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The self-consistent harmonic approximation (SCHA) allows the computation of free energy of anharmonic
crystals considering both quantum and thermal fluctuations. Recently, a stochastic implementation of the SCHA
has been developed, tailored for applications that use total energy and forces computed from first principles.
In this paper, we extend the applicability of the stochastic SCHA to complex crystals, i.e., systems in which
symmetries do not fix the inner coordinates and require the optimization of both the lattice vectors and the atomic
positions. To this goal, we provide an expression for the evaluation of the pressure and stress tensor within the
stochastic SCHA formalism. Moreover, we develop a more robust free-energy minimization algorithm, which
allows us to perform the SCHA variational minimization very efficiently in systems having a broad spectrum of
phonon frequencies and many degrees of freedom. We test and illustrate the approach with an application to
the phase XI of water ice using density-functional theory. We find that the SCHA reproduces extremely well the
experimental thermal expansion of ice in the whole temperature range between 0 and 270 K, in contrast with the
results obtained within the quasiharmonic approximation, that underestimates the effect by about 25%.
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I. INTRODUCTION

Atomic vibrations play a main role in many branches of
physics and chemistry, as they are involved in thermodynamic,
transport, and superconducting proprieties of materials and
molecules. Many spectroscopic techniques, such as Raman
and IR, measure how atoms vibrate. The standard approach to
describe vibrations is the harmonic approximation, in which
the Born-Oppenheimer (BO) energy surface is approximated
as a 3N -dimensional paraboloid around the ionic positions.
The solutions of the harmonic Hamiltonian are well-defined
noninteracting vibrational quasiparticles, phonons with an
infinite lifetime and temperature-independent spectrum. An-
harmonic effects, due to higher orders in the BO energy
surface, introduce interactions between phonons. As a result,
phonons acquire a finite lifetime that is responsible for thermal
transport. Furthermore, phonon spectra become temperature
dependent.

Anharmonic effects are commonly accounted for by pertur-
bation theory, the validity range of which is limited only when
the harmonic contribution dominates in the range defined by
the quantum zero-point motion (ZPM). This is not the case
of many interesting phenomena, such as systems undergoing
a displacive second-order structural phase transition in which
a phonon branch softens as a function of temperature, e.g.,
charge-density waves and ferroelectrics [1–12], or in solids
largely affected by the ZPM, for example in hydrides or in
molecular crystals containing H, like water and high-pressure
phases of hydrogen [13–18]. Classical molecular dynamics
(MD) for ions or methods based on it can be used to extract the

nonperturbative anharmonic renormalized phonon dispersion
[19–27]. However, within these approaches, quantum effects
on nuclei are neglected. These methods are then inappropriate
below the Debye temperature.

In order to correctly account for both quantum and anhar-
monic effects, the ideal technique is path-integral molecular
dynamics (PIMD) [28–30], but its demanding computational
cost limits its applicability to systems with few atoms or to the
use of empirical potentials. To overcome these problems many
self-consistent approximations have been developed [31,32].
Among them, the self-consistent harmonic approximation
(SCHA) allows one to describe anharmonicity through a full-
quantum variational theory. The stochastic implementation of
the SCHA [16] (SSCHA) allows us to apply the powerful
variational SCHA method to many systems with a lower
numerical effort than MD and PIMD, making possible the
calculation of nonperturbative anharmonic effects from first
principles.

So far, the applications of the SSCHA method [15–17,33–
35] have been limited to simple systems with high symme-
try. The main reason is that the variational minimization as
formulated in Ref. [16] can yield “runaway solutions” and
become very inefficient in complex crystals that show a wide
range of phonon frequencies and many degrees of freedom.
Another limitation of the original SSCHA formulation is that
it needs finite-difference approaches to estimate the effect
of ionic fluctuations in the stress tensor, as it happens in
the quasiharmonic approximation (QHA), which is extremely
cumbersome for noncubic crystals. This hinders cell relaxation
within the SSCHA.
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In this paper, we efficiently overcome these difficulties
by developing an equation for the stress tensor within the
SCHA. Furthermore, we develop a more robust minimization
algorithm based on an analytical preconditioner combined with
a nonlinear change of variables that allows for efficient many-
variables minimizations. Our developments pave the way to
primitive cell relaxations including quantum and anharmonic
effects avoiding finite difference approaches. Thanks to the
improvements, we are able to drop the symmetry constraints
and to study systems with little or no symmetry, as it is in
molecular crystals.

We illustrate and benchmark the method with the phase XI
of ice (H2O), the perfect prototype of a complex molecular
crystal. Ice XI is the ordered phase of common ice formed
below 72 K in the presence of a small amount of an alkali-
metal hydroxide [36]. It is commonly used to study quantum
effects in water thanks to its great similarity to normal ice
(Ih) [37,38]. Ice is characterized by the interplay between
intramolecular covalent OH bonds and intermolecular hydro-
gen bonds. The great difference in strength of intermolecular
and intramolecular forces makes ice phases acquire a very
broad spectrum for their vibrational energies, from the very
low-energy rotons to the large-energy vibrons. Moreover, this
structure of ice experimentally exhibits at low temperature
negative thermal expansion [39] and the “anomalous isotope
volume effect” [37–40]: if hydrogen is replaced by deuterium,
the crystal volume expands by about a 0.1%. This is the
opposite behavior of what is usually observed when a heavier
isotope is substituted in the crystal. These features make the XI
phase of crystal ice a perfect benchmark for the here developed
SSCHA algorithm (Secs. VI and VII).

This paper is organized as follows. We recall the basis
of the SCHA algorithm in Sec. II. We introduce the stress
tensor in the SCHA formalism in Sec. III. We discuss the
stochastic implementation of the algorithm in Sec. IV. We face
the issues of the SSCHA minimization algorithm in Sec. V:
we get an ansatz on the condition number of the minimization
process (Sec. V A), and provide two changes of variables that
suppress it (Secs. V B and V C). Then, we benchmark the
SCHA algorithm in ice XI in Sec. VI. Finally, Sec. VII reports
the results computed with density functional theory (DFT) in
the unit cell of ice XI, compared with the QHA. In Sec. VIII
we summarize the main results of this paper. The paper is
completed with three appendices, where the mathematical
derivations of the presented equations are provided.

II. THE SELF-CONSISTENT HARMONIC
APPROXIMATION

The SCHA is a variational principle on the BO free energy.
The nuclear quantum Hamiltonian of a generic system can be
defined in the BO approximation as

H =
N∑

n=1

3∑
α=1

pα
n

2

2Mn

+ V ( �R,{�ai}), (1)

where V is the BO energy surface, Mn is the mass of the nth
atom, pα

n and �R (Rα
n ) are the momentum and position operators

of the nuclei in the periodic cell (or supercell), N is the number
of atoms, and {�ai} are the three unit-cell vectors. The α index

identifies the Cartesian coordinate. Fixing the temperature T

and the volume (i.e., the cell vectors {�ai}), the free energy of
the ionic Hamiltonian H is

F ({�ai}) = 〈H 〉ρH
+ kbT 〈ln ρH 〉ρH

, (2)

where ρH is the equilibrium density matrix

ρH = e−βH

Tr e−βH
, β = 1

kbT
, (3)

and the brackets 〈O〉ρH
indicate the average of the observable

O according to the ρH density matrix:

〈O〉ρH
= Tr [ρHO]. (4)

The equilibrium density matrix satisfies the free-energy least
principle. Given a trial density matrix ρH, we can define a free-
energy functional the minimum of which is the free energy:

F({�ai})[ρH] = 〈H 〉ρH + kbT 〈ln ρH〉ρH , (5)

F ({�ai}) = min
ρH

F({�ai})[ρH]. (6)

The SCHA consists in the restriction of the possible trial
density matrices to the equilibrium one obtained from a
harmonic Hamiltonian:

H �R,� =
N∑

n=1

3∑
α=1

pα
n

2

2Mn

+ V�, �R( �R), where (7a)

V�, �R( �R) = 1

2

N∑
n=1
m=1

3∑
α=1
β=1

uα
n�αβ

nmuβ
m, and (7b)

uα
n = Rα

n − Rα
n, (7c)

ρH = ρ �R,� = e−βH �R,�

Tr e−βH �R,�

. (7d)

Here uα
a is the displacement of the ath atom along the α

direction with respect to a central position �R, and �
αβ
nm is

the matrix element of the real-space force constant matrix
(we use bold font to indicate tensors and matrices). With
the introduction of the auxiliary harmonic Hamiltonian it is
possible to recast the free energy as

F( �R,�,{�ai}) = F� + 〈V − V�, �R〉
ρ �R,�

, (8)

where F� is the exact free energy of the harmonic Hamiltonian:

F�(T ) =
3N∑
μ=1

[
h̄ωμ

2
+ 1

β
ln
(
1 − e−βh̄ωμ

)]
, (9)

where ωμ and �eμ are, respectively, the eigenvalues and eigen-
vectors of the � matrix divided by the atomic masses:

N∑
t=1

3∑
β=1

�
αβ
st√

MsMt

eμ
β
t

= ω2
μeμ

α
s
. (10)

The real free energy can, therefore, be approximated as the
minimum of the free-energy functional [Eq. (8)] with respect
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to �R and �:

F( �R,{�ai}) = min
�

F( �R,�,{�ai}), (11a)

F({�ai}) = min
�, �R

F( �R,�,{�ai}). (11b)

From now on, when we drop either the �R or � symbol, we
mean the quantity computed in the value of that variable that
minimizes the free energy. For example, the equilibrium SCHA
density matrix is just ρ.

