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Bloch oscillations in a single Josephson junction in the phase-slip regime relate current to frequency. They
can be measured by applying a periodic drive to a dc-biased, small Josephson junction. Phase locking between
the periodic drive and the Bloch oscillations then gives rise to steps at constant current in the I -V curves, also
known as dual Shapiro steps. Unlike conventional Shapiro steps, a measurement of these dual Shapiro steps is
impeded by the presence of a parasitic capacitance. This capacitance shunts the junction, resulting in a suppression
of the amplitude of the Bloch oscillations. This detrimental effect of the parasitic capacitance can be remedied
by an on-chip superinductance. Additionally, we introduce a large off-chip resistance to provide the necessary
dissipation. We investigate the resulting system using a set of analytical and numerical methods. In particular,
we obtain an explicit analytical expression for the height of dual Shapiro steps as a function of the ratio of the
parasitic capacitance to the superinductance. Using this result, we provide a quantitative estimate of the dual
Shapiro step height. Our calculations reveal that even in the presence of a parasitic capacitance, it should be
possible to observe Bloch oscillations with realistic experimental parameters.
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I. INTRODUCTION

An important goal in quantum metrology is the completion
of the metrology triangle between voltage, current, and fre-
quency [1,2]. Bloch oscillations in small Josephson junctions
provide the last needed link between current and frequency
and thus have the potential to close the metrology triangle
[3]. In order to observe these oscillations, a large impedance
is needed to reduce the charge fluctuations and reach the
Coulomb blockade regime [4,5]. In addition, the Josephson
junction needs to be operated as a quantum phase-slip junction,
the dual counterpart of the Josephson junction [6–9].

Bloch oscillations can be measured in a quantum phase-
slip junction biased with a current I0 and irradiated with
microwaves of frequency ω0. When I0 is an integer multiple
of eω0/π , the incident radiation phase locks with the Bloch
oscillations in the junction. This leads to dual Shapiro steps
in the I -V curve at constant current I0 [1,3]. The observation
of Coulomb blockade is the first prerequisite to observe dual
Shapiro steps. It has already been seen in different systems,
e.g., nanowires [10,11], Cooper pair transistors [12,13], and
single Josephson junctions [14,15]. However, the first attempts
to experimentally demonstrate dual Shapiro steps [11,14] did
not reveal clear current steps at integer multiples of eω0/π in
the I -V curves. The experimental difficulties are connected
either to the detrimental effects of parasitic capacitances [16]
or to the unwanted tunneling of individual electrons [17]. As
the latter can be reduced by lowering the temperature, in this
work, we concentrate on the effect of the former.

As a remedy for the parasitic capacitances of the bias-
ing lines, a large resistance has to be placed close to the
junction, which leads to excessive heating, washing out the
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dual Shapiro steps [14]. In Ref. [16], it was argued that
the complementary requirements (large resistance for good
current biasing and small resistance for small heating) are
irreconcilable. Furthermore, it was proposed to replace the
large resistance by a reactive alternative, a superinductance
[18], which reduces the charge fluctuations without introducing
heating [13]. The effect of superinductances on dual Shapiro
steps was investigated in Refs. [19,20], but without taking into
account parasitic capacitances. In this work, we combine an
on-chip superinductance, screening the parasitic capacitance,
with a large off-chip resistance, dissipating the excess energy.
For this setup, we provide analytical results for the height of
the dual Shapiro steps and verify our findings using numer-
ical simulations. Our predictions are relevant for the current
experimental efforts towards observing dual Shapiro steps.
With the recent experimental progress towards building su-
perinductances using Josephson junction arrays [9,13,21–24]
or coils [25], we are optimistic of experimental verifications
of our theoretical predictions.

This paper is organized as follows. We start by investigating
the ideal regime of high impedance, where the characteristic
impedance, Z = √

L/Cp, formed by the superinductance L

and the parasitic capacitance Cp is larger than the quantum
resistance RQ = h/4e2. Next, we examine the experimentally
more relevant regime Z � RQ, where quantum effects play
an important role. Finally, we validate our analytic results by
comparing them to numerical simulations.

