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We introduce the general formalism to describe spin torques induced by the supercurrents injected from
the adjacent superconducting electrodes into the spin-textured ferromagnets. By considering the adiabatic
limit for the equal-spin superconducting correlations in the ferromagnet, we show that the supercurrent can
generate both the fieldlike spin-transfer torque and the spin-orbital torque. These dissipationless spin torques
are expressed through the current-induced corrections to the effective field derived from the system energy.
The general formalism is applied to show that the supercurrent can either shift or move the magnetic domain
walls depending on their structure and the type of spin-orbital interaction in the system. These results can
be used for the prediction and interpretation of the experiments studying magnetic texture dynamics in
superconductor/ferromagnet/superconductor Josephson junctions and other hybrid structures.
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I. INTRODUCTION

It has been commonly recognized that reducing Joule
heating effects and power consumption are among the main
priorities for the development of electrically controlled mag-
netic memory devices [1–4]. Since the first spin-transfer torque
(STT) experiments [5,6], much effort has been invested to
optimize the switching currents, thermal stability, and tunnel
magnetoresistance of the magnetic tunnel junctions [3,7,8].
Thermal effects are also of the crucial importance for the op-
eration of the other type of STT memory—magnetic racetrack
memory [9–11] based on the electrical control over the domain
wall (DW) motion. The progress in improving these spin mem-
ory devises depends crucially on the competition between the
thermal stability of DWs and large current densities required
to overcome the pinning forces [4,12–18]. As an alternative
route to the low-power manipulation of magnetic textures, the
current-driven magnetic skyrmion dynamics has attracted large
interest [19–21].

In applications that require very large currents, for example,
in powerful magnets, using superconducting materials have
been proven to be an effective solution to eliminate Joule
heating effects. In view of the energy-saving spintronics, it
is quite appealing to employ the spin torques generated by
the dissipationless spin-polarized superconducting currents
(supercurrents). The existence of spin-polarized supercurrents
is ubiquitous to the spin-textured superconductor/ferromagnet
(SC/FM) hybrid structures resulting from long-range spin-
triplet proximity [22–25].

Recently, there have been many works studying spin-
polarized supercurrents in various SC/FM systems (for the
review see Refs. [26,27]). However, the supercurrent-induced
spin torques have been characterized theoretically only in
several model systems: in Josephson junctions through single-
domain magnets [28–32], two [33–35] and three [36] FM

layers, and in ferromagnetic spin-singlet [37] and spin-
triplet superconductors [38]. The general understanding of the
supercurrent-spin texture interaction has been lacking since
there is no direct connection between the above examples and
practically interesting systems—bulk nonhomogeneous FMs.
That is, the possibility of moving DWs and skyrmions by
injecting the supercurrent in real ferromagnets has been an
open question for a long time despite of the large attention to
the subject.

This challenging question is addressed in the present paper.
We employ the adiabatic approximation, which is widely used
for the description of kinetic processes in metallic ferromag-
nets with spin textures including the calculation of conductivity
[19] and spin-transfer torques [39] in the inhomogeneous FMs.
We bring this approach to the realm of superconducting sys-
tems to describe their transport properties governed by equal-
spin superconducting correlations. For that, we go beyond
the commonly used quasiclassical theory of hybrids [25,40],
which has been designed to treat only weak ferromagnets
with an exchange splitting much less than the Fermi energy.
Instead of that, we employ the recently developed approach
of generalized quasiclassical theory [41], which allows for the
description of proximity effect in strong ferromagnets with an
exchange splitting much larger than other energy scales and
comparable to the Fermi energy.

We show that the spin-polarized superconducting current
can induce magnetization dynamics, described in general by
the Landau-Lifshitz-Gilbert (LLG) equation

Ṁ = −γ M × Heff + α

M
M × Ṁ, (1)

where γ = 2μB is the electron gyromagnetic ratio. The second
term in the r.h.s. is the Gilbert damping. The superconducting
spin current J can induce two types of spin torques which can
be written as the correction to effective field −γ M × H̃eff =
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N st + N so. The first term here is the adiabatic spin-transfer
torque [15,42,43], while the second term N so is the spin-orbital
(SO) torque [44,45]. The nonadiabatic (antidamping) STT [14]
is not produced by the supercurrent since it breaks the time-
reversal symmetry of LLG equation and can be considered as
a correction to the dissipative Gilbert damping [46]. That is,
the antidamping STT should be connected with the quasipar-
ticle contribution, which is beyond the scope of our present
study.