One of the advantages of using the harmonic Hamiltonian to
restrict the ρH space is that we have a trivial physical interpre-
tation of the minimization parameters. In fact �R represents the
centroid positions of the atoms, i.e., the anharmonic average
positions as measured by, e.g., diffraction experiments:

�R = 〈 �R〉ρ . (12)

In the same way, � is related to the thermal and quantum fluc-
tuations and defines the real-space density matrix broadening.
Within the harmonic auxiliary Hamiltonian, the probability
distribution function defined by the real-space density matrix
is a product of Gaussians:

ρ �R,�(�u) = 〈�u|ρ �R�|�u〉 ,

ρ �R,�(�u) =
√

det (ϒ/2π ) exp

⎛
⎝−1

2

∑
stαβ

ϒ
αβ
st uα

s u
β
t

⎞
⎠ (13a)

where

ϒ
αβ
st =

√
MsMt

∑
μ

2ωμ

(1 + 2nμ)h̄
eμ

α
s
eμ

β
t

(13b)

and nμ are the boson average occupation number for the μ

mode. It is important to notice that ωμ and �eμ [Eq. (10)]
are not directly equal to the physical phonons since they are
constrained to be positive defined [35]. Instead, they are related
to quantum and thermal fluctuations: they uniquely define the
ϒ tensor.

It is possible to define the SCHA force as the derivative of
the free energy [Eq. (11a)] with respect to the nuclear average
positions:

− ∂F
∂Rα

n

( �R,{�ai}) = 〈
f α

n − fH
α
n

〉
ρ �R

, (14)

where �f and �fH are, respectively, the BO and harmonic forces:

f α
n = − ∂V

∂Rα
n

( �R,{�ai}), (15)

fH
α
n = −∂V �R,�

∂Rα
n

= −
N∑

m=1

3∑
β=1

�αβ
nmuβ

m. (16)

It is interesting to notice how the harmonic potentialV �R,� does
not depend explicitly on the unit-cell vectors {�ai}, while the BO
energy V ( �R,{�ai}) does.

To numerically minimize the SCHA free energy it is possi-
ble to use the steepest descent (SD) or conjugate gradient (CG)
methods [41], both based on the knowledge of the gradient of

the function to minimize. This can be expressed as a function
of the averages of the BO and harmonic forces [16]:

∇�F( �R,�,{�ai}) = −
∑
stαβμ

√
Mt

Ms

(
eμ

α
s
∇� ln aμ + ∇�eμ

α
s

)

× 〈[
f α

s (�u) − fH
α
s (�u)

]
u

β
t

〉
ρ �R,�

eμ
β
t
,

(17a)

∇Rα
s
F( �R,�,{�ai}) = − 〈f α

s − fH
α
s

〉
ρ �R,�

. (17b)

In the next section, we show how to implement the SCHA
in an isobaric ensemble, allowing for the relaxation also of
the unit cell. This is achieved thanks to the introduction of the
stress tensor in the SCHA framework.

III. THE STRESS TENSOR IN THE SELF-CONSISTENT
STOCHASTIC APPROXIMATION

To minimize the free energy with respect to the lattice
parameters in a periodic system, knowledge of the stress tensor
is crucial. The SCHA stress can be defined as

Pαβ ( �R,{�ai}) = − 1




∂F( �R,{�ai})
∂εαβ

∣∣∣∣∣
ε=0

, (18)

where 
 is the volume of the system and the strain tensor
εαβ identifies a generic deformation, where both the lattice
parameters and the average central position are affected:

a′
i

α = ai
α +

3∑
β=1

εαβai
β, (19a)

R′α
n = Rα

n +
3∑

β=1

εαβRβ
n . (19b)

This is equivalent to performing a strain keeping fixed the
internal crystal coordinates of the system. The final result can
be divided into three main contributions (see Appendix A for
the proof):

Pαβ ( �R,{�ai}) = P H
αβ ( �R,{�ai}) + P FLC

αβ ( �R,{�ai})
+P FRC

αβ ( �R,{�ai}), (20)

where theP H
αβ ( �R) is the static contribution, i.e., the stress tensor

computed without quantum and thermal fluctuations (classical
with T = 0), P FLC

αβ is the contribution of the fluctuations to the
stress, and P FRC

αβ is an extra term that takes into account the
work necessary to move the centroids according to the applied
strain ε:

P H
αβ( �R,{�ai}) = − 1




∂V ( �R,{�ai})
∂εαβ

∣∣∣∣∣
ε=0

, (21a)

P FLC
αβ ( �R,{�ai}) = 〈P H

αβ ( �R,{�ai})〉ρ �R
− P H

αβ ( �R,{�ai})

− 1

2


N∑
s=1

〈(
fH

α
s uβ

s + fH
β
s uα

s

)〉
ρ �R

, (21b)
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P FRC
αβ ( �R,{�ai}) = 1

2


N∑
s=1

(
Rβ

s

〈
f α

s − fH
α
s

〉
ρ �R

+Rα
s

〈
f β

s − fH
β
s

〉
ρ �R

)
. (21c)

The last term in Eq. (21b) makes fluctuations on pressure
disappear in a pure harmonic crystal (see Appendix A). The
force term, i.e., Eq. (21c), is nonzero only if the SCHA
centroids �R are not in the equilibrium configuration, i.e., the
SCHA force Eq. (14) on each atom is not zero, and it is
independent of the choice of the origin (the sum of the forces
over atom indices is zero).

Equation (21) can be computed once we know the BO
surface V ( �R,{�ai}), the atomic force f α

s ( �R,{�ai}), and the stress
tensors P H

αβ( �R,{�ai}) for each ionic displacement �R in the

ensemble of the configurations distributed according to ρ �R( �R).
In Sec. IV we discuss an efficient stochastic implementation
to numerically compute this average.

The computation of the SCHA stress tensor enables the
complete unit-cell relaxation in isobaric conditions (fixing the
external P ∗ pressure). This is done by minimizing the Gibbs
free energy, that is obtained from the Helmholtz free energy
through the Legendre transform:

G( �R,P ∗) = F( �R,{�ai}) + P ∗ 
({�ai}). (22)

IV. THE STOCHASTIC IMPLEMENTATION

The SCHA algorithm can be implemented by performing
the stochastic evaluation of all the averages. Thanks to the fact
that the density matrix is a multidimensional Gaussian function
[Eq. (13a)], it is possible to generate an ensemble distributed
according to ρ �R,� without any Metropolis algorithm [16], and

the average of a generic observable O( �R) can be computed
through Monte Carlo integration:

〈O( �R)〉ρ �R,�
= 1

Nc

∑
�RI

O( �RI ), (23)

where Nc and �RI are, respectively, the dimension and the
configurations of the ensemble. To avoid regenerating the en-
semble at each minimization step it is convenient to introduce
the importance sampling reweighting [16]:

ρI = ρ �R,�( �RI )

ρ �RSG,�SG
( �RI )

(24)

where ρ �RSG,�SG
( �RI ) is the density matrix used to extract the

ensemble configurations, i.e., computed with the starting guess
for the centroid positions �RSG and the auxiliary dynamical
matrix �SG. Then, the average of the observable O in a generic
value of �R and � can be computed through

〈O( �R)〉ρ �R,�
= 1

Nc

∑
�RI

ρIO( �RI ). (25)

The reweighting procedure allows us to overtake the usually
high computational effort required by the SSCHA minimiza-
tion. In fact, the computation of the SCHA free-energy gradient
[16], as well as the SCHA stress tensor [Eq. (21)], requires

only the knowledge of the first derivative of the BO energy
in the ensemble, that can be obtained just in one total-energy
calculation per configuration thanks to the Hellmann-Feynman
theorem. Moreover, the total-energy calculation can be com-
puted only one time in the starting ensemble of configurations
�RI , and then recycled on the whole minimization thanks to the

reweighting. When the new variables �R and � are too distant
from the initial ones, �RSG and �SG, the ensemble is no longer
able to provide a good estimation of the stochastic averages and
it must be reextracted. Thus, the overall computational effort
to run an ab initio SSCHA calculation is given by the number
of times the initial ensemble is regenerated.

