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Nonreciprocal spin Seebeck effect in antiferromagnets
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We theoretically propose a nonreciprocal spin Seebeck effect, i.e., nonreciprocal spin transport generated
by a temperature gradient, in bulk antiferromagnetic insulators with broken inversion symmetry. We find that
nonreciprocity in antiferromagnets has rich properties not expected in ferromagnets or their interfaces. In
particular, we show that polar antiferromagnets, in which the crystal lacks spatial-inversion symmetry, exhibit
perfect nonreciprocity—one-way spin current flow irrespective of the direction of the temperature gradient. We
also show that nonpolar centrosymmetric crystals can exhibit nonreciprocity when a magnetic order breaks the
inversion symmetry, and in this case, the direction of the nonreciprocal flow can be controlled by reversing the
magnetic domain. As their representatives, we calculate the nonreciprocal spin Seebeck voltages for the polar
antiferromagnet α-Cu2V2O7 and the honeycomb antiferromagnet MnPS3, while varying the temperature and
magnetic field.
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The reciprocal relation is a fundamental principle in ther-
modynamics assured by the symmetry of the system. It is,
however, violated when a certain symmetry is broken, e.g.,
by crystal structures, electronic orderings, and external fields.
Such a violation of the reciprocity has attracted much interest
from both fundamental physics and application. An archetype
is the Faraday effect of light, in which the breaking of time-
reversal symmetry causes a rotation of the polarization plane
in an opposite direction when the propagation direction of light
is switched. This nonreciprocal property has been used for an
optical isolator and optical data storage. Another example is
found in a p-n junction, which allows a one-way flow of an
electric current. A similar diode effect can also occur in a bulk
crystal when time-reversal and spatial-inversion symmetries
are simultaneously broken [1].

Nonreciprocity has also been studied for the propagation
of spin waves in magnetic materials. The most pronounced
example is the Damon-Eshbach mode, in which spin waves
propagate on a material surface only in one direction [2].
Also in a bulk magnet, the breaking of spatial-inversion
symmetry gives rise to the nonreciprocal propagation of spin
waves. There, an asymmetric exchange interaction called the
Dzyaloshinskii-Moriya (DM) interaction [3,4] brings about
asymmetry in the spin-wave dispersion with respect to the
propagation direction. This has been experimentally observed
in heteromultilayer films of ferromagnets [5], ferromagnets
having noncentrosymmetric crystal symmetries [6–8], and a
polar antiferromagnet (AFM) α-Cu2V2O7 [9]. Since a spin
wave can carry a spin current, asymmetric dispersion may give
rise to a nonreciprocal spin current. However, such an effect has
remained elusive thus far, despite the relevance to applications
in spintronics as well as magnonic devices.

*r.takashima@aion.t.u-tokyo.ac.jp

In this Rapid Communication, we propose a nonrecip-
rocal response of a spin current in antiferromagnetic insu-
lators, which stems from asymmetric spin-wave dispersion.
Specifically, we consider the spin Seebeck effect (SSE), a
magnetothermal phenomenon in which a temperature gradient
causes a spin voltage [10–13]. We show that a nonreciprocal
spin current can be generated as a nonlinear response to a
temperature gradient [Fig. 1(a)]. A nonreciprocal spin current
response to an electric field was recently discussed in noncen-
trosymmetric metals [14,15], which suffer from Joule heating.
Also, the nonreciprocal SSE was discussed for an interface
of ferromagnets [16–19]. We here discuss the nonreciprocal
SSE, mainly for insulating AFMs in the bulk form. AFMs have
recently drawn considerable interest in spintronics, owing to
less stray field and ultrafast spin dynamics [20,21]. We find
that the AFMs show remarkable properties in the nonreciprocal
SSE, which are not expected in ferromagnets as well as their
interfaces. We demonstrate that the nonreciprocal SSE appears
in a different manner for two different types of AFMs: One is
a polar AFM on a noncentrosymmetric lattice and the other is
a zigzag AFM on a centrosymmetric lattice. The polar AFMs
exhibit perfect nonreciprocity: A spin current flows only in
one direction irrespective of the direction of the temperature
gradient [Fig. 1(a)]. On the other hand, in the zigzag AFM,
the nonreciprocity can be controlled by reversing magnetic
domains. For the experimental observations, we calculate the
spin Seebeck voltages for candidate materials for the two
cases, the polar AFM α-Cu2V2O7 and the honeycomb (two-
dimensional zigzag) AFM MnPS3, and clarify the dependence
on the temperature, the magnetic field, and the direction of the
temperature gradient.