II. MODEL

The ideal setup for the observation of Bloch oscillations is
shown in Fig. 1(a). It is the electrical dual of the conventional
Shapiro step experiment [6]. It consists of a voltage source in
series with a large resistance and a phase-slip junction. The
phase-slip junction can be realized by a (small) Josephson
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FIG. 1. (a) The ideal setup for the observation of dual Shapiro
steps consists of a phase-slip junction ES in series with a resistance R

and an ideal voltage source V . The phase-slip junction is formed
by a Josephson junction in parallel to a capacitance. The voltage
source V , together with the large resistance R, acts as a current
source providing a current Ic. This current can be computed by a
direct measurement of the voltage drop across the resistance. (b) In
a realistic setup, the phase-slip junction is shunted by an unwanted
parasitic off-chip capacitance Cp , causing the part −Iq of the current
to flow past the junction. To remedy this unwanted effect, an additional
on-chip superinductance L is introduced.

junction with a finite capacitance [1,3,26]. The voltage source
drives an incident signal composed of dc and ac components at
frequency ω0 and is given by V (t ) = V0 + Vac sin(ω0t ). Here,
we treat the relevant case of Vac � V0. In an ideal situation, the
large resistance R together with the voltage source constitutes
an almost ideal current source with value V (t )/R. However,
in a realistic situation, an unwanted parasitic capacitance Cp

tends to shunt the Josephson junction [Fig. 1(b)]. This could be
due to either direct coupling between the leads to and from the
junction caused by insufficient separation or indirect coupling
between the leads through a common ground plane. As this
parasitic capacitance shunts part of the current injected by the
source, the Josephson junction will not be perfectly current
biased, which results in the Bloch oscillations being washed
out.

As a large enough resistance R � RQ causes too much
heating, superinductances have been proposed as a reactive
alternative in order to suppress fluctuations in the current
[9,18,21]. However, as the system is constantly driven, the
energy still has to be dissipated at some point. In Ref. [16],
the authors proposed to implement the driving as well as the
dissipation by a microwave transmission line. In this work,
we treat an alternative setup where we combine the idea of
the superinductance to protect against parasitic capacitances in
the inner current loop with a resistance in series with the volt-
age source. The key point is that the resistance does not have
to be close to the Josephson junction as the superinductance
serves to protect against the parasitic capacitance. Rather, the
task of the resistance is to turn the voltage source into a current
source and to dissipate excess energy so that the system may
settle into a stationary state.

The system we propose in order to observe Bloch oscil-
lations is given by Fig. 1(b). In this setup, an inductance L

serves to protect against the parasitic capacitance Cp. We
denote the current in the outer loop by Ic. The current in
this loop is driven by the voltage source, and it is stabilized
by the presence of a resistance R. Under the assumption that

R � RQ, the dynamics of Ic can be treated classically (see also
below). Thus, the current Ic can be measured via the voltage
drop over the resistance R. On the other hand, the current
in the inner loop, denoted by Iq , flows without dissipation
and is treated as a quantum-mechanical operator. The current
fluctuations are suppressed by the characteristic impedance
Z = √

L/Cp. We need the Josephson junction in the transmon
regime with EJ � EC [27]. In this case, the ground-state
energy is approximately given by [28]

ES (q ) � E
1/4
C E

3/4
J e−(8EJ /EC )1/2

cos(πq/e), (1)

with q being the charge that is accumulated on the capac-
itor plate. Equivalently, the voltage across the Josephson
junction is given by VS (q ) = Vc sin(πq/e), with eVc/π �
E

1/4
C E

3/4
J e−(8EJ /EC )1/2

. The capacitance associated with this
phase-slip junction is given by CS = e/πVc. In order for
Eq. (1) to be a good approximation of the energy stored in
the phase-slip junction, the driven system has to stay in the
ground state with vanishing Landau-Zener processes [28]. This
restricts the drive frequency to ω0 � E2

J /h̄EC , which we take
to be true throughout this work.

The step to a quantum description of the problem is
performed by introducing the loop charge operators Q̂c[q] =∫ t

−∞dt ′ Îc[q](t ′) that denote the charge that has flown in the
classical (quantum) loop up to a time t [29]. Kirchhoff’s voltage
law then demands that

R ˙̂Qc = V (t )+ Q̂q

Cp

, (2)

L( ¨̂Qc+ ¨̂Qq )+Vc sin[π (Q̂q + Q̂c )/e]+ Q̂q

Cp

= 0. (3)

Here, we have included only the noiseless, classical part of the
voltage source since we assume that the system is operated at
a low enough temperature T , with kBT � eVc. In this case,
the thermal noise of the resistance is negligible (for analysis
including thermal noise, see Appendix A).