It is crucial to improve the reliability of the ensemble, in
order to minimize the number of times the initial ensemble
is regenerated during the SSCHA free-energy optimization.
To this purpose, we adopt both a symmetrized sampling and
a stochastic threshold to evaluate the important sampling
accuracy.

The real-space density matrix is a symmetric distribution,
ρ �R,�(�u) = ρ �R,�(−�u), and all observables required in the
SSCHA free-energy minimization are purely even or odd terms
of the Taylor expansion of V ( �R,{�ai}) in ( �R − �R). To reduce the
stochastic noise we implemented the symmetrized sampling
[42]: for each displacement �u generated, also its opposite
−�u is included in the ensemble. This analytically cancels all
the noncontributing terms in the Taylor expansion of the BO
energy. It is important to notice that this advantage is lost when
�R 	= �RSG. However, we still find the symmetrized sampling

to be convenient to reduce the stochastic noise even if the
centroids do not match perfectly the starting guess.

The previous estimator of the importance sampling ac-
curacy used by Errea et al. [16] was the check on the ρI

normalization: ∣∣∣∣∣ 1

Nc

Nc∑
I=1

ρI − 1

∣∣∣∣∣ < η. (26)

However, this threshold can be exceeded if all the weight
constantly drifts from the uniform value, or it can remain
satisfied if they spread a lot. Thus, a much better estimator that
considers the spreading of the different configuration weights
can be implemented. In order to improve the reliability of the
reweighting procedure we found more reliable the Kong-Liu
effective sample size [43]:

Neff =
(∑

I ρI

)2∑
I ρ2

I

< Nc. (27)

A critical threshold η′ can be defined as

Neff

Nc

> η′. (28)

If the weight ρI of a configuration goes to zero, it does not
contribute to the averages. The effective sample size counts
how many configurations are actually contributing to the
Monte Carlo average [Eq. (25)], even if the ρI are properly
normalized.

We set η′ = 0.6 in all the simulations reported in this
paper. If the critical threshold is overcome, the minimization
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is stopped and an ensemble is generated with the final trial
density matrix ρ �R,�.

V. MINIMIZATION INSTABILITIES
AND RUNAWAY SOLUTIONS

The SSCHA algorithm consists in minimizing the free en-
ergy through the stochastic evaluation of its gradient [Eq. (17)],
employing the SD or CG algorithm, and taking advantage
of reweighting to perform multiple SD or CG steps without
recomputing energies and forces of the ensemble at each
step. However, this minimization procedure was empirically
found to be very difficult in some systems, especially in those
near a structural instability, where a phonon mode frequency
softens to zero, while all the other modes are substantially
higher in energy, or molecular crystals, in which hard inter-
molecular vibrations coexist with low-energy intramolecular
modes. In these cases, of very great physical interest, the
stochastic free-energy minimization requires a large number of
ensemble regenerations (and consequently a large number of
first-principles force calculations) to converge. Moreover, the
minimization can lead to runaway solutions: fake nonphysical
solutions of the SCHA self-consistency where the auxiliary
dynamical matrix � is not positive defined.

To understand the convergence properties we consider the
SCHA free energy close to the minimum. It can be approxi-
mated as a quadratic form in the minimization variables ( �R and
�). Under this condition, the SCHA free energy is expressed
by the Hessian matrix A with respect to those variables. From
the Hessian matrix it is possible to define the condition number
[44] C, as

C = max λA

min λA
, (29)

where λA is a generic eigenvalue of the A matrix. In the limit
in which the number of degrees of freedom is much greater
than the number of minimization steps, the SD and the CG
algorithms converge into a fixed threshold with almost N steps
proportional [41] to

NSD ∝ C, (30a)

NCG ∝
√

C. (30b)

In the SCHA case, the number of minimization steps is
proportional to the number of times the critical threshold η′
is overcome. Then, this number must be carefully optimized,
since each time the ensemble is reextracted the ab initio ener-
gies and forces for each configuration must be computed. This
calculation is the overall computational cost of the algorithm.
In the next sections, we provide an ansatz for the condition
number, unveiling that it dramatically diverges in the aforesaid
cases. We further provide two ways to prevent this divergence,
paving the way for the application of SSCHA in these systems.

A. Hessian matrix

In this section, we provide an analytical guess of the free-
energy Hessian matrix A with respect to the minimization
variable �. In general, this is not possible, since computing
the real Hessian matrix corresponds to solving exactly the

problem. However, we can perform the computation in an
analytical test case that, hopefully, will enclose all the physics
of the minimization problems incurred so far. This is a purely
harmonic system, described by a harmonic Hamiltonian. From
now on we introduce a compact notation to describe both
Cartesian and atomic indices (va = vα

s ):

H = 1

2

∑
a

(pa)2

2Ma

+ 1

2

∑
ab

uaKabub. (31)

The free-energy Hessian matrix with respect to the �

variable can be computed analytically. The steps that lead to
the following result are reported in Appendix B:

Aabcd
� = ∂2F( �R,�,{�ai})

∂�ab∂�cd

∣∣∣∣∣
�=K

= 1

2
PabPcd (�abcd + �abdc),

(32)

where the � rank-4 tensor is the same as that introduced by
Bianco et al. [35], and P is a symmetrization factor:

�abcd = − h̄

4

∑
μν

1

ωμων

ea
νe

b
μec

νe
d
μ√

MaMbMcMd

×

⎧⎪⎪⎨
⎪⎪⎩

2nν + 1

2ων

− dnν

dωμ

ων = ωμ

nμ + nν + 1

ωμ + ων

− nμ − nν

ωμ − ων

ων 	= ωμ

, (33)

Pab =
√

2(1 − δab) + δab. (34)

Here the ωμ and �eμ are the frequencies and polarization vectors
of the K matrix. These are, indeed, equal to the � matrix in
the minimum of the SCHA free energy, and represent the real
phonons of the system.

The � matrix can be diagonalized analytically if we con-
sider the case of all equal masses:∑

cd

�abcdec
μed

ν = λ̃μνe
a
μeb

μ. (35)

We can obtain an easy expression of the spectrum of the
Hessian matrix in the pure quantum limit T → 0 and the pure
classical limit T → ∞:

lim
T →0

λ̃μν = − h̄

4M2

1

ωμων(ωμ + ων)
, (36a)

lim
T →∞

λ̃μν = − 1

4βM2

1

ω2
μω2

ν

[
1 + ωμων

(ωμ + ων)2

]
. (36b)

Therefore, the Hessian matrix spectrum goes as ω−3
μ in the

quantum limit and ω−4
ν in the classical one. We can compute

the condition numbers, as defined in Eq. (29):

C�,T =0 ≈
(

ωmax

ωmin

)3

, (37a)

C�,T →∞ ≈
(

ωmax

ωmin

)4

. (37b)

This unveils the pathology in the SSCHA minimization
if the gradient is taken with respect to � as presented in
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Ref. [16] for the mentioned systems: when we have a structural
instability, there is a phonon mode that softens to zero (ωmin →
0), producing a diverging condition number C → ∞. In the
same way, molecular crystals have a broad spectrum, with a
very large difference between the highest vibron modes and
the lowest intermolecular ones (for example, in common ice
we have ωmax/ωmin ∼ 103). This yields extremely high values
of the condition numbers, that makes the minimization really
difficult and requires lots of energy and force recalculations
to achieve a good minimization. This obviously hinders the
fully ab initio application of the SSCHA method in complex
systems.

B. Nonlinear change of variable

The condition number is a function of the minimization
variables. Therefore, a simple change of variables can result
in a powerful improvement in the minimization algorithm. In
this section, we show that it is possible to almost completely
solve the divergences occurring in the condition numbers
[Eq. (37)] with a simple nonlinear change in the � auxiliary
matrix. Moreover, we can also completely cancel the aforesaid
runaway solutions. The runaway solutions are fake nonphysical
solutions of the SCHA that may arise during the minimization
if the � matrix is not positive definite. In order to avoid this
problem, one could perform a constrained minimization. It is
difficult to implement this kind of constraint with the SD or
CG algorithm. We find it much more convenient to introduce a
nonlinear change of variables, where we replace the auxiliary
dynamical matrix � with one of its even roots:

� → 2n
√

�. (38)

This mathematically constrains the minimization to have only
positive defined matrices �. Does this nonlinear change im-
prove the condition number on the minimization?

