprint of the PDT resonance and can be used for its experimental identification. The
inset shows the geometry of the experiment. (b) The 3D color plot of the reflectivity �R/R0 as a function of the frequency and the incident angle
in the immediate vicinity of the Brewster angle θB, marked by the thin blue line. The red line corresponds to the Lorentz-spike-like reflectivity
behavior at the PDT oscillation frequency ω0. This spike smoothens upon deviation from ω0.

αfε
−1
f (ω), results from the interplay of the positive (paralectric)

and negative (ferroelectric) contributions and remains positive
in the static limit in compliance with the energy conservation
law. Here αp = ap/(ap + af ) and αf = af/(ap + af ) are the
relative weights of the respective layers. The adopted in-series
decomposition of the total permittivity into the paraelectric and
ferroelectric contributions is possible provided the thickness of
the paraelectric buffer layer ap is larger than the domain width
d, so that the depolarization stray fields of the domains do not
interact with the electrodes [40] (see also [41]).

The frequency dependence of εtot (ω) for the PTO/STO
30-/50-nm system is shown in Fig. 2(c). One sees (the detail
of the calculations are given below) that Re εtot (ω) maintains a
positive value for low frequencies and reflects the presence of
the oscillatory mode at ω slightly less than ω0. As before, the
dashed line depicts the behavior of Re εtot (ω) in the absence of
dissipation. We thus introduce a new metamaterial operating
in the THz frequency range εtot (ω) tunable by the variation of
the ratio 2af/2ap.

D. Optics

The effective permittivity of a ferroelectric/paraelectric
layered system is calculated as ε−1

tot (ω) = αpε
−1
p + αfε

−1
f (ω)

and can be conveniently written in a standard form:

εtot (ω) = ω2
LO − ω2 − i�ω

ω2
TO − ω2 − i�ω

εtot (∞), (10)

where the characteristic frequencies ωLO and ωTO are the analogs
of the longitudinal and traversal oscillation frequencies in the
polar mode spectroscopy. The former is the DW oscillation
frequency, ωLO = ω0. The latter frequency can be obtained
from the relation ω2

TO/ω
2
LO = εtot (∞)/εtot (0), which is the

analog of the Lyddane-Sachs-Teller relation. Here ε−1
tot (0) =

αpε
−1
p + αfε

−1
f , and ε−1

tot (∞) = αpε
−1
p + αfε

−1
‖ . Equation (10)

describes the dispersion curve in Fig. 2(c). It clearly shows
that the obtained PDT resonance mode freezes out when
the frequency exceeds ω0 and what is left are the molecular
vibrations, including the polar soft-mode oscillations.

The derived dispersion relation for the dielectric permit-
tivity provides the foundation for the description of the THz
optical properties of a ferroelectric film with PDT, in particular,
for finding its complex refraction index, n(ω) = √

ε(ω). This
enables us to devise an approach for inferring the resonance
properties and negative permittivity effects from the optical
measurements in the sub-THz frequency band. Importantly,
in the systems that we address, the typical thicknesses of
the ferroelectric layer, 2af � 10–40 nm, and the PDT period
2d are both less than the wavelength of THz radiation, λ �
1−0.15 mm for 0.3–2 THz. Hence, the THz wave will interact
with the system hosting the PDT like with an ultrathin dielectric
film endowed with the anisotropic dielectric permittivity, the
latter having in- and out-of-plane components ε⊥ and εf (ω),
respectively.

E. Reflection

We consider the situation where the incident THz beam gets
reflected from the dielectric substrate, STO, with dielectric
permittivity εp = 300 + 10i in the sub-THz frequency range,
passing twice through the PTO ferroelectric film with PDT. To
ensure the interaction of the beam with the PDT polarization,
the electric field of the light should be confined to the plane of
incidence; hence, the p-wave polarization geometry should be
used. The experimental setup is shown in the inset in Fig. 4(a).
The calculated reflectance R of such a system is shown in
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the main panel of Fig. 4(a) as a function of the angle of
incidence θ by the solid blue line. The plot illustrates a typical
p-wave reflectance with an amplitude that nearly vanishes
in the vicinity of the Brewster angle of the substrate, θB ≈
arctan (Re εp)1/2 � 86.7◦. For comparison, shown in Fig. 4(a)
by the blue dashed line is also the net contribution of the
substrate. Note that because of the very thin thickness of the
film, it is practically indistinguishable from the reflectance
of the whole system. The difference between them, �R =
R0 − R � 10−3, is seen only under magnification. Thus, to
ensure efficient filtering of the resonance PDT signal from the
background substrate contribution, one has to focus instead on
the relative variance of the signal difference, �R/R0, usually
referred to as reflectively and used to detect the tiny molecular
monolayers adsorbed on the substrate [42] (see Fig. 4).