We consider the spin current generated parallel to a temper-
ature gradient up to the second order,

j sz

x = Sxx
1 (∂xT ) + Sxx

2 (∂xT )2, (1)
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FIG. 1. (a) Schematic picture of a nonreciprocal spin current
under a thermal gradient in an AFM. (b), (c) Schematic pictures of (b)
a polar AFM with a uniform DM interaction and (c) a zigzag AFM
with a staggered DM interaction. The color gradient in (b) represents
the breaking of mirror symmetry with respect to the xz plane.

where j sz

x is the spin current that flows in the x direction
carrying the spin along the z axis, and T is the local temperature
of the sample. The first term in Eq. (1) corresponds to the
conventional SSE [10–13], and the second one is the nonlinear
term, which we will discuss in this work. WhenSxx

2 is nonzero,
the magnitude of j sz

x changes depending on the sign of ∂xT .
Thus, the nonlinear contribution in the SSE gives rise to a
nonreciprocal spin current j sz

x . We note that, from a symmetry
point of view, such nonreciprocity is not allowed when the
system is symmetric under the spatial inversion I or mirror
reflection with respect to the xz plane, denoted by My .
Meanwhile, the linear component Sxx

1 vanishes when Mx (yz

mirror) or My symmetry exists.
Here, we calculate the spin current in Eq. (1) for AFMs,

which exhibit richer nonreciprocal properties compared to
ferromagnets [22]. We consider two types of noncentrosym-
metric AFMs. One is an AFM on a noncentrosymmetric lattice,
and the other is an AFM in which the inversion symmetry
is broken by the magnetic order. As their typical examples,
we first study one-dimensional spin models for the two types,
which we call polar AFMs [Fig. 1(b)] and zigzag AFMs
[Fig. 1(c)], respectively [23]. Their Hamiltonians are given
by H = H0 + H

polar/zigzag
D , where

H0 =
∑
r �=r ′

[
Jrr ′Sr · Sr ′ + Grr ′

(
Sz

r S
z
r ′ − Sx

r Sx
r ′ − Sy

r S
y

r ′
)]

+ gs

μB

h̄
Bz

∑
r

Sz
r . (2)

Here, Sr = (Sx
r ,S

y
r ,Sz

r ) is the spin operator at r = (i,�), where
i denotes the unit cell and � denotes the sublattice. We
assume that a (magnetic) unit cell has two sites: � = {A,B}.
Jrr ′ and Grr ′ denote the coupling constants for the isotropic
and anisotropic exchange interactions, respectively; the latter

originates from the spin-orbit coupling. gs is the electron spin
g-factor (we take gs = 2), μB is the Bohr magneton, h̄ is the
reduced Planck constant, and Bz is the magnetic field along the
z direction. H

polar
D and H

zigzag
D represent the DM interactions

in the polar and zigzag systems, respectively,

H
polar
D = D

∑
i

ẑ · (Si,A × Si,B + Si,B × Si+1,A), (3)

H
zigzag
D = D

∑
i

ẑ · (Si,A × Si+1,A − Si,B × Si+1,B ), (4)

where ẑ is the unit vector along the z direction. Here, taking
the chain direction as x, we assume that the polar system lacks
My symmetry while preserving Mz symmetry (xy mirror)
[Fig. 1(b)]; hence, we include a uniform DM interaction for
all the nearest neighbors with the DM vector D ‖ ẑ in Eq. (3).
On the other hand, in the zigzag system, there is no inversion
symmetry at the centers of the second-neighbor bonds, while
the system is inversion symmetric with respect to the centers of
the nearest-neighbor bonds. Therefore, we include a staggered
DM interaction for the second neighbors with the DM vector
D ‖ ẑ in Eq. (4).