We can compute the Hessian matrix A√
� with respect to

the square root of � where � minimizes the free energy:

A√
� = ∂2F( �R,�,{�ai})

∂
√

�∂
√

�
= �A� + 2

√
�A�

√
� + A��,

(39)

where A� is the rank-4 Hessian with respect to � [Eq. (32)].
The procedure can be iterated to obtain any even root of�. Here
we report also the 4

√
� expression, since, as we will show, it

has a very favorable condition number:

A 4√
� =

√
�A√

� + 2 4
√

�A√
�

4
√

� + A√
�

√
�. (40)

We can easily compute the condition numbers in the new
variables if all the masses are equal substituting Eq. (32) into
Eqs. (39) and (40) (recalling that � ∼ ω2):

C 2√
�,T =0 ∼

(
ωmax

ωmin

)
, C 2√

�,T →∞ ∼
(

ωmax

ωmin

)2

, (41)

C 4√
�,T =0 ∼ 1, C 4√

�,T →∞ ∼
(

ωmax

ωmin

)
. (42)

The nonlinear change of variable � → 4
√

� both avoids the
nonphysical runaway solutions constraining the minimization
space to admit only positive defined matrices and strongly

Compute the gradient:
∇ΦF(R,Φ, { i})

Get the square root:
Φ → √

Φ

Get with the chain rule
∇√

ΦF(R,Φ, { i})
Eq. (43)

Get the 4-th root:√
Φ → 4

√
Φ

Get with the chain rule
∇ 4√

Φ
F(R,Φ, { i})
Eq. (44)

Perform the step
with SD or CG:

4
√

Φ
(n) ∇ 4√

Φ
F

−→ 4
√

Φ
(n+1)

Get the new Φ:
4
√

Φ
(n+1) → Φ(n+1)

FIG. 1. Flowchart on a minimization step with the � → 4
√

�

change of variables.

suppress the condition number, making it independent on the
phonon frequencies in the T = 0 case and suppressing it by a
fourth root in the classical case.

In practice, the minimization in the 4
√

� is performed by
computing the free-energy gradient with respect to the new
variable adopting the chain rule on the derivatives:

∇√
�F( �R,�,{�ai}) =

√
�∇�F( �R,�,{�ai})

+∇�F( �R,�,{�ai})
√

�, (43)

∇ 4√
�F( �R,�,{�ai}) = 4

√
�∇√

�F( �R,�,{�ai})
+∇√

�F( �R,�,{�ai}) 4
√

�. (44)

The minimization step is updated as described by the flowchart
reported in Fig. 1.

C. Preconditioning

Even if the fourth root change of variable considerably
improves the condition number, for high-temperature calcula-
tions it still depends on the phonon frequencies linearly, which
could be problematic when a phonon mode goes close to zero
near a structural phase transition. The SSCHA minimization
algorithm corresponds to finding the zeros of the free-energy
gradient:

∇�F( �R,�,{�ai}) = 0. (45)

From the above system, the SD and the CG algorithms are
derived. However, since A� is a positive defined matrix, the
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solution of the SCHA equation coincides with the solution of
the auxiliary problem:

A−1
� ∇�F( �R,�,{�ai}) = 0. (46)

It can be shown [41,44] that the condition number on the
problem defined by Eq. (46) is equal to 1 if A is the exact
Hessian matrix of F( �R,�,{�ai}). We can, therefore, use the
analytic guess of the Hessian matrix A provided in Eq. (32) to
redefine the minimization algorithm. The SD algorithm on the
problem of Eq. (46) becomes

�(n+1) = �(n) − λA−1
� ∇�F( �R(n),�(n),{�ai}), (47)

where λ is the minimization step. Another advantage of using
the auxiliary problem is that, if A is exact and F( �R,�,{�ai}) is
quadratic, the minimization arrives in the minimum of the free
energy in only one step with λ = 1. In a very similar way also
the CG algorithm can be redefined for the auxiliary problem:

d(0) = 0, (48a)

d(n+1) = A−1
� ∇�F (n+1) + ∇�F (n+1) A−1

� ∇�F (n+1)

∇�F (n) A−1
� ∇�F (n)

d(n),

(48b)

�(n+1) = �(n) − λd(n). (48c)

Here, we omit the explicit dependence of the free energy
∇�F (n) = ∇�F( �R(n),�(n),{�ai}) for simplicity.

Since we can compute the Hessian matrix even of the fourth
root problem, we can combine the two approaches of the
nonlinear change of variable and the preconditioner to achieve
a minimization constrained only on the positive defined � with
the smallest condition number.

D. Hessian in the �R vector

The analysis on the minimization conducted so far in-
vestigates only the minimization problems faced with the
� parameter of the free energy. This is usually the most
problematic part of the minimization, since, being a matrix,
� has many more degrees of freedom than the centroid
positions. Furthermore, the centroid positions are defined in
the unit cell, while the force constant matrix is a supercell
quantity. However, for generality, it is very easy to provide an
approximation also for the Hessian matrix of the free energy
with respect to the �R variables:

Aab
�R = ∂2F( �R,�,{�ai})

∂Ra∂Rb

∣∣∣∣∣
�

. (49)

Differences and similarities between this expression and the
free-energy Hessian studied in Ref. [35] are discussed in
Appendix C. Since we are both neglecting mixed terms in the
Hessian, and we are taking an approximated Hessian also for
the � minimization, we chose

A �R = �SG. (50)

This expression is correct when the �R and the � degrees of
freedom are simultaneously minimized. Moreover, Eq. (50)
provides a good preconditioner as it is always positive defined,

and it does not require any additional computational effort to
the algorithm.

The eigenvalues of � are related to the square of the
phonon frequencies for harmonic systems, therefore we can
approximate the condition number on the �R variables as

C �R ∼
(

ωmax

ωmin

)2

. (51)

This is not as pathological as the condition number seen on
the � minimization. However, we can introduce a precondi-
tioner in the same way as described in Sec. V C to handle
easier minimization in low-symmetry systems, as molecular
crystals, where also many centroid degrees of freedom must
be optimized, and the condition number (51) can be of the
order of 106. Preconditioning also the �R variables allows one
to have a dimensionless step λ for the minimization algorithms
[Eqs. (47) and (48c)], with a clear advantage of reducing the
human time necessary to optimize the two λ steps for the �

and �R minimizations. We remark that the terms in the Hessian
matrix obtained by the mixed derivatives in �R and � are
neglected.

The new SCHA algorithm flowchart is shown in Fig. 2.

VI. TESTS ON ICE XI (H2O)

In order to present the impressive enhancement in the
minimization procedure obtained thanks to the combination
of the preconditioning with the root representation, we report
the calculation on phase XI of ice. The difficulties of applying
the SSCHA to this structure arise due to the presence of both
hard covalent intramolecular bonds and soft intermolecular H
bonds, resulting in a broad phonon spectrum.

Ice XI is the proton ordered phase of common ice [36] that
is stable below 72 K. This is a typical prototype of a molecular
crystal also for the low symmetry of the structure. It belongs
to the Cmc21 group, with four symmetry operations. The unit
cell contains four water molecules (12 atoms). The number of
symmetry independent SCHA degrees of freedom is 11 for the
inner coordinates (Wyckoff positions) and 159 for the unit-cell
force-constant matrix. All the 11 inner coordinates, as well as
the 159 parameters in the force-constant matrix, are allowed
to move in the SSCHA.

We restricted the calculation to the unit cell, as we presented
this example as a test case; however, all the methods developed
here (both the minimization strategy and the stress tensor
computation) are defined on an arbitrary large supercell.

In this section, we use a classical force field that explicitly
includes anharmonicity of the water molecule to compute
energies and forces. The model is q-SPC/FW+anh [45].

A. Stress tensor test

Here we test the anharmonic effects on the stress tensor with
q-SPC/FW+anh. Equation (20) can be checked by performing
the numerical derivative of the SCHA free energy at different
volumes. In Fig. 3 we report the SCHA free energy as a
function of the system volume, with a polynomial fit. The cell
is deformed with an isotropic expansion of the volume so that
the obtained pressure as the derivative of the free energy versus
the volume can be compared with 1/3 of the stress tensor trace
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R0, Φ0

Compute the
preconditioner:

AΦ0 AR0

Generate the ensemble

Update the ρI

distribution

Is
η < 0.6?

Compute
R and Φ
gradients

Is the
gradient
modulus

comparable
with its

stochastic
error?

Minimization step
R(n) → R(n+1)

Φ(n) → Φ(n+1)

See FIG. 1 and
Eqs. (47), (48c)

Is the
stochastic

error
sufficiently

small?