An advantage of using the reflectivity is that the value of the
substrate reflectance R0 almost vanishes at θB and the use of
the ratio �R/R0 unravels the net contribution of the ultrathin
film per se. Shown by the solid red line, the reflectivity of
our system does experience drastic variation of about unity
and clearly displays the Lorentz-like spike in the vicinity
of θB. This spike is a fingerprint of the PDT resonance and
can be used for its experimental identification. The complete
qualitative behavior of the resonance feature is illuminated by
the three-dimensional color plot of �R/R0 as a function of the
frequency and the angle of incidence [Fig. 4(b)]. The Lorentz
spike’s sharp behavior gets smoothed upon the deviation from
the resonance frequency.

The reflectances R and R0 are calculated as the square of the
magnitude of the corresponding Fresnel reflection coefficients,
R = |rp

123|2 and R0 = |rp

13|2. Here index p refers to the beam
polarization, and indices 1, 2, and 3 correspond to the ordering
of the media: the air, the film, and the substrate, respectively.

The Fresnel reflection coefficient of the substrate-deposited
film is given by the expression [42]

r
p

123 = r
p

12 + r
p

23e
2iβ

1 + r
p

12r
p

23e
2iβ

, (11)

where

r
p

ij = εj ξi − εiξj

εj ξi + εiξj

, i, j = 1, 2, 3, (12)

are the generalized Fresnel reflection coefficients between two
adjacent media and β = 2π (2af /λ)ξ2 is the phase shift of the
electromagnetic wave after a single pass through the film. The
generalized indices of refraction ξi are defined via the angle of
incidence θ1 and dielectric permittivities of the media εi as

ξ1 = √
ε1 cos θ1, ξ2 =

(
ε⊥ − ε⊥

ε2
ε1 sin2 θ1

)1/2

, (13)

ξ3 = (ε3 − ε1 sin2 θ1)1/2. (14)

While the refraction indices ξ1 and ξ3 represent the customary
properties of the air, ε1 = 1, and substrate, ε3 = εp, endowed
with isotropic permittivities, the targeted electrodynamic
response of PDT with negative capacitance is encoded in the
anisotropic refraction index ξ2 that is deduced from [43]. The
latter grasps both the transversal permittivity of the film ε⊥ and
the effective longitudinal permittivity of PDT, ε2 = εf (ω).

The described approach identifies the PDT resonance
behavior by detecting the characteristic Lorentz-like spike
features in the angular and frequency dependences of the
reflectance. However, the developed theory of the electro-
magnetic response equips us with an extraordinary more ad-
vanced technique. Namely, the resonance point ω0 where εf (ω)
changes sign is found, with great precision from the phase map
of the Fresnel coefficient r

p

123. The latter (unlike the real-value
reflectance R = |rp

123|2, where the phase information is lost)
is a complex quantity which is measured, for example, by the
phase-resolved ellipsometry technique [44].

To develop a feasible protocol to observe the frequency do-
main endowed with negative εf let us describe the dependence
r

p

123(θ ) near the Brewster angle in the system with the ideally
transparent substrate with Imεp = 0. If the film were absent,
the Fresnel coefficient would have been real and would have
changed sign upon passing zero at θ = θB. Placing the film
on the substrate gives the contribution, albeit very small, that
pulls r

p

123 into a complex plane, where the trajectory r
p

123(θ )
circumflexes the zero from the positive to negative semiaxis,
acquiring the phase ±π . Equations (11)–(14), which offer a
full description of the electromagnetic response, show that the
direction (clockwise vs counterclockwise) of the phase rotation
is determined by the sign of εf . The frequency ω0 at which
εf changes sign corresponds therefore to a particular point
in the (θ, ω) plane where the phase acquires a factor of 2π

when making a close loop around it and the Fresnel coefficient
r

p

123 vanishes. These zeros of the complex function r
p

123(θ, ω),
where the intensity of the reflected light is zero, are often called
“points of absolute darkness” [45]. They are stable with respect
to small variations of parameters and hence are topologically
protected, and we refer to them as topological darkness
points.