The paper is organized as follows. In Sec. II, the general
equations for spin dynamics and spin torques generated by
supercurrent are considered. In Sec. III, we derive expressions
for the spin-transfer and spin-orbital torques using the general-
ized quasiclassical theory. In Sec. IV, we derive the Josephson
energy in SFS junctions and use it to provide an alternative
derivation of supercurrent spin torques. Section V is devoted
to the DW dynamics in SFS Josephson junctions induced by
the supercurrent spin torques. Our conclusions are given in
Sec. VI.

II. SPIN TORQUE GENERATED BY
THE SUPERCURRENT

We use an s-d model with a localized magnetization M
and that of the itinerant electrons Ms = −μB s, where s is the
electron spin and μB is the Bohr magneton. The dynamics of
localized spins is determined by the usual LLG equation with
a contribution to the effective field resulting from exchange
interaction with conductivity electrons [47]:

Ṁ = −γ M × Heff + α

M
M × Ṁ − Jsd M × Ms . (2)

The last term here is the source of spin torque and should be
found from the kinetic equation for conductivity electrons.

The kinetic theory for the conduction electrons in metals can
be formulated in terms of the matrix Green’s function Ǧ =
Ǧ(r1, r2, t1, t2), which has the following explicit structure

in the Keldysh space Ǧ = (Ǧ
R ǦK

0 ǦA ), where ǦR/A/K are the
retarder/advanced/Keldysh components. The general quantum
kinetic equation reads

i{∂t , Ǧ}t − [Ĥ , Ǧ]t,r = Ǐ , (3)

Ĥ (t, r ) = − �̂
2
r

2mF

+ (σ̂ h(r, t ))τ̂3 − i(σ̂ B̂�̂r ), (4)

Ǐ = (�̌ ◦ Ǧ − Ǧ ◦ �̌)(r1, r2, t1, t2). (5)

Here, we define the ◦-product as (Â ◦ B̂ )(t1, t2) =∫ ∞
−∞ dtÂ(t1, t )B̂(t, t2). The commutator is defined as

[Ĥ , Ǧ]t = Ĥ (t1, r1)Ǧ − ǦĤ (t2, r2), �̂r = ∇ − ieτ̂3 A(r ),
σ̂i and τ̂i are Pauli matrices in spin and Nambu spaces,
respectively. The exchange field is determined by localized
moments h = −Jsd M/2μB . The last term in Eq.( 4) is the
general form of a linear in momentum spin-orbit coupling
(SOC) determined by the constant tensor coefficient B̂. The
collision integral in the right-hand side (r.h.s.) of Eq. (3) is
given by Eq. (5). The self-energy term �̌ includes the effects
related to disorder scattering as well as the off-diagonal
superconducting self-energies.

The conduction electron spin polarization s, charge j and
spin J i currents are given by

s(r, t ) = − i

8
Tr4[σ̂ τ̂3Ĝ

K ]|r1,2=r,t1,2=t , (6)

j (r, t ) = Tr4

[(
�̂r1 − �̂r2

)
8mF

τ̂3Ǧ
K

]∣∣∣∣∣
r1,2=r,t1,2=t

, (7)

Jk (r, t ) = Tr4

[(
�̂r1 − �̂r2

)
16mF

σ̂kǦ
K

]∣∣∣∣∣
r1,2=r,t1,2=t

. (8)

The strategy of studying magnetization dynamics consists
of solving the coupled LLG (2) and kinetic equations (3)–
(5) together with the expression for the magnetic moment
(6). However, the general problem is too complicated for
the analysis. In the next section, (Sec. III), we discuss the
simplification of the kinetic equation using the so-called
generalized quasiclassical approximation [41] adopted to treat
the nonstationary problems.