DONE

Increase
the

ensemble
size

yes

no

no

yes

no

yes

FIG. 2. Flowchart of the new SSCHA implementation. The min-
imization step can be expanded by using the root4 algorithm shown
in Fig. 1. In this case, the preconditioner A�0 should be replaced with
A 4√�0

in the initial step. The minimization step is performed using the
CG algorithm as long as the error is much greater than the stochastic
noise, then the last steps are performed using SD. This prevents error
propagation in the conjugation due to the correlated noise introduced
by the importance sampling reweighting procedure.

of Eq. (20). The fit on the SCHA free energy is then used to
evaluate the pressure as a function of the volume:

P = −dF
d


= 1

3

∑
α=x,y,z

Pαα. (52)

820 840 860 880 900 920 940 960

Ω [Bohr3]

590

600

610

620

630

640

F
[m

eV
]

Free energy

Fit

SCHA

FIG. 3. SCHA free energy as a function of the volume. The unit
cell is kept fixed, while only an isotropic scaling factor is considered.
The solid line represents a cubic fit. The simulation is performed at
T = 100 K.

In Fig. 4 we compare the SCHA pressure obtained both as
indicated in Eq. (52) and as the opposite of the total derivative
of the free energy. The stochastic average of the stress tensors
〈P H

αβ ( �R,{�ai}〉ρ is also reported, showing how the pressure
cannot be considered as a physical observable to be computed
in analogy to what is done for general operators: Pαβ 	= 〈P H

αβ〉
ρ
;

in fact, this neglects the kinetic contribution of the vibrations.
It is necessary to compute it as the derivative of the free energy,
as done in Eq. (20). The pressure Pcla without quantum effects
at T = 0 is also reported, and can be computed as 1/3 of the
trace of the stress tensor in the classical equilibrium centroid

820 840 860 880 900 920 940 960

Ω [Bohr3]

−4

−3

−2

−1

0

1

P
[G

P
a]

Pressure

Pcla

−dF
dΩ

PH(R, Ω)

1

3

3∑

i=1

Pii(R, Ω)

FIG. 4. The figure compares the pressure computed with Eq. (20)
(blue circles), the classical pressure Pcla obtained neglecting thermal
and quantum fluctuations (red dashed line), the average of the classical
pressures over the SCHA ensemble (orange diamonds), and the
analytical derivative of the free energy fit reported in Fig. 3 (solid
green line). The simulation is performed at T = 100 K.
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FIG. 5. Minimization progress starting from the harmonic result with the preconditioning linear change of variables. (a) The free energy.
(b) The Kong-Liu effective sample size ratio, defined in Eq. (27). (c) Modulus of the free-energy gradient with respect to the dynamical matrix
�. (d) Modulus of the free-energy gradient with respect to the centroids �R. (e) Frequencies obtained from the eigenvalues of the SCHA �

matrix, as they evolve during the minimization. Preconditioning uniformly converges all the frequencies, achieving the final result much faster.
Panels (a), (c), and (d) contain the stochastic error. For the two gradients, the error is computed as the norm of the error on each component of
the gradient, to make it invariant with respect to the basis used to describe the �.

positions:

Pcla = −1

3

∑
α=x,y,z

1




∂V ( �R0,{�ai})
∂εαα

, (53)

where �R0 is defined as

∂V ( �R,{�ai})
∂ �R

∣∣∣∣∣ �R= �R0

= 0. (54)

B. Tests on the new minimization algorithm

A typical SCHA run with the precondition is reported in
Fig. 5. The ρ �R,� ensemble is reextracted four times. The
first two times (A and B) 2500 configurations were used,
10 000 were used in the C step, and 20 000 were used in D.
As clearly reported, the frequencies of the dynamical matrix
converge uniformly to the final result, as we expect from the
preconditioning, and we achieve a converged good result after
only two steps.

The comparison of the performances between the nonlinear
change � → 4

√
� and the preconditioning is reported in Fig. 6.

As a reference, the SCHA run without the nonlinear change
of variable and without preconditioning is also reported.
The simulations are compared at T = 100 K. It is clear that
both methods greatly outperform the standard algorithm. The
harmonic dynamical matrix around the static equilibrium
positions (neglecting quantum and thermal fluctuations) is used
as a starting point, according to what is usually done in ab
initio calculations [16,17,34]. The q-SPC/FW+anh harmonic

dynamical matrix is close to the SCHA result, as seen by
the low value of the free-energy gradient with respect to �,

FIG. 6. Comparison between the different methods described
here. The free energy is shown as a function of the number of
configurations used for the stochastic evaluation together with its
stochastic error. The first two calculations have 2500 configurations
each. The third (C) is with 10 000. A final calculation is performed as
a reference (D) with 20 000 configurations to check the convergence
of the previous ones. As shown, the minimization without the
preconditioning or the nonlinear change of variables is not able to
get a converged result even using an overall of 35 000 configurations,
preventing the old SCHA from being used with any ab initio technique
in this kind of system.
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(a) Dispersion (b) Unit cell

FIG. 7. (a) Comparison between harmonic (black solid lines) and SCHA (red dashed lines) dispersion and density of states. (b) Unit cell
of the ice XI structure. The parameters a, b, and ϑ represent, respectively, the covalent OH bond, the hydrogen bond, and the molecule angle.
Their average value as a function of the temperature is reported in Table I.

compared with its stochastic error, already in the first step of
Fig. 5. However, the standard minimization is not able to further
minimize the system.

The success of the SCHA implementation on this force field
paves the way to its systematic utilization for the study of water
and any other complex system with many degrees of freedom.

In the next section, we show the capabilities of our method
in a more realistic first-principles potential.

VII. AB INITIO SIMULATION ON ICE XI

Encouraged by the success of the SCHA implementation
on the q-SPC/FW+anh force field, we report also the SCHA
results on a realistic DFT potential. The converged SCHA
phonon dispersion (T = 0 K) is compared to the harmonic one
in Fig. 7. The calculation of energies and forces required to
minimize the SCHA free energy, as well as the computation of
the harmonic dynamical matrix, are performed ab initio with
DFT, Perdew-Burke-Ernzerhof (PBE) exchange-correlation
functional [46], and ultrasoft pseudopotentials [47] from the
pslibrary [48], as implemented in the QUANTUMESPRESSO

suite [49,50]. The SCHA dispersion is computed in the unit cell
with 13 000 overall configurations and a wave-function cutoff
of 45 Ry (360 Ry being the charge density cutoff), then the
difference between the harmonic and anharmonic dynamical
matrices is extrapolated in a 3 × 3 × 3 supercell, and the
harmonic dispersion �0 is added:

�(3×3×3) = �
(3×3×3)
0 + (

�(1×1×1) − �
(1×1×1)
0

)(3×3×3)
. (55)

The harmonic phonon dispersion obtained interpolating the
dynamical matrices converges already in a 2 × 2 × 2 supercell,
with a wave-function cutoff of 80 Ry (640 Ry being the charge
density cutoff). The SCHA auxiliary dynamical matrix � is not
directly related to the anharmonic phonon dispersion and, in
general, a more sophisticated calculation is required to extract
the real phonon frequencies in the SCHA approximation [35].
However, it is found [35] that the static phonon dispersion can
be obtained as a perturbative series, the leading order of which
is given by the � matrix itself plus a “bubble” correction. It
has been found in many systems with hydrogen [34,51] that
the bubble correction is much lower than the � contribution.
As an explicative case, here we neglect this correction. It is,
however, worth noticing that the developments presented in
Sec. V A do not affect the bubble computation as reported
in Ref. [35] since it depends only on the converged result
and not on the particular minimization strategy. Therefore, we
report the anharmonic phonon dispersion and density of states
approximated by directly interpolating the � matrix after the
SSCHA optimization in Fig. 7.

All phonon modes below 500 cm−1 (molecular translations)
are almost unaffected by the anharmonicity. The two upper
bands corresponding to symmetric and asymmetric stretching
suffer a redshift, together with the band around 1600 cm−1

(molecular bending). These modes are well described by
molecular vibrons, and the observed redshift is a general
property of the water molecule [52]. Also, the lowest part of the
molecular rotations (the bands between 600 and 1200 cm−1)
are blueshifted. This blueshift of the lowest modes is indeed
very interesting since it involves intermolecular modes. Such
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TABLE I. Anharmonic effects on the crystal structure predicted
by the DFT-PBE at three temperatures. The average intramolecular
OH distance (covalent bond), the average H-bond distance, and the
water molecule mean angle, as reported in Fig. 7.

Harmonic 0 K 150 K 300 K

a (OH-covalent) 1.00835 Å 1.0159 Å 1.0148 Å 1.0131 Å
b (H-bond) 1.6769 Å 1.673 Å 1.674 Å 1.6765 Å
ϑ (HOH angle) 106.715◦ 106.950◦ 106.951◦ 106.886◦

an effect of anharmonicity is typical of this solid structure of
ice, and cannot be predicted just studying anharmonicity in
the isolated water molecule or the dimer. Moreover, the Debye
temperature of these bands is far above room temperature,
invalidating the dispersion obtained with classical molecular
dynamics since zero-point motion has a predominating role in
these lattice oscillations.