Assuming a collinear antiferromagnetic ground state,
namely, 〈Sz

i,A〉 = −〈Sz
i,B〉 = S, we consider magnon excita-

tions by using the Holstein-Primakoff transformation as

S+
i,A = h̄(2S − a

†
i ai)

1/2ai, Sz
i,A = h̄(S − a

†
i ai), (5)

S+
i,B = h̄b

†
i (2S − b

†
i bi)

1/2, Sz
i,B = h̄(b†i bi − S), (6)

where S+
i,� = Sx

i,� + iS
y

i,� = (S−
i,�)

†
. By substituting Eqs. (5) and

(6) into the Hamiltonian and using the linear spin-wave approx-
imation, which is justified well below the Néel temperature, we
obtain the magnon Hamiltonian in the bilinear form of the op-
erators of ai and bi . Diagonalizing the Hamiltonian by the Bo-
goliubov transformation, we obtain H = ∑

σkx
εσkx

α
†
σkx

ασkx
,

where ασkx
(α†

σkx
) is the annihilation (creation) operator of a

magnon with the spin angular momentum σ = {↑ , ↓} and the
momentum kx . εσkx

� 0 is the energy of the magnon. Because
of the DM interaction, the magnon dispersion is deformed in an
asymmetric manner with respect to kx [23]. This is the crucial
feature to produce the nonreciprocal SSE as discussed below.

In the present systems, the total spin along the z direction,

Sz
tot ≡

∑
i

(
Sz

i,A + Sz
i,B

) = h̄
∑
kx

( − a
†
kx

akx
+ b

†
kx

bkx

)

= h̄
∑
kx

( − α
†
↓kx

α↓kx
+ α

†
↑kx

α↑kx

)
, (7)

is conserved, as the DM vectors point along the z direction.
Since each magnon excitation carries the spin angular mo-
mentum ±h̄, the local spin current density is given by

J sz

x = h̄

∫
dkx

2π

[
vx

↑kx
n(ε↑kx

) − vx
↓kx

n(ε↓kx
)
]
, (8)

where the velocity is defined by vx
σkx

= (1/h̄)∂εσkx
/∂kx , and

n(εσkx
) = 〈α†

σkx
ασkx

〉 denotes the magnon distribution at a
finite temperature.

To analyze the SSE, we use the Boltzmann transport theory
[24]. We assume that the temperature of the system has a
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linear gradient, T (x) = T0 + αx, where the coefficient α is
small enough to allow us to define the equilibrium distribution
of magnons by n0(εσkx

) = {exp[εσkx
/T (x)] − 1}−1. With the

relaxation time approximation, the Boltzmann theory gives

vx
σkx

∂n
(
εσkx

)
∂x

= ∂n

∂t

∣∣∣∣
col.

= −n
(
εσkx

) − n0
(
εσkx

)
τ

, (9)

where we have neglected the energy and momentum depen-
dence of the relaxation time τ . Substituting the solution of
Eq. (9) into Eq. (8) and averaging over the space, we obtain the
net component of spin current in Eq. (1) with the coefficients
of

Sxx
1 = −h̄τ

∫
dkx

2π

[(
vx

↑kx

)2
f (1)(εn↑kx

) − (
vx

↓kx

)2
f (1)(ε↓kx

)
]
,

(10)

Sxx
2 = h̄τ 2

∫
dkx

2π

[(
vx

↑kx

)3
f (2)(ε↑kx

) − (
vx

↓kx

)3
f (2)(ε↓kx

)
]
,

(11)

where f (1)(ε) = ∂n0/∂T |T =T0 and f (2)(ε) = ∂2n0/∂T 2|T =T0

[22]. Equation (11) indicates that the nonlinear component
originates in the asymmetry in the magnon dispersion, whose
measure is given by the cube of the velocity averaged over a
constant energy surface as

〈(
vx

σkx

)3〉
εkx =ε

:=
∫

εσkx =ε

dkx

2π

(
vx

σkx

)3
. (12)

This quantity vanishes when the magnon dispersion for each
spin component is symmetric with respect to kx .