For R � RQ, the quantum fluctuations of Q̂c are sup-
pressed far below 2e [5]. As a result, the operator can be
simply replaced by its quantum-mechanical expectation value
Qc = 〈Q̂c〉. The motion of Q̂q is given by Eq. (3). This
equation describes a nondissipative dynamics of Q̂q and thus
can be described by a Schrödinger equation. The explicit form
of the Hamiltonian that leads to the equation of motion for Q̂q

is given by

Ĥ = �̂2
q

2L
+ Q̂2

q

2Cp

+ LQ̂qQ̈c − eVc

π
cos[π (Q̂q + Qc )/e],

(4)
where �̂q is the canonically conjugate variable of Q̂q with
[Q̂q, �̂q] = ih̄ [30]. Note that this Hamiltonian is time de-
pendent, where the time dependence is parametrized by
Qc. Thus, the problem reduces to finding the solution of
the time-dependent Schrödinger equation ih̄∂tψ (Qq ; Qc, t ) =
Ĥψ (Qq ; Qc, t ) for the quantum loop charge coupled to the
equation of motion

RQ̇c = 〈ψ |Q̂q |ψ〉/Cp + V (t ) (5)
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for the classical loop charge [31]. The dynamics of the circuit
are governed by three distinct rates: the plasma frequency of the
quantum charge ωq = 1/

√
LCp, the plasma frequency of the

classical charge ωc = 1/
√

LCS , and the RC rate ωR = 1/RCS

with which the motion is damped. The ratio ωc/ωR is the
quality factor of the classical charge dynamics and measures
the relative importance of the first-order time derivative with
respect to the second-order time derivative of Qc. For ωR > ωc,
the system can show hysteretic behavior, which makes it very
unfavorable for the accurate observation of dual Shapiro steps.
In the following, we will therefore focus on the overdamped
regime with ωc � ωR .

III. HIGH-IMPEDANCE REGIME

In order to analyze the problem, we first treat the case of
a large characteristic impedance Z � RQ. In this case, the
charge Q̂q and its fluctuations in the parasitic loop remain small
compared to 2e. This allows us to linearize Eq. (3) and treat Q̂q

classically. Next, we insert the obtained solution for Q̂q into the
equation for the classical loop charge and neglect the second-
order derivatives since we are interested in the overdamped
regime. This leads to

RQ̇c + Vc sin(πQc/e)

1 + (Cp/CS ) cos(πQc/e)
= V (t ). (6)

For vanishing Cp, this reduces to the (dual of the) resistively
shunted junction (RSJ) model of the conventional Shapiro
steps in the overdamped regime [32]. The resulting voltage
steps at fixed dc current I0 through the outer loop are dual
to the conventional Shapiro steps. The position I0 originates
from the phase locking of the external drive frequency ω0

to the frequency of the Bloch oscillation I0π/e. We find
that the first step appears at I0 = eω0/π centered around the
value V0 = Vc

√
1 + (ω0/ωR )2[1 + (3/8)(ωR/ω0)2(Cp/CS )2]

of the dc voltage. The step height is given by

�V = Vac[1 + (1/4)(Cp/CS )2]√
1 + (ω0/ωR )2

(7)

to leading order in ωR/ω0, Cp/CS , and Vac/Vc (see
Appendix B). The temperature has a negligible effect on the
step as long as kBT � e�V (see Appendix A). Note that in
this regime the presence of the parasitic capacitance increases
the height of the dual Shapiro step.