Also the average atomic positions are affected as reported
in Table I. Here, the quantum fluctuations slightly stretch the
water molecule, each covalent OH bond increases its length by
almost 0.7%, and the molecular angle widens by 0.2%.

Even if the anharmonic molecular stretch can seem neg-
ligible compared to what it has been predicted to be for a
high-pressure molecular phase of hydrogen [33], a difference
of 1% in the OH covalent bond has a great contribution to the
energy. As a test, the SCHA average structure can be used for a
classical DFT calculation, where the classical pressure is found
to be 1 GPa lower (negative) than its value in the equilibrium
positions, suggesting that the anharmonic relaxation of the
centroid positions may significantly affect the pressure and,
consequently, the equilibrium volume.

The stress tensor calculation can be used to optimize the
unit cell considering both thermal and quantum effects. The
most advanced calculations to include these effects without
involving PIMD in water have been performed within the QHA
[37,38]. In this scheme the total pressure is obtained expanding
the BO energy surface as a quadratic function around its
minimum at each volume. Then the exact free energy of the
approximated BO surface can be computed analytically:

FQHA( �Rc,{�ai}) = V ( �Rc,{�ai}) +
3N∑
μ=1

[
h̄ω̃μ( �Rc,{�ai})

2

+ 1

β
ln(1 − e−βh̄ω̃μ( �R,{�ai }))

]
, (56)

where ω̃μ are the harmonic frequencies of the BO surface. The
QHA free energy FQHA is obtained minimizing the functional
FQHA at fixed volume and temperature:

FQHA(T ,{�ai}) = min
�Rc

FQHA(T , �Rc,{�ai}). (57)

The QHA pressure is obtained by differentiating the free energy
with respect to a uniform volume deformation:

PQHA = −dFQHA

d

. (58)

In complex systems with many degrees of freedom, like in
ice, the minimization in Eq. (57) is computationally very

expensive, since it requires the calculation of the gradient of the
free energy (that depends on the harmonic dynamical matrix)
with respect to any possible atomic displacement. This involves
the calculation of a third-order derivative of the BO total energy
for each minimization step [53]. Differences and analogies of
QHA and SCHA approaches are discussed in Appendix D.
The QHA implementation with the full atomic coordinates
relaxation in H2O system has never been performed, and
usually the QHA free energy is approximated with �Rc = �R0:
the minimum of the BO energy. The pressure in Eq. (57) is
computed numerically taking finite differences between the
QHA free energies at several volumes. A more convenient
way to compute the QHA pressure is to consider the harmonic
frequencies as a linear function of the volume:

ω̃k(
) = ω̃k(
0)

[
1 − 
 − 
0


0
γk

]
, (59)

where the γk are the Grüneisen parameters. Then the QHA
pressure can be easily obtained at any temperature:

PQHA = PH (
) −
3N∑
μ=1

h̄ωμγμ

2


1

tanh
(

βh̄ωμ

2

) . (60)

The comparison between QHA and the SSCHA pressure calcu-
lations as a function of temperature is reported in Fig. 8(a). Both
the calculations have been performed in the unit cell, allowing
for a direct comparison between the SCHA and the QHA result.
Moreover, we checked the QHA pressure convergence versus
the supercell size, and found that the difference between the
QHA in a 3 × 3 × 2 supercell and in the unit cell was much
lower than the SCHA stochastic error itself.

The experimental fit on the elastic bulk modulus and the
volume expansivity have been used to compare the QHA and
SSCHA pressures at a fixed volume. As clearly shown, the
QHA pressure is shifted by about 4 kbars with respect to the
SSCHA result. This is two times bigger than the whole pressure
range between 0 and 300 K. In Fig. 8(b) the comparison
between the QHA, the SSCHA, and the experimental results
is reported. All the pressures are shifted with respect to
their zero-temperature value. The SSCHA zero-temperature
pressure has been obtained by fitting the SSCHA points with
the experimental curve. The experimental data have been
obtained from the fit reported in Ref. [54].

The QHA grasps the qualitative behavior of the pressure,
including the low-temperature negative thermal expansion
[55], but it deviates from the experiments at temperatures above
80 K. This effect has been associated with the entropy contri-
bution of the proton disorder of the ice Ih with respect to the ice
XI, that is not accounted for in the simulations [55]. However,
the SSCHA result corrects the QHA estimation of the pressure
by a significant amount, matching perfectly the experiments,
suggesting that the underestimation of the pressure at high
temperature can be simply explained as a failure of the QHA.
This indicates that anharmonic effects beyond QHA play an
important role in reproducing the physical properties of ice at
temperatures above 80 K.

We computed also the whole SCHA anharmonic stress
tensor. The effect of fluctuations on pressure anisotropy is
much smaller than that on the isotropic pressure. Indeed, the
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(a) (b)

FIG. 8. (a) Comparison between the QHA and the SSCHA pressure as a function of the temperature at fixed volume. The zero value of
the pressure is Pcla, obtained as 1/3 of the stress tensor trace at T = 0 neglecting quantum fluctuations. (b) Comparison between QHA and
SSCHA simulations and the fit of the experimental results from Ref. [54] (ice Ih). The SSCHA results are computed at temperatures of 0, 150,
and 300 K with 40 000 stochastic configurations. The other temperatures reported have been obtained through reweighting [16], therefore their
stochastic error is correlated.

computed pressure anisotropy is comparable with the statistical
error bars.

Another interesting feature of ice at low temperature is the
anomalous volume isotope effect: the D2O equilibrium volume
is bigger than the H2O one. This effect has been recently
studied within the QHA [37,38]. In particular, Pamuk et al.
[37] showed how the QHA result systematically overestimates
this effect with several DFT functionals but it depends slightly
on the chosen functional, on the difference between ice Ih
and XI, and on the q-grid interpolation. The experimental [39]
difference between the two volumes at 10 K is about 0.09%,
while the difference between the QHA equilibrium volume and
the SSCHA one is 1.8%. Therefore, the isotope volume effect
is a tiny correction with respect to the ZPE contribution on the
equilibrium volume and the difference between the SSCHA
and the QHA.

VIII. CONCLUSIONS

The study of quantum anharmonic effects in complex crys-
tals with lots of degrees of freedom, e.g., molecular crystals, is
a major challenge that impacts many domains of physics and
chemistry, including high-pressure phases of hydrogen, water
anomalies, thermoelectric materials, charge-density waves,
ferroelectrics, multiferroics, and so on. In this paper, we derive
an expression for the anharmonic contribution to the stress
tensor in the SCHA theory. This correction is very important
for accurate pressure estimations and phase-diagram compu-
tations and paves the way for isobaric unit-cell relaxation. We
further improved the stochastic implementation of the SCHA
theory to apply it in complex crystals with a large number
of degrees of freedom. This aim has been achieved thanks to
a preconditioning on the free-energy minimization algorithm,
based on an analytical guess of the Hessian matrix of both the
force-constant matrix and the central nucleus positions, and
with a nonlinear change of variables that restricts the space

of allowed dynamical matrices only to the positive defined
ones.

The algorithm is benchmarked with the phase XI of ice, the
proton-ordered phase of common ice, a prototype molecular
crystal. The quantum ZPM and anharmonicity are proven to
affect the phonon dispersion both in the molecular and in the
intermolecular modes. Also, the O-H and H-H bound distances
are slightly affected by anharmonicity. The importance of the
nonperturbative SCHA contribution to the pressure in this sys-
tem has been benchmarked in q-SPC/FW+anh and calculated
with ab initio DFT PBE, where the quantum fluctuations at
0 K are shown to affect the equilibrium volume by 1.8%.

The thermal expansion of the system has been computed
within both the QHA and the SSCHA. The QHA is found
to miscalculate both the ZPM contribution to the equilibrium
volume (with the wrong sign) and the effect of the thermal
fluctuations at temperatures above 80 K. The latter discrepancy
was associated with the proton disorder of phase Ih of ice.
However, we found the SSCHA to correct this effect, and to
exhibit an excellent agreement with the experiments, unveiling
that anharmonic effects behind QHA are crucial to correctly
describe the thermodynamic properties of ice.