As mentioned above, the polar and zigzag AFMs have the
asymmetric magnon dispersions with 〈(vx

σkx
)3〉

εkx =ε
�= 0, and

hence they exhibit the nonreciprocal SSE. Due to the different
symmetry, however, the SSE appears in a different manner
between the two cases. As noted below Eq. (1), the linear
SSE coefficient Sxx

1 can be nonzero only when both Mx and
My symmetries are broken, whereas the nonlinear one Sxx

2
can be nonzero when My symmetry is broken in addition to
the inversion symmetry I. Therefore, in polar AFMs, where
My (Mx) is (un)broken, Sxx

1 vanishes but Sxx
2 may become

nonzero at Bz = 0. When the magnetic field Bz, which breaks
Mx , is applied, Sxx

1 is induced as an odd function of Bz, while
Sxx

2 is an even function of Bz. On the other hand, in the zigzag
AFMs, where My is preserved, both Sxx

1 and Sxx
2 are odd

functions of Bz. The results are summarized in Table I.
From the symmetry arguments, an interesting phenomenon

is readily concluded for the polar AFMs. When Sxx
2 is nonzero

at Bz = 0 in a polar AFM, the SSE occurs even in the absence
of the magnetic field. This is the perfect nonreciprocal SSE,
one-way flow of the spin current irrespective of the direction
of the temperature gradient [Fig. 1(a)] [25].

Now let us estimate the coefficients given by Eqs. (10) and
(11) for real materials. First, we consider a candidate for the
polar AFMs, α-Cu2V2O7, whose lattice structure breaks the
mirror symmetry with respect to the ab plane [see Fig. 2(a)].
Below TN = 33.4 K, α-Cu2V2O7 shows an antiferromagnetic
order, where Cu2+ spins (S = 1/2) align antiparallel along
[100] [Fig. 2(a)] with a small canting along [001] [9,26–28].

TABLE I. Symmetry arguments on the magnetic field dependence
(Bz dep.) of the SSE coefficients for the one-dimensional spin models
for polar and zigzag AFMs [Eqs. (2)–(4); see also Figs. 1(b) and
1(c)]. The domain dependence (dep.) or independence (indep.) of
the nonreciprocal SSE on the magnetic domains are also shown. I
is the inversion symmetry, and Mx and My represent the mirror
symmetry with respect to the yz and zx planes, respectively. Note
that the mirror symmetry includes the mirror reflection combined
with half translation in the x direction.

I Mx My Bz dep. of Sxx
1 Bz dep. of Sxx

2 domain

polar AFM × � × odd even indep.
zigzag AFM × × � odd odd dep.

The magnon bands obtained by a recent neutron scattering
experiment indicate the presence of a strong uniform DM
interaction [9] similar to the polar AFMs discussed above.
In the following calculation, we use the model Hamiltonian,
obtained via an inelastic neutron scattering experiment [9]. It
has isotropic exchange interactions between the first, second,
and third neighbors, J1 = 2.67, J2 = 2.99, and J3 = 5.42
in units of meV, a nearest-neighbor anisotropic exchange
interaction G1 = 0.282 meV, and a nearest-neighbor DM
interaction D = 2.79 meV; note that while the (x,y,z) axes are
taken along the crystallographic (a,b,c) axes, they correspond
to (z,x,y) in the model in Eqs. (2) and (3) (the total spin
angular momentum along the x direction is conserved). Since
each unit cell has 16 Cu2+ spins, the magnon bands have
eight branches per spin [9], as reproduced in Fig. 2(b). The
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FIG. 2. (a) Schematic picture of the lattice structure and the spin
configuration on the Cu2+ ions in α-Cu2V2O7. The crystallographic
axes are also shown. (b) Magnon bands in the polar AFM α-Cu2V2O7.
The blue (red) bands carry the spin angular momentum Sz

tot = 1 (−1),
and each band is asymmetric along ky . The model parameters are given
in the main text. (c) Dependence of the spin Seebeck voltages on the
temperature and the applied field along [100]: the linear term V SSE

1

(left) and the nonlinear term V SSE
2 (right).
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magnon dispersions are asymmetric along the ky direction,

resulting in 〈(vy

nσk)
3〉

εnσk=ε
�= 0, with n being the band index.