IV. GROUND-STATE APPROXIMATION

Experimentally more relevant is the regime Z � RQ. In
order to obtain analytical results in this regime, we assume the
plasma frequency of the quantum charge is large. In particular,
we demand that the parasitic capacitance is small enough such
that the relations ωq � ω0 and ωq � eVc/h̄ � ωRR/RQ hold.
Under these conditions, the quantum loop charge stays in the
ground state of Ĥ during the course of the evolution, given
the system is initially at sufficiently low temperatures with
kBT � h̄ωq . Specifically, as ωq � ω0 and h̄ωq � eVc, we
can neglect the last two terms in Eq. (4). Then, the ground-state

wave function is that of a harmonic oscillator and is given by

ψ0(Qq,Qc, t ) = Z1/4

π1/4h̄1/4 e−(Z/2h̄)Q2
q−iωq t/2. (8)

Using this wave function in order to calculate the expectation
value of Q̂q/Cp, the equation of motion of the classical charge
reduces to

LQ̈c + RQ̇c + e−πRQ/2ZVc sin(πQc/e) = V (t ), (9)

valid to lowest order in eVc/h̄ωq and ω0/ωq (see Appendix C).
Note that in this equation the sole effect of the parasitic
capacitance is to reduce the critical voltage of the phase-slip
junction Vc by a factor e−πRQ/2Z . This is the main result of our
paper. It implies that the effect of the parasitic capacitance
is shielded by the inductance as long as the characteristic
impedance Z is larger than πRQ/2 ≈ 10 k�. Indeed, we find
that in the overdamped regime ωc � e−πRQ/4ZωR , where we
can neglect the second-order time derivative, we can again
calculate the step height analytically [32]. Assuming that V0 >

e−πRQ/2ZVc the first step at the current I0 = eω0/π appears at
the voltage V0 = Vc[e−πRQ/Z + (ω0/ωR )2]1/2. The height (in
voltage) of the step at constant current is, on the other hand,
given by

�V = Vac√
1 + eπRQ/Z (ω0/ωR )2

, (10)

valid to first order in Vac/e
−πRQ/2ZVc.

V. NUMERICAL RESULTS

In order to confirm our results, we have performed numeri-
cal calculations. First, we solved the coupled system between
the Hamiltonian in Eq. (4) and the equation of motion in
Eq. (5) numerically. This was done by calculating the time-
dependent Schrödinger equation in the basis of the harmonic
oscillator using the Crank-Nicolson method, while the classical
equation of motion was solved using the backward Euler
method. In Fig. 2(a), we compare our numerical results to our
analytical solutions from Eq. (7) and Eq. (10). We find that
the approximation in the high-impedance regime provides an
upper limit to the quantum simulation since the calculation is
valid only for Z � RQ. The ground-state approximation gives
a good, conservative approximation for the size of the step in
the quantum simulation, especially for Z � RQ. This is due to
the fact that the condition for the ground-state approximation
ωq � eVc/h̄ � ωc

√
Z/RQ is better fulfilled in this regime.

Second, we solved Eq. (6) numerically using the backward
Euler method. The result can be found in Fig. 2(b) together with
our analytical result from Eq. (7). As expected, the analytic
result works best at small Cp/CS . Third, we solved Eq. (9) nu-
merically, again using the backward Euler method. In Fig. 2(c),
we compare these results to our analytic approximation for
the overdamped regime in Eq. (10) for two different values
of ωRe−πRQ/4Z/ωc. We find that for ωc � e−πRQ/4ZωR the
numerical calculation agrees very well with the analytical
result, as long as the assumption V0 > e−πRQ/2ZVc is valid.

In order to better illustrate the dependence of the step
size on the parameters, we used the numerical results from
the ground-state approximation in Eq. (9) to create the color
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FIG. 2. (a) The height of the first dual Shapiro step as a function of
the characteristic impedance Z for ωc/ωR = 2, ωq/ωR = 3, ω0/ωR =
1.1, and Vac = 0.1Vc. The solid red line shows the result obtained
with a numerical calculation of the coupled system of Eqs. (4) and
(5). The dotted blue line shows the analytic approximation of the
step height in the high-impedance regime Z � RQ in Eq. (7). The
dashed black line shows the analytical result of the ground-state
approximation in Eq. (10). The ground-state approximation provides
a good, conservative approximation for the results of the quantum
simulation, especially for Z � RQ. (b) Comparison of the analytic
approximation of Eq. (7) to the numerical solution of Eq. (6) (solid
orange line). The reference step height �V0 corresponds to Cp = 0.
As expected the approximation works best at large CS/Cp . (c) Com-
parison of the analytic result of the ground-state approximation in the
overdamped regime [Eq. (10)] to a numerical solution of the classical
equation of motion [Eq. (9)]. The solid green line shows the numerical
result for ωRe−πRQ/4Z/ωc = 0.01, and the dash-dotted line shows the
result for ωRe−πRQ/4Z/ωc = 0.5. The analytical approximation fits the
numerical data well, especially for the strongly overdamped regime
(solid line).