The cell-relaxation and stress calculation here developed
paves the way to a refreshed quantitative and accurate study
of anharmonic effects on water, like the anomalous isotope
volume, the equilibrium isotope fraction, the negative thermal
expansion, and the high-pressure phase diagram. More gener-
ally, the developed stress tensor derivation and the improved
minimization algorithm make the SSCHA an efficient method
to calculate quantum and thermal anharmonic effects on
complex systems with many degrees of freedom.
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APPENDIX A: STRESS TENSOR DERIVATION

To easily compute the derivative of the SCHA free-energy
functional with respect to the strain tensor it is convenient to
use the formalism introduced by Bianco et al. [35]. The average
of a generic observable can be written as

〈O〉ρ �R,�
=
√

det

(
ϒ

2π

)∫
O( �R + �u,{�ai})

× exp

(
−1

2
�uϒ �u

)
d3Nu. (A1)

In order to normalize the Gaussian integral a change of variable
can be applied, so that

uα
s =

∑
μ

Jμ
α
s
yμ, Jμ

α
s

= eμ
α
s√

Ms

√
h̄(1 + nμ)

2ωμ

,

(ϒ−1)αβ
st =

∑
μ

Jμ
α
s
Jμ

β
t
. (A2)

Then we have

〈O〉ρ �R,�
=
∫

O( �R + J�y,{�ai})[dy],

[dy] =
3N∏
μ=1

exp
(−y2

μ

2

)
√

2π
dyμ. (A3)

Since we are deriving theF �R functional [Eq. (9)], the Hellman-
Feynman theorem allows us to neglect the changes introduced
by the strain on the dynamical matrix. Only �R is affected by
the deformation, according to Eq. (19). Therefore we have

d 〈O( �R,{�ai})〉ρR

dεαβ

= ∂ 〈O( �R,{�ai})〉ρ �R

∂εαβ

∣∣∣∣∣
�=�( �R)

, (A4)

∂ 〈O〉ρ �R

∂εαβ

= ∂

∂εαβ

∫
O( �R(ε) + J �y,{�ai(ε)})[dy]

=
∫ ⎛
⎝∑

sγ

∂O

∂R
γ
s

∂Rγ
s

∂εαβ

+
∑
iγ

∂O

∂a
γ

i

∂a
γ

i

∂εαβ

⎞
⎠[dy].

(A5)

Note that the observable O( �R) is derived with respect to its
argument, i.e., the atom positions in the ensemble configuration
�R, not the centroid position �R. This happens because the �R(ε)

appears linearly in the configuration position of O after the
change of variable:

∂ 〈O〉ρ �R

∂εαβ

= 1

2

∑
s

(
Rβ

s

〈
∂O

∂Rα
s

〉
ρ �R

+ Rα
s

〈
∂O

∂R
β
s

〉
ρ �R

)

+
〈∑

iγ

∂O

∂a
γ

i

∂a
γ

i

∂εαβ

〉
ρ �R

. (A6)

The free-energy functional is

F �R = F�( �R) + 〈V − V �R,�( �R)〉ρ �R
, (A7)

where �( �R) is the dynamical matrix that minimizes
F( �R,�,{�ai}) fixing the average atomic positions. The first
term, F�( �R) is an explicit function only of the SCHA dynamical
matrix, and therefore does not contribute to the derivative. The
latter average can be derived thanks to Eq. (A6):

∂ 〈V 〉ρ �R

∂εαβ

= −1

2

N∑
s=1

(
Rβ

s

〈
f α

s

〉
ρ �R

+ Rα
s

〈
f β

s

〉
ρ �R

)− 

〈
P H

αβ

〉
ρ �R

,

(A8)

where P H
αβ is the BO stress tensor. In fact the last term of

Eq. (A6) is the average of the derivatives of the BO energy
when the strain is applied to the unit cell. The “harmonic”
term can be computed in a similar way:

∂ 〈V �R,�〉
ρ �R

∂εαβ

∣∣∣∣∣
�

= 1

2

∑
s

(
Rβ

s

〈
∂V �R,�

∂Rα
s

〉
ρ �R

+ Rα
s

〈
∂V �R,�

∂R
β
s

〉
ρ �R

)

+
〈
∂V �R,�

∂εαβ

〉
. (A9)

In the same way as done for the BO energy surface, it is possible
to introduce the harmonic stress tensor as

PH
αβ = − 1




〈
∂V �R,�

∂εαβ

〉
ρ �R

= 1

2


∑
s

〈
fH

α
s uβ

s + fH
β
s uα

s

〉
ρ �R

= − 1




3N∑
μ=1

N∑
s=1

h̄ωμ

2 tanh
(

βh̄ωμ

2

)eμ
α
s
eμ

β
s
, (A10)

∂ 〈V〉ρ �R

∂εαβ

= −1

2

N∑
s=1

(
Rβ

s

〈
fH

α
s

〉
ρ �R

+ Rα
s

〈
fH

β
s

〉
ρ �R

)− 
PH
αβ.

(A11)

The first term is zero (the harmonic forces �fH are odd, while
the probability distribution ρ �R is even). However, we keep it
as it helps to increase the numerical accuracy [16], as we can
combine it with Eq. (A8) to exploit the correlation between
f α

s and fH
α
s to reduce the statistical noise on the average. In

a pure harmonic crystal also the quantities P H
αβ and PH

αβ are
correlated. Therefore, the final expression of the pressure can
be written as follows:

Pαβ = 〈
P H

αβ − 1

2


N∑
s=1

(
fH

α
s uβ

s + fH
β
s uα

s

)〉
ρ �R

+ 1

2


N∑
s=1

(
Rβ

s

〈
f α

s − fH
α
s

〉
ρ �R

+ Rα
s

〈
f β

s − fH
β
s

〉
ρ �R

)
.

(A12)

The last term is zero if the free energy has been minimized
also with respect to the �R variables (as the average of the BO
forces is the SCHA force acting on each atom, it is zero in the
equilibrium).
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APPENDIX B: DETAILED CALCULATION
FOR THE HESSIAN MATRIX

The real and trial classical forces acting on each configura-
tion identified by the displacements �u are

f α
s = − ∂V

∂uα
s

= −
∑
tβ

K
αβ
st u

β
t , (B1a)

fH
α
s = −∂V �R,�

∂uα
s

= −
∑
tβ

�
αβ
st u

β
t . (B1b)

Defining �δf = �f − �fH we have〈
δf α

s u
β
t

〉
ρH

= −
∑
nη

(
Kαη

sn − �αη
sn

) 〈
uη

nu
β
t

〉
ρ �R,�

. (B2)

From now on, we drop the subscript ρ �R,� for each average,
and consider all the averages computed with respect to the trial
density matrix. We further simplify the notation, introducing
one index for each Cartesian and atomic coordinate, so vα

s →
va . In this new notation Eq. (B2) reads

〈δfaub〉 = −
3N∑
c=1

(Kac − �ac) 〈ucub〉 . (B3)

The average of the product between two displacements of a
Gaussian distributed variable is the covariance between the
two displacements [Eq. (13a)]:

〈ucub〉 = (
ϒ−1)

cb
= 1√

McMb

3N∑
ν=1

ec
νe

b
νa

2
ν , (B4)

where we introduce the mode length aμ:

aμ =
√

h̄

2ωμ

(
1 + 2nμ

)
. (B5)

The gradient of the SCHA free-energy functional with respect
to � is [16]

∇�F �R,� = −
∑
abμ

√
Ma

Mb

(
eb
μ∇� ln aμ + ∇�eb

μ

)
ea
μ 〈δfbua〉 .

(B6)

Substituting the explicit expression of the forces we have

∇�F( �R,�,{�ai}) =
∑

abcμν

(Kac − �ac)
(
ea
μ∇� ln aμ + ∇�ea

μ

)

× eb
μec

νe
b
νa

2
ν√

McMa

. (B7)

It is clear from Eq. (B7) that in the minimum � = K.
Therefore, it is convenient to compact all the other terms into
a symbol:

∂F( �R,�,{�ai})
∂�cd

=
∑
ab

(Kab − �ab)Labcd . (B8)

Here L is a rank-4 tensor. Since we sum on all a and b indices
and the L rank-4 tensor multiplies a symmetrical matrix, it is
convenient to recast it into a symmetrical form:

Labcd =
∑
k,μν

(
ea
μ

∂ ln aμ

∂�cd

+ ∂ea
μ

∂�cd

)
ek
μeb

νe
k
νa

2
ν , (B9)

Labcd = Pab√
MaMb

Labcd + Lbacd

2
, (B10)

Pab =
√

2(1 − δab) + δab, (B11)

Labcd = Pab√
MaMb

∑
μ

[
ea
μeb

μ

∂ ln aμ

∂�cd

+ 1

2

∂(ea
μeb

μ)

∂�cd

]
a2

μ.

(B12)

In the minimum the only nonzero term of the Hessian matrix
is given by

∂2F( �R,�,{�ai})
∂�ab∂�cd

∣∣∣∣∣
�=K

= −Labcd , (B13)

∂2F( �R,�,{�ai})
∂�ab∂�cd

= − Pab√
MaMb

×
∑

μ

[
aμea

μeb
μ

∂aμ

∂�cd

+ 1

2
a2

μ

∂(ea
μeb

μ)

∂�cd

]
.