Figure 5(a) displays a three-dimensional (3D) color plot of
the phase and amplitude of the Fresnel reflection coefficient
r

p

123 of the PDT in the 30-nm PTO film as a function of
incident angle and frequency for the case of a transparent
substrate with εp = 300, derived from Eqs. (11)–(14). Two
topological dark points resulting from the negative permittivity
are clearly visible at the manifold depicting r

p

123(θ, ω). The
higher-frequency point corresponds to the above-discussed
sign change of εf . The second, lower-frequency one appears
when εf � −√

εpε⊥. This manifestly illustrates the topological
protection effect: the topological darkness points are not
smoothed but merely shifted by dissipation. Figure 5(b) shows
the same phase plot for PTO on a real STO substrate with
εp = 300 + 10i. One sees that if the dissipation is sufficiently
large, the darkness points merge and cease to exist; that is,
the sharp Brewster-angle singularities in the phase plot get
smoothened.

The obtained results and recent measurements of the neg-
ative capacitance in PDT [15] open a new area of research
in the field of THz optics in ferroelectric materials. Exciting
opportunities open in the area of plasmonic epsilon-near-
zero (ENZ) metamaterials with the unique property that the
electromagnetic wave propagates with almost no phase ad-
vance. Although such materials have been made artificially in
the microwave, visible, and far-infrared spectral ranges [46],
engineered ENZ structures in the THz spectral range have not
been explored so far.
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FIG. 5. The complex Fresnel reflection coefficient r
p

123 of the PDT. (a) The 3D color plot of the phase and the amplitude of r
p

123 as a function
of the frequency ω and the angle of incidence θ for the 2af � 30 nm thick PTO film deposited on the transparent substrate. The substrate
permittivity εp = 300 is real, with a vanishingly small imaginary part. Two topologically protected phase singularity dark points, at which
|rp

123| = 0, appear in the vicinity of the Brewster angle θB at frequencies where εf = 0 and where εf � −√
εpε⊥. These singular points and the

inversion of the phase rotation between them that appears in blue are the fingerprint of the negative permittivity in the low-frequency region
at ω < ω0. (b) The same as (a), but for the finite-transparency STO substrate with εp = 300 + 10i. The singular phase dark points merge and
annihilate. The color legend refers to both panels. The color maps of the phase distribution are shifted down from the |rp

123| = 0 plain for
convenience.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of Energy,
Office of Science, Materials Sciences and Engineering Divi-
sion (V.M.V.) and the European NOTEDEV-FP7-PEOPLE-
ITN-2013 and ENGIMA-H2020-MSCA-RISE-2017 actions
(I.L.).

APPENDIX

Calculations of the electrostatic properties of PDT in the
applied field D generalize the zero-field Landau-Kittel cal-
culations of PDT given in [27] with application to magnetic
domains. The geometry of the system is shown in Fig. 6. The
x axis is directed along the PDT texture, the y axis is parallel to
the domains, and the z axis is directed across the film. Since the
polarization distribution does not change along the y axis, the
problem is reduced to the two-dimensional one in the xz plane.
In the external field the up- and down-oriented polarization
domains have different widths, d+ and d−, with the field-
induced polarization due to DW motion being expressed via the
field dependence of the asymmetry factor κ = (d+ − d−)/2d

as Pdw = κ (D)Ps, with 2d = d+ + d− being the period of the

FIG. 6. The geometry of the system.

structure. Following the relation (3), we express the dielectric
permittivity of the PDT as

εf = ε‖
1 − [κ (D)/D]Ps

. (A1)

The linear dependence κ on D is found by minimization of
the electrostatic energy of the system, considering κ as the
variation parameter.

We start with the derivation of the spatial distribution of
the electric fields inside the ferroelectric (f ) and paraelectric
(p) layers, E(p,f ) = (E(p,f )

x , E
(p,f )
z ), induced by the depolar-

ization surface charges arising at the interfaces between the
f and p layers at z = ±af . These charges, appearing due
to the termination of the alternating polarization in the PDT,
are conventionally presented as σ±(x) = ±ϑ (x)Ps, where the
sign-alternating function ϑ is defined as ϑ (x) = ±1 if x ∈ d±.
The corresponding electrostatic potentials in the f and p layers
∇ϕ(p,f ) = −E(p,f ) satisfy the Laplace equations(

ε‖∂2
z + ε⊥∂2

x

)
ϕ(f ) = 0,

εp
(
∂2
z + ∂2

x

)
ϕ(p) = 0. (A2)

The boundary conditions for the potential at the interfaces are
fixed by the charges σ±(x):

ε0ε‖∂zϕ
(f ) − ε0εp∂zϕ

(p) = ±σ±(x),

ϕ(f ) = ϕ(p). (A3)