Besides that, a significant simplification can be obtained in
the linear response limit when the dynamics of magnetization
is slow so that the characteristic frequency is small as compared
to the energy gap in the quasiparticle spectrum. In this case, we
can make use of the quasistationary equation for the electron
magnetization, which is obtained from Eq. (3). Multiplying it
by σ̂ from the left and taking the trace we obtain

−∂t s + ∇j J j = Jsd

μB

(M × Ms )

+ 2mF (Bj × J j ) + Tr4[σ̂ Ǐ ]K

8
. (9)

Here, we introduce the vector Bj = (Bxj , Byj , Bzj ), which is
determined by the j th coordinate component of the tensor B̂,
and J j = (J x

j , J
y

j , J z
j ) is the j -coordinate component of the

spin current (8). Next, the driving term in the LLG equation
(2) can be found neglecting the term with time derivative in
Eq. (9):

Jsd

μB

(M × Ms ) = ∇j J j − 2mF (Bj × J j ) − Tr4[σ̂ Ǐ ]K

8
.

(10)

In this work, we are interested in the quasiequilibrium spin
torques generated solely by the supercurrent without the
contribution of nonequilibrium quasiparticles. That means the
normal component of the current and the electric field are
assumed to be absent. Generally, the last term with the collision
integral in Eq. (10) has contributions both from the off-diagonal
order parameter and the spin-orbital scattering self-energy. The
present work is based on the following simplifying assump-
tions allowing to put Tr4[σ̂ Ǐ ]K = 0. First, we are interested in
the spin torques occurring in the normal metal ferromagnetic
interlayer where the order parameter is absent. Second, the
exchange splitting between spin subbands is assumed to be
large enough to suppress spin-flip transitions between them.
Below, we demonstrate that in this regime the first term in the
r.h.s. of Eq. (10) produces the adiabatic STT [39,42,48], while
the second term yields the spin-orbit torque [44,45,49]. In order
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to find these contributions, we calculate the spin supercurrent
through the spatially-inhomogeneous ferromagnet. In the next
section, it is shown that in the adiabatic limit valid for the
description of strong ferromagnet, this calculation can be
done analytically in the most general way using the technique
developed in Ref. [41].

III. GENERALIZED QUASICLASSICAL THEORY

A. Eilenberger equation for equal-spin correlations

To find the results in the adiabatic approximation, it is
convenient to work in the local reference frame, where the
spin quantization axis is aligned with the local direction of the
exchange field in the ferromagnet. Then we use the transfor-
mation Ǧloc = Û †ǦÛ , where Û = Û (r, t ) is in general the
time- and space-dependent unitary 2 × 2 matrix that rotates
the spin quantization axis z to the local frame determined by
the exchange field, so that h ‖ z.

To implement the adiabatic approximation, we introduce
the equal-spin (ES) pairing components of the GF

Ĝσ
ES = 1

4

∑
i

τ̂iTr[γ̌σ iǦloc]. (11)

Here, the projection operators to spin-up and spin-down states
defined by the index σ = ±1 are given by γ̌σ0 = τ̂0σ̂0 +
σ τ̂3σ̂3, γ̌σ1 = τ̂1σ̂1 − σ τ̂2σ̂2, γ̌σ2 = τ̂2σ̂1 + σ τ̂1σ̂2, γ̌σ3 =
τ̂3σ̂0 + σ τ̂0σ̂3. The generalized quasiclassical theory is formu-
lated in terms of the spinless propagators

ĝσ (np, r ) = −
∮

dξpσ

πi
Ĝσ

ES( p, r ), (12)

where Ĝσ
ES = Ĝσ

ES( p, r ) is the GF in the mixed representation,
ξpσ = p2/2mF + σh − μ, and the notation

∮
means that the

integration takes into account the poles of GF near the corre-
sponding Fermi surface. Then, in the adiabatic approximation,
which neglects the coupling between equal-spin and mixed-
spin correlations [41], we obtain the generalized Keldysh-
Eilenberger equation:

i{τ̂3∂t , ǧ}t + ivσ ∂̂r ĝσ − [�̂σ , ĝσ ]t = 0, (13)

∂̂r = ∇ − ie[Aτ̂3, .]t + iσ [Zτ̂3, .]t . (14)

Here, the spin-dependent Fermi velocities v± =√
2(μ ± h)/mF are determined on each of the spin-split

Fermi surfaces. The spin-dependent gauge field is given
by the superposition of two terms Z = Zm + Zso, where
Zm

i = −iTr(σ̂zÛ
†∂iÛ )/2 is the texture-induced part and the

term Zso
i = mF (mBi ) (where m = M/M), which appears

due to the SOC.
One can see that the Eilenberger-type equations for the spin-

up/down correlations contain an additional U(1) gauge field Z
which is added to the usual electromagnetic vector potential
A with the opposite effective charges for spin-up and spin-
down Cooper pairs. On a qualitative level, it is equivalent to
the adiabatic approximation in the single-particle problems that
allows to describe the quantum system evolution in terms of
the Berry gauge fields [50].