(B14)

Let us start with the term inside the square brackets. The
derivative of aμ can be obtained with the chain rule:

∂aμ

∂�cd

= ∂aμ

∂ωμ

∂ωμ

∂�cd

= Pcd

2ωμ

ec
μed

μ√
McMd

∂aμ

∂ωμ

. (B15)

The derivative of the polarization versors can be computed with
first-order perturbation theory:

∂
(
ea
μeb

μ

)
∂�cd

= ea
μ

∂eb
μ

∂�cd

+ eb
μ

∂ea
μ

∂�cd

= Pcd√
McMd

ν 	=μ∑
ν

(
ea
μeb

ν + eb
μea

ν

)(
ec
νe

d
μ + ec

μed
ν

)
2
(
ω2

μ − ω2
ν

) .

(B16)

We have a complete expression for the Hessian matrix:

∂2F( �R,�,{�ai})
∂�ab∂�cd

= − PabPcd√
MaMbMcMd

[∑
μ

ea
μeb

μec
μed

μ

4ωμ

∂a2
μ

∂ωμ

+
μ 	=ν∑
μν

ea
μeb

ν (ec
μεd

ν + ec
νe

d
μ)

4

(
a2

μ

ω2
μ − ω2

ν

+ a2
ν

ω2
ν − ω2

μ

)]
. (B17)
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We can use the bosonic occupation number and write aμ as a function of nμ:

aμ =
√

h̄

ωμ

[
nμ(β) + 1

2

]
, (B18a)

aμ

2ωμ

∂aμ

∂ωμ

= − h̄

8ω3
μ

(
2nμ + 1 + 2βh̄ωμn2

μ + 2βh̄ωnμ

)
. (B18b)

Therefore we have

∂2F( �R,�,{�ai})
∂�ab∂�cd

= h̄PabPcd√
MaMbMcMd

[∑
μ

ea
μeb

μec
μed

μ

2nμ + 1 + 2βh̄ωμn2
μ + 2βh̄ωμnμ

8ω3
μ

−
μ 	=ν∑
μν

ea
μeb

ν (ec
μed

ν + ec
νe

d
μ)

8(ω2
μ − ω2

ν)

(
2nμ + 1

ωμ

− 2ων + 1

ων

)]
. (B19)

It is clear from Eq. (B19) that a � matrix can be introduced so that

∂2F( �R,�,{�ai})
∂�ab∂�cd

= 1

2
PabPcd

∑
μν

(
�abcd

μν + �abdc
μν

)
, (B20)

where

�abcd
μμ = h̄ea

μeb
μec

μed
μ√

MaMbMcMd

2nμ + 1 + 2βh̄ωμn2
μ + 2βh̄ωμnμ

8ω3
μ

, (B21a)

�abcd
μν = − h̄√

MaMbMcMd

ea
μeb

νe
c
μed

ν

(ωμ − ων)(ωμ + ων)

2nμων − 2ωμnν + ων − ωμ

4ωμων

. (B21b)

To conclude the proof it is sufficient to show that the � matrix of Eq. (32) is equal to

�abcd =
∑
μν

�abcd
μν . (B22)

First, we introduce an auxiliary function f (ωμ,ων) as

f (ωμ,ων) = 2ωνnμ − 2ωμnν + ων − ωμ

4ωμων(ωμ + ων)(ωμ − ων)
= − 1

4ωμων

[
nμ + nν + 1

ωμ + ων

− nμ − nν

ωμ − ων

]
. (B23)

In the limit ων → ωμ we get

f (ωμ) = lim
ων→ωμ

f (ωμ,ων) = −2nμ + 1 + 2h̄βωμn2
μ + 2h̄βnμωμ

8ω3
μ

, (B24)

f (ωμ) = − 1

4ω2
μ

[
2nμ + 1

2ωμ

− ∂n

∂ω

]
. (B25)

So �abcd
μμ is obtained as the continuous limit of �abcd

μν when μ → ν:

�abcd
μν = − h̄ea

μeb
μec

μed
μ√

MaMbMcMd

f (ωμ,ων), �abcd
μμ = − h̄ea

μeb
μec

μed
μ√

MaMbMcMd

f (ωμ). (B26)

Substituting Eqs. (B23) and (B25) we finally get

�abcd
μν = h̄

4ωμων

ea
μeb

νe
c
μed

ν√
MaMbMcMd

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

nμ + nν + 1

ωμ + ων

− nμ − nν

ωμ − ων

ωμ 	= ων

2nμ + 1

2ωμ

− ∂nμ

∂ωμ

ωμ = ων

. (B27)

APPENDIX C: HESSIAN IN THE CENTROIDS

The Hessian matrix approximation that we provide for the
centroids is compared with the free-energy Hessian calculated

in Ref. [35]. In particular, the correct preconditioner should be
chosen according to the minimization strategy. If the inner
degrees of freedom are optimized simultaneously with the
force constant matrix, then the correct preconditioner should be
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the complete Hessian matrix between any couple of degrees of
freedom while the others are fixed. Therefore we are neglecting
the mixed derivatives between the force constant and the
centroids. However, the centroids preconditioner we provided
is the correct one, since the second derivative of the free energy
is computed at a fixed force constant matrix.

The free-energy Hessian provided by Ref. [35] is, instead,
the total derivative of the free energy:

d2F( �R,�( �R),{�ai})
dRadRb

= ∂2F( �R,�,{�ai})
∂Ra∂Rb

+ ∂2F( �R,�,{�ai})
∂Ra∂�

∂�

∂Rb

+ ∂2�

∂Ra∂Rb

∂F( �R,�,{�ai})
∂�

. (C1)

The last term is zero in the minimum of the free energy, due
to the Hellman-Feynman theorem. This is, indeed, the correct
free-energy Hessian to study structural instabilities. It is also
the correct preconditioner if the centroids are moved only
after the full relaxation of the force constant is performed
at each step. This is unpractical: the so-defined minimization
algorithm converges slower, as it needs a full force constant
minimization, the most expensive one, before starting to move
the inner degrees of freedom. Moreover, the computation of the
Hessian in Eq. (C1) is more expensive than the one provided
in this paper, and it is not always positive defined.

APPENDIX D: QHA IN THE SCHA FRAMEWORK

The QHA can be reformulated in the SCHA framework in
order to understand differences between the two approaches.
The SCHA free energy is

F( �R,�,{�ai}) = F� + 〈V − V �R,�〉
ρ �R,�

. (D1)

If the system is perfectly harmonic, then the minimum of the
free energy is found when V �R0,�0

= V , and we get the QHA

free energy:

FQHA = F = F�0 + V ( �R0),

�0αβ = ∂2V

∂Rα∂Rβ

∣∣∣∣ �R= �R0

, (D2)

where �R0 is the minimum of the BO energy surface. So QHA is
equivalent to SCHA for any harmonic potential. If the system
is anharmonic, QHA approximates the potential as the second-
order Taylor expansion around the equilibrium position. This
makes the QHA theory not a self-consistent approach but a
series expansion of the real potential.

If the atomic position coordinates relaxation is allowed, as
introduced by Lazzeri and de Gironcoli [53,56], then the QHA
free energy becomes

FQHA( �Rc) = F�̃( �Rc) + V ( �Rc),

�̃αβ( �Rc) = ∂2V

∂Rα∂Rβ

∣∣∣∣ �R= �Rc

. (D3)

This is equivalent to SCHA [Eq. (D1)] keeping � fixed to the
harmonic dynamical matrix and neglecting the contribution
arising from 〈V − V〉ρ �Rc,�̃( �Rc )

. The anharmonicity is taken into
account by the fact that the harmonic dynamical matrix is
a function of the atomic positions. This approximation is
equivalent to neglecting all the even (from the fourth order)
contribution in the BO surface Taylor expansion around the �Rc

that minimizes FQHA. In this case, the average 〈V − V〉ρ�̃( �Rc )

is equal to zero, and the harmonic dynamical matrix is the
one that minimizes the SCHA free energy [Eq. (17) is exactly
zero]. If only odd anharmonicities are present in the system
(i.e., they dominate in the region of the quantum and thermal
fluctuations), the QHA relaxed free energy coincides with the
SCHA. The SCHA, therefore, is a natural extension to the
relaxed QHA that assures the self-consistency of the theory
for any kind of anharmonicity by explicitly including the
average 〈V − V〉ρ �R,�

in the free energy. Indeed, the SSCHA
algorithm is much more efficient than the QHA relaxation,
since it requires us only to compute energies and forces, while
the QHA relaxation requires the third-order derivatives of the
energy, and the application of the 2n + 1 theorem for each
minimization step [53].
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