plot in Fig. 3, which shows the dependence of the step size
on all relevant parameters. Here, we can clearly see that the
maximum step size can be achieved only in the overdamped
regime. For ωc � e−πRQ/4ZωR , the step size becomes smaller,
and hysteresis begins to occur, making it very unfavorable
for a precise measurement of the step position. For ωc >

e−πRQ/4ZωR , the results do not sensitively depend on the
parameters used. The optimal step size can be achieved for
driving frequencies ω0 ≈ 0.5e−πRQ/2ZωR , with a value �V

reaching over 80% of the maximal theoretical step size Vac.

VI. EXPERIMENTAL PARAMETERS

Next, we comment on the experimental feasibility of the
observation of dual Shapiro steps. Nowadays, it is possible
to fabricate Josephson junctions with EJ ,EC/2πh̄ � 10 GHz
[13], which results in critical voltages Vc of the order of 10 μV
(CS � 5 fF). In order to avoid Landau-Zener processes, the
drive frequency ω0/2π should remain well below 10 GHz.

FIG. 3. Size of the first dual Shapiro step in the ground-state
approximation as a function of the quality factor and the drive
frequency. It was obtained by solving Eq. (9) numerically for Vac =
0.1e−πRQ/2ZVc. It can be seen that the largest steps appear in the
overdamped regime ωc � e−πRQ/4ZωR for a drive frequency ω0 ≈
0.5e−πRQ/2ZωR .

Therefore, the dual Shapiro steps will appear at currents of the
order of nanoamps. In this context, note that a current standard
formed by Shapiro steps is readily parallelizable in order to
achieve larger values [2]. Modern fabrication techniques allow
for on-chip inductances of the order of 500 nH [9,22,25].
For our purposes, we would require a parasitic capacitance
of the order of 100 fF in order to obtain an impedance Z =√

L/Cp of about 3 k�. Given the many groups in different
fields working on the fabrication of superinductances, we are
confident that this will be reached soon. In addition, sufficiently
low temperature as well as effective noise filtering is required
to prevent the dual Shapiro steps from being washed out (see
Appendix A).

VII. CONCLUSION

In conclusion, we have analyzed the dual Shapiro step
height in the presence of a superinductance and a parasitic
capacitance. We have described the system by a Schrödinger
equation coupled to a classical equation of motion. In the limit
ωq � ω0, eVc/h̄, the quantum system remains in the ground
state, and only the classical equation of motion has to be solved.
We have provided an analytical expression for the dual Shapiro
step height in the overdamped limit ωc � e−πRQ/4ZωR . The
leading effect of the parasitic capacitance is a reduction of the
critical voltage of the phase-slip junction Vc by a factor of
e−πRQ/2Z . Thus, the effect of the parasitic off-chip capacitance
can be remedied by an on-chip inductance, as long as the
characteristic impedance Z is of the order of πRQ/2 ≈ 10 k�.
Additionally, we have shown the dependence of the step
height on ωq by deriving an expression for the step height in
the limit of high characteristic impedance. Finally, we have
performed numerical simulations to validate the analytical
results. Throughout this work, we have chosen to neglect the
effects of thermal noise of the resistance and the influence
of the stray capacitance parallel to the inductance. This is
because thermal effects can be made small by working at low
temperature and the stray capacitance is usually much smaller
than the parasitic capacitance. A detailed analysis of these
effects is left for the future.
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APPENDIX A: INFLUENCE OF THERMAL NOISE

Throughout the paper, we assume that the temperature is
sufficiently low to keep the dual Shapiro steps from being
washed out. Here, we want to comment on the influence
of noise on the step height. First, we will discuss the in-
fluence of the thermal noise of the resistance. There have
been extensive studies on the influence of thermal, white
noise for the RSJ model of the conventional Shapiro step
experiment [32], which can be easily transferred to the problem
of dual Shapiro steps. As an effective noise parameter, we
obtain