Hence, the system exhibits the SSE along the y direction,
j sx

y = Syy

1 (∂yT ) + Syy

2 (∂yT )2.
In experiments, the spin current generated by the SSE can

be measured by the inverse spin Hall effect of Pt attached to
the sample. We assume that the induced voltage in Pt is simply
given by the sum of linear and nonlinear components asV SSE =
V SSE

1 + V SSE
2 , where

V SSE
1 = −ρPtθsh

2e

h̄
LSyy

1 (∂yT ), (13)

V SSE
2 = −ρPtθsh

2e

h̄
LSyy

2 (∂yT )2, (14)

ρPt is the electrical resistivity of Pt, θsh is the spin Hall angle of
Pt, and L is the length of the sample along the voltage direction.
Recently, V SSE

1 was measured for α-Cu2V2O7, and τ ∝ T −3

fits the experimental data well [13]. In our analysis, assuming a
power-law behavior, we estimate the magnitude of τ using the
experimental data in Ref. [13]. We use ρPt = 1.2 × 10−7 � m
and θsh = 0.021 [29], and set ∂yT = 103 K m−1 and L = 4 ×
10−3 m based on the experimental setup [13]. With the above
assumptions, we obtain the relaxation time τ � c0/T 3 with
c0 = 2 × 10−9 K3 s.

Using the obtained relaxation time, we calculate V SSE
1 and

V SSE
2 as functions of the temperature (�TN ) and the field along

the x direction, Bx . The results are shown in Fig. 2(c). We find
that the nonlinear component V SSE

2 appears as an even function
of Bx , whereas the linear one V SSE

1 is odd. Furthermore, V SSE
2

is nonzero at Bx = 0, i.e., the system exhibits the perfect
nonreciprocal spin transport. These behaviors are exactly what
we expected for the polar AFM; in the present material, instead
of the mirror symmetry, theC2 rotational symmetry along [001]
makes Syy

1 zero, while the breaking of both inversion and Mz

symmetries results in nonzero Syy

2 .
With regard to the temperature dependence, both V SSE

1
and V SSE

2 exhibit peaks at finite temperatures, and decay at
higher temperatures, as shown in Fig. 2(c). Note that the
calculated curve of V SSE

1 reproduces the experimental data
well [13]. The peak structure comes from the competition
between the thermal excitations of magnons and the scattering
rate. At a very low temperature, the SSE is enhanced by the
thermal excitations of magnons as increasing temperature.
With a further increase of temperature, however, the scattering
processes, characterized by τ , begin to suppress the SSE,
leaving the peak structure at an intermediate temperature. We
note that the peak temperatures are lower and the peaks are
sharper for V SSE

2 compared to V SSE
1 . This arises from the

dependence on τ ∝ T −3: V SSE
1 and V SSE

2 depend on τ and
τ 2, respectively, as shown in Eqs. (10) and (11).

Next, we discuss a candidate for the zigzag AFMs, the
honeycomb AFM MnPS3. Note that the two-dimensional
honeycomb structure is composed of one-dimensional zigzag
chains running in three different directions. MnPS3 has a
layered honeycomb structure with the weak interlayer van der
Waals interaction, as shown in Fig. 3(a). A neutron diffraction
study shows that Mn2+ spins (S = 5/2) align in a staggered
way below TN = 78 K, whose moment directions are almost
normal to the honeycomb plane [30] [Fig. 3(a)]. Hereafter,

FIG. 3. (a) Schematic picture of the lattice structure and the spin
configuration on the Mn2+ ions in MnPS3. The crystallographic axes
are also shown. (b) Energy dispersion of the magnons. The energies
of the magnons with Sz

tot = ±1 are degenerate. (c) Dependence of the
spin Seebeck voltages on the directions of the temperature gradient.
The left figure represents a real-space picture of the directional
dependence of the spin current. The magnetic field Bz is normal to the
honeycomb plane. The right panels show the directional dependence
of the linear term V SSE

1 (top) and the nonlinear term V SSE
2 (bottom).

we label the crystallographic coordinate (a,b,c∗) by (x,y,z),
where c∗ is normal to the ab plane. The spin model obtained
by an inelastic neutron scattering [31] includes J1 = 1.54,
J2 = 0.14, J3 = 0.36, and G1 = 1.1 × 10−3 in units of meV.
Since the interlayer exchange interaction is much smaller than
the intralayer exchange interactions, we calculate the SSE for
a single honeycomb layer.