System (A2) with boundary conditions (A3) is solved by the
Fourier-series expansion method, taking into account that

σ±(x) = ±ϑ (x)Ps = ±
(

κ +
∞∑

n=1

pn cos qnx

)
Ps, (A4)
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with qn = πn/d and

pn = 4

πn
sin

1 + κ

2
πn. (A5)

After straightforward calculations we obtain

ϕ(f ) = z

af
ϕ0 + Ps

∞∑
n=1

ψn

sinh(
√

ε⊥/ε‖ qnz)

sinh(
√

ε⊥/ε‖ qnaf )
cos qnx,

ϕ(p) = ±ϕ0 − (z − af )
D

ε0εp

±Ps

∞∑
n=1

ψn exp qn(af − |z|) cos qnx, (A6)

where ϕ0 = ∓(ε0ε‖)−1(D − κPs)af are the average values of
the potential at the upper and lower surfaces of the ferroelectric

slab and

ψn = pn

qn ε0
√

ε⊥ε‖ coth(
√

ε⊥/ε‖ qnaf ) + qn ε0εp
. (A7)

The electrostatic energy of the system can be calculated as
the integral

∑
±

∫
dx

∫
[ϕ(x)]z=±af

dσ±(x) over the surfaces
of the ferroelectric layer. The integration over σ± reflects the
self-consistent adiabatic charging of the surfaces, driven by the
self-polarization of the system from the paraelectric state until
the state with the equilibrium spontaneous polarization ±Ps is
achieved inside the domains.

Taking into account the dependences given by (A6) of ϕ(x)
and σ±(x) on Ps, we calculate the energy per unit length of
the PDT (here the factor of 2 is because of the two sides of the
slab):

Fel = 2
1

2d

∫ 2d

0
dx

∫ Ps

0
[ϕ(x, P ′

s )]z=af ϑ (x)dP ′
s = 2

∫ Ps

0
dP ′

s

(
ϕ0(P ′

s )κ + 1

2
P ′

s

∞∑
n=1

pnψn

)

= 2af

ε0ε‖

(
1

2
P 2

s κ2 − DPsκ

)
+ P 2

s

∞∑
n=1

8d

π3n3

sin2(1 + κ )πn/2

ε0
√

ε⊥ε‖ coth(πn
√

ε⊥/ε‖ af/d ) + ε0εp
. (A8)

In the experimentally relevant limit
√

ε⊥/ε‖ af/d � 1,
Eq. (A8) is simplified as

Fel = 2af

ε0ε‖

(
1

2
P 2

s κ2 − DPsκ

)
+ 8

π3ε0ς
√

ε⊥ε‖
df (κ )P 2

s ,

(A9)

where

f (κ ) =
∞∑

n=1

n−3 sin2(1 + κ )
πn

2

κ→0� 7

8
ζ (3) − ln 2

4
(πκ )2.

(A10)

Minimization of (A9) with respect to κ gives

κ = D

Ps

(
1 − 4 ln 2

πς

(
ε‖
ε⊥

)1/2
d

2af

)−1

. (A11)

Finally, making use of (A1), we obtain the dielectric per-
mittivity of the PDT (4). Note that expression (4) can also
be derived from the general expression for the permittivity
of a paraelectric-ferroelectric system given in [47] and also
from the calculations presented in [9] (see the Supplemental
Material [41]).

The DW displacements in the PDT shown in Fig. 1(d) are
given by ±x = ±κd/2. Equating the stiffness energy of the
DW displacement, 2afkx2/2, with (A9) (taken in harmonic
approximation at D = 0 and multiplying by d, i.e., using
the energy for a single DW), we obtain the expression for
the stiffness coefficient k, (7). The Landau-Kittel formula (5)
for the domain width d is obtained by minimization of the
Fel + Fdw energy with respect to d at κ = 0. Here Fdw =
(af /d )wdw is the domain wall energy, calculated per unit
length of the PDT, and wdw is the surface energy of the DW. The
spatial distribution of the electric and polarization fields in the
p and f slabs is found from (A6) as E(p,f ) = (E(f )

x , E
(f )
z ) =

−∇ϕ(p,f ), P(p) = ε0(εp − 1)E(p), P(f ) = (P (f )
x , P

(f )
z ), where

P
(f )
x = ε0(ε⊥ − 1)E(f )

x , P
(f )
z = ε0(ε‖ − 1)E(f )

z + ϑ (x)Ps.
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