γ = 2π
kBT

e�V

R

Rd (V0)

(
1 + V 2

c

2V 2
0

)
, (A1)

with the differential resistance Rd (V0) =
RVc

√
(V0/Vc )2 − 1/V0 and V0 being the dc voltage around

which the first dual Shapiro step is centered. The washing
out of the step takes place at γ ∼ 1, which leads to a
suppression of steps smaller than �V � Vc (Vc � 10 μV)
at a temperature of T � 20 mK. This would suggest that
for a resistor at T � 100 mK even the measurement of
Coulomb blockade is not possible. However, effective filtering
methods can be employed to significantly lower the thermal
noise of resistors at higher temperatures. This has been
repeatedly demonstrated in Coulomb blockade measurements
[12–15].

Next, we discuss the influence of charge fluctuations in
the LC circuit composed of the parasitic capacitance Cp

and the superinductance L (see Appendix C). If we include
thermal excitation of higher energy levels in our ground-state
approximation, Eq. (C2) has to be rewritten in terms of the
trace with the density operator ρ̂,

Tr{ρ̂ sin[π (Q̂q+Qc )/e]}=e−πRQ(1+2n̄)/2Zsin(πQc/e), (A2)

where n̄ = [exp(h̄ωq/kBT ) − 1]−1 is the average number of
photons in the LC resonator given by the Bose-Einstein
statistic. For a realistic resonance frequency of the order of
ωq � 5 GHz and a temperature of T � 20 mK, we obtain n̄ �
0.1. The influence of charge fluctuations in the LC resonator
is thus negligible.

APPENDIX B: ANALYTICAL CALCULATION IN THE
HIGH-IMPEDANCE REGIME

We analyze the system in the regime of large characteristic
impedance Z � RQ. In this case, the charge Q̂q and its
fluctuations in the parasitic loop remain small compared to 2e.
This allows us to linearize Eq. (3) and treat Q̂q classically. Next,
we insert the obtained solution for Q̂q into the equation for the
classical loop charge. In the overdamped regime, ωc � ωR , we
can then additionally neglect the second-order time derivatives,
which leads to Eq. (6). If we now expand this equation up to

second order in small Cp/CS , we obtain

Ṅ/ωR + sin(N ) − (Cp/2CS ) sin(2N )

+ (Cp/2CS )2[sin(N ) + sin(3N )] = v(t ), (B1)

where v(t ) = V (t )/Vc is the normalized voltage and N =
πQc/e is the normalized charge in the classical loop. For
vanishing Cp, this again reduces to the (dual of the) RSJ model
of the conventional Shapiro steps in the overdamped regime
[32]

Ṅ/ωR + sin(N ) = v(t ). (B2)

For the RSJ model, we can calculate the step height analytically
to leading order in Vac/V0 [32].

We start by calculating the solution to Eq. (B2) without an
ac drive, v(t ) = v0, and obtain for v0 > 1

NDC =2 arctan

{
i0

v0−1
tan

[
ωRi0(t−t0)+ π

2

2

]}
− π

2
, (B3)

where i0 = I0R/Vc =
√

v2
0 − 1 is the normalized average

current running through the classical loop. The initial condition
can always be fulfilled by choosing an appropriate t0.

Now, we will include a small ac drive in addition to the
dc bias and expand the solution to Eq. (B2) in a Taylor series
N = NDC + vacNAC. We also need to take into account that
the ac drive can change the average voltage. Therefore, we
will formally expand the dc bias in a Taylor series v(t ) = v0 +
vac[vs + sin(ω0t )], too. Here, vs acts as the additional influence
on the average voltage due to the ac drive. If we insert both
expansions into Eq. (B2), we obtain a differential equation for
NAC,

ṄAC/ωR + cos(NDC)NAC = vs + sin(ω0t ). (B4)

This equation does not need to be solved in order to obtain the
dual Shapiro step size. Instead, we will specifically consider
the first step where ω0 = ωRi0. At the step, the average current
has to remain constant ṄAC = 0. Using Eq. (B4), this restraint
can be rewritten to obtain

[vs + sin(ωRi0t )]/ṄDC = 0, (B5)

which depends only on the solution without an ac drive that we
already obtained in Eq. (B3). As a final result, we thus obtain
an equation for vs ,

vs = − cos(ωRi0t0)/2v0. (B6)

We find that depending on the phase shift t0 between the Bloch
oscillations and the ac drive, vs and thus the position on the
voltage step vary. This results in a maximum size of the first
step �V0 = Vac/v0, which coincides with Eq. (7) in the limit
Cp → 0.