From the lattice symmetry, the system has a staggered
DM interaction between the second neighbors along the three
types of zigzag chains, as in Eq. (4) [32]. This leads to the
asymmetry in the magnon bands, as shown in Fig. 3(b) [23].
The staggered DM interaction is reported to show an interesting
magnon transport, the “Nernst” effect of a magnon spin current
[33–35]. In the experiment of the magnon Nernst effect [35],
the magnitude of D has been estimated as D ∼ 0.3 meV, which
we adopt in the following analysis [36].

In the above model, each unit cell has two sublattices
and the magnon bands with Sz

tot = ±1 are degenerate. As
shown in Fig. 3(b), the energy dispersion is asymmetric,
namely, 〈(vx

nσk)3〉
εnσk=ε

�= 0, e.g., along the K-�-K ′ line. In
this situation, the nonreciprocal SSE appears when a magnetic
field lifts the degeneracy of the two magnon bands (Sz

tot = ±1).
Similar to the one-dimensional zigzag AFM discussed above,
both V SSE

1 and V SSE
2 are odd functions of the magnetic field

normal to the honeycomb plane Bz.
To experimentally detect the nonreciprocal SSE in this

honeycomb system, we can exploit the directional dependence
of V SSE

1 and V SSE
2 . Figure 3(b) shows that the energy dispersion

along the M-�-M cut is symmetric, which suggests that the
nonreciprocal SSE does not occur along this direction. Indeed,
we find the directional dependence of V SSE

2 with threefold
rotational symmetry at nonzero temperature (�TN ) under a
finite Bz, as shown in the lower right-hand panel of Fig. 3(c).
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(Note that the magnitudes depend on τ , of which we do not
have a quantitative estimate for the present compound.) The
nonlinear spin Seebeck voltage V SSE

2 vanishes in the directions
corresponding to M-�-M (e.g., θ = 90◦), whereas the linear
one V SSE

1 (the upper panel) is always nonzero for Bz �= 0
irrespective of the directions [37].

We note that in both compounds α-Cu2V2O7 and MnPS3,
the ground-state spin configurations are slightly canted from
the antiferromagnetic states that we have assumed because of
the spin-orbit coupling; the canting angle is 4.7◦ in α-Cu2V2O7

[28] and 8◦ in MnPS3 [38]. We expect that such small canting
does not alter seriously our conclusions. It is also worth noting
that the presence of the nonreciprocal SSE is assured by the
point group symmetry of these materials.

Finally, we make a remark on the controllability of the
nonreciprocal spin current using the magnetic domain reversal.
In AFMs, there are energetically degenerate magnetic do-
mains connected by the time-reversal symmetry. As mentioned
above, the breaking of inversion symmetry is necessary for
nonzero Sxx

2 . When the inversion symmetry is broken by a
magnetic order as in the zigzag AFMs (e.g., MnPS3), Sxx

2
changes its sign between two different magnetic domains.
Therefore, the nonreciprocal SSE can be controlled by re-
versing the magnetic domains [38]. On the other hand, when

the inversion symmetry is broken by the crystal structure as
in the polar AFM (e.g., α-Cu2V2O7), Sxx

2 is not changed
by magnetic domain reversal. The results are shown in
Table I.

In summary, we have theoretically investigated the non-
reciprocal response of a spin current in bulk AFMs under
a thermal gradient. We showed that the nonreciprocal SSE
appears in a different manner for the polar and zigzag AFMs.
We found that the polar AFMs can exhibit perfect nonreciproc-
ity, while the zigzag AFMs show a nonreciprocal SSE which
can be controlled by reversing magnetic domains. For their
experimental observations, we calculated the spin Seebeck
voltage for α-Cu2V2O7 and the honeycomb antiferromagnet
MnPS3 while varying the temperature and magnetic field.
Our results could contribute to the experimental observations
of nonreciprocal spin transport and to future applications to
spintronics devices.
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