B. Charge and spin currents

The Eilenberger equations (13) are supplemented by the
expressions for the charge current j and the spin current Jk ,
where k denoted the spin index. The former is given by

j (t ) = −πe

4

∑
σ=±

νσ

〈
vσ Tr

[
τ̂3ĝ

K
σ (t, t )

]〉
, (15)

where νσ are the spin-resolved DOS and 〈· · · 〉 denotes the
averaging over the spin-split Fermi surface.

The spin current in rotated frame is given by

J̃
z
(t ) = −π

8

∑
σ=±

σνσ

〈
vσ Tr

[
τ̂3ĝ

K
σ (t, t )

]〉
. (16)

C. Diffusive limit

Let us consider the system with large nonmagnetic impurity
scattering rate as compared to the superconducting energies
determined by the bulk energy gap �. In this experimentally
relevant diffusive limit, it is possible to derive the generalized
Usadel theory with the help of the normalization condition
(ĝσ ◦ ĝσ )(t1, t2) = δ̂(t1 − t2), which holds due to the commu-
tator structure of the quasiclassical equations (13).

The impurity self-energy in the Born approximation is given
by �̂σ = 〈ĝσ 〉/2iτσ . In the dirty limit, we have

2τσ (vσ ∂̂r )ĝσ = −[〈ĝσ 〉, ĝσ ]t . (17)

The solution of Eq. (17) can be found as ĝσ = 〈ĝσ 〉 +
ĝa

σ pσ /pσ , where the anisotropic part of the solution ĝa
σ is small

with respect to 〈ĝσ 〉. Making use of the relation {〈ĝσ 〉, ĝa
σ }t =

0, which follows from the normalization condition, one obtains

ĝa
σ = −τσ vσ 〈ĝσ 〉 ◦ ∂̂r〈ĝσ 〉. (18)

Substituting to Eq. (13) and omitting the angle brackets, we
get the diffusion equation

{τ̂3∂t , ĝσ }t − Dσ ∂̂r (ĝσ ◦ ∂̂r ĝσ ) = 0, (19)

where Dσ are the spin-dependent diffusion coefficients, in the
isotropic case given by Dσ = τσ v2

σ /3. This equation is a spin-
scalar equation, but cannot describe conventional spin-singlet
superconducting correlations unlike the standard spin-scalar
form of the nonstationary Usadel equation [51]. It is only
applicable for strong ferromagnets and describes equal-spin
triplet correlations residing at one and the same Fermi surface.
Therefore this equation is a nonstationary generalization of
the corresponding equations for homogeneous strong ferro-
magnets [52] and inhomogeneous strong ferromagnets [41].

The current and spin current are obtained by substituting
expansion (18) to Eqs. (15) and (16):

j = πe

4

∑
σ=±

νσ Dσ Tr[τ̂3ĝσ ◦ ∂̂r ĝσ ], (20)

J̃
z = π

8

∑
σ=±

σνσ Dσ Tr[τ̂3ĝσ ◦ ∂̂r ĝσ ]. (21)

Further simplification can be obtained as follows. First, due
to the normalization condition, we introduce the parametriza-
tion of Keldysh component in terms of the distribution
function ĝK

σ = ĝR
σ ◦ f̂σ − f̂σ ◦ ĝA

σ . Then, switching to the
mixed representation in time-energy domain ĝσ (t1, t2) =
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∫ ∞
−∞ ĝσ (ε, t )e−iε(t1−t2 )dε/2π , where t = (t1 + t2)/2, we keep

only the lowest order terms in the time derivatives.
As an example of the above procedure, one can obtain from

(20) the charge current in the normal state j = e2(ν+D+ −
ν−D−)Ee driven by the emergent electric field [19,53] Ee =
−∂t Z. We, however, will neglect these effects and take into
account only the quasiequilibrium contributions to the currents
given by

j =
∑
σ=±

eνσ Dσ

8

∫ ∞

−∞
dεf0Tr

(
τ̂3 Ĵ

RA
σ

)
, (22)

J̃
z =

∑
σ=±

σνσ Dσ

16

∫ ∞

−∞
dεf0Tr

(
τ̂3 Ĵ

RA
σ

)
, (23)

where Ĵ
RA
σ = ĝR

σ ∂̂r ĝ
R
σ − ĝA

σ ∂̂r ĝ
A
σ is the spectral current and

f0(ε) = tanh(ε/2T ) is equilibrium distribution function.

D. Supercurrent-induced torque

In the quasiequilibrium regime when the time derivative of
the GF in the mixed representation can be neglected, Eqs. (13)
or (19) yield the conservation of spin current in rotating frame
∇ · J̃ z = 0. The spin current in the laboratory frame is given
by Jk = Rkz J̃

z
, which can be written in the form

Jk (r ) = mk (r ) J̃
z
. (24)

It is not conserved due to the spatially-dependent magnetiza-
tion of d electrons m = m(r ).

Substituting Eq. (24) into Eq. (10), we obtain the
torque, induced by the supercurrent in the quasiequilibrium
regime:

Jsd Ms × M = N st + N so, (25)

N st = 2μB ( J̃
z∇ )m, (26)

N so = 4μBmF (m × Bj )J̃ z
j . (27)

Here, N st is the supercurrent spin-transfer torque, which
takes only the form of the adiabatic torque in the considered
approximation, and N so is the spin-orbit torque. Its particular
structure strongly depends on the type of the spin-orbit cou-
pling, realized in the system. Below we show that due to the
coherent nature of the spin-polarized superconducting current
the same result can be obtained from the energy functional of
the system yielding the correction to the effective field.

IV. SUPERCURRENT SPIN TORQUES AS CORRECTIONS
TO THE EFFECTIVE FIELD

Above, we have derived general expressions (26) and (27)
for the superconducting spin torques starting from the kinetic
equation treated in the adiabatic limit. For any particular
system, one can find the spin torques solving generalized Eilen-
berger/Usadel equations for the quasiclassical propagators and
calculating the spin current according to Eq. (21).

An alternative approach to obtain superconducting spin
torques is based on the description of magnetization dynamics
in terms of the phenomenological expression for the effec-
tive field Heff = −δF/δM, where F = F (M ) is the system

energy as a functional of the magnetization distribution. The
LLG equation without dissipation terms is given by

Ṁ = −γ M × Heff . (28)

This approach cannot be applied to derive spin-transfer torques
in the normal state where the conduction electron magne-
tization is not coherent. In contrast to the normal system,
superconducting electrons are in the macroscopically coherent
state. Therefore the total energy of the system written in terms
of the macroscopic variables describes the interaction between
the condensate spin and the ferromagnetic order parameter.

Based on the above discussion one can conclude that the
superconducting spin-transfer torques (26) and (27) can be
obtained from the energy arguments. To demonstrate this, we
consider a generic example of the Josephson system consisting
of superconducting leads coupled through the ferromagnet
with nonhomogeneous magnetization texture. In general, this
task is rather complicated and requires extensive numerical
calculations for each particular system considered. However,
in strong ferromagnets, the general expressions for Josephson
spin and charge currents for different magnetic textures of
the interlayer can be obtained using the machinery of the
generalized quasiclassical theory [41].

We consider the 1D magnetic texture M = M(x) in the
interlayer of the thickness d between two superconducting
interfaces, located at x = ±d/2. The superconducting order
parameter phase difference between them is χ . The current-
phase relation for this setup has been found [41] as the
superposition of partial currents carried by the spin-up and
spin-down Cooper pairs:

j (χ ) =
∑
σ=±

jσ sin

(
χ + 2σ

∫ d/2

−d/2
Zxdx

)
. (29)

The amplitudes jσ are determined by the boundary condi-
tions at FM/SC interfaces and the overlap factor of the equal-
spin correlations injected from the opposite SC electrodes
jσ ∝ e−d/ξNσ , where ξNσ = √

Dσ/T is the spin-dependent
normal metal correlation length [41]. The other characteristic
scale of the problem is the characteristic length of the magnetic
inhomogeneity. In the case of the domain wall, it is the wall
size dw. If we are interested in the domain wall motion and
consider the situation when the DW is located inside the
interlayer (dw < d) and not in the vicinity of S/F interfaces, the
amplitudes jσ do not depend on dw at all. However, this scale