Next, we want to obtain the step size for finite Cp up to
second order in small Cp/CS . Like for the previous calculation,
we first need to find a solution to Eq. (B1) in the case without
an ac drive. We will therefore make the ansatz NDC = N

(0)
DC +

(Cp/2CS )N (1)
DC + (Cp/2CS )2N

(2)
DC, and we also expand the dc

drive v = v0 + (Cp/2CS )v1 + (Cp/2CS )2v2 in the same way.
The result for N

(0)
DC can be found in Eq. (B3). In order to obtain
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the higher-order contributions, we separate Eq. (B1) and arrive
at the expression

∫
dNDC{v0−sin(NDC)+(Cp/2CS )[v1+sin(2NDC)]

+ (Cp/2CS )2[v2−sin(NDC)−sin(3NDC)]}−1

= ωR (t − t0). (B7)

Now, we expand the integrand up to second order in small
Cp/CS and perform the resulting integrals. Then, we can
insert the expansion for NDC and sort the expression in
orders of Cp/CS . While the zeroth-order term will lead
to Eq. (B3), solving the higher-order terms in succession
results in analytical expressions for N

(1)
DC and N

(2)
DC. Since both

expressions are quite involved, we will refrain from writing
them down here. As the next step, we will choose v1 and v2

in such a way that Ṅ
(1)
DC, Ṅ

(2)
DC = 0. In this way, the average

current will depend on only the zeroth-order contribution, and
our former relation i0 = I0R/Vc =

√
v2

0 − 1 will thus remain
valid throughout the calculation. If we apply the condition to
our analytical results, we obtain

v1(v0) = 0, (B8)

v2(v0) = 6v0 − 4v3
0 + 4

(
v2

0 − 1
)3/2

. (B9)

The first step at I0 = eω0/π thus appears close to the value
V0 = Vc[v0 + (Cp/2CS )2v2(v0)], with v0 =

√
1 + ω2

0/ω
2
R . In

order to calculate the step height, we need to use Eq. (B5)
again, which remains valid in the case Cp = 0. Going through
the same steps as before, we finally obtain the height of the

first step,

�V = Vac

v0

{
1 +

(
Cp

2CS

)2[
1 + 29

96v2
0

+ O

(
1

v3
0

)]}
, (B10)

valid to leading order in Vac/Vc and Cp/CS .

APPENDIX C: DERIVATION OF THE GROUND-STATE
APPROXIMATION

In the regime R � RQ, the system can be described by
the Hamiltonian in Eq. (4) coupled to the equation of motion
in Eq. (5). Our calculation will be done in the overdamped
regime with ωc � ωR . In order to obtain an analytical result,
we will assume the quantum plasma frequency is large enough
that the relations ωq � ω0 and ωq � eVc/h̄ are fulfilled. In
this case, the last two terms in Eq. (4) can be neglected, and
the system will remain in the ground state of the harmonic
oscillator with the ground-state wave function given by Eq. (8).
Next, we need to approximate the expectation value of Q̂q/Cp.
Since we assume Cp is a small parameter in our expansion, we
cannot simply take the expectation value of Q̂q in the ground
state. Instead, we express Q̂q/Cp in terms of the commutator
[Ĥ , �̂q],

Q̂q/Cp = [Ĥ , �̂q]/ih̄−LQ̈c−Vc sin(π [Q̂q +Qc]/e).
(C1)

Within our approximation, the expectation value of the com-
mutator is zero, and we therefore have to calculate only the
expectation value of

〈ψ0| sin(π [Q̂q +Qc]/e)|ψ0〉=e−πRQ/2Zsin(πQc/e). (C2)

If we insert both results in Eq. (5), we obtain a simplified
equation of motion for the classical charge, which can be found
in Eq. (9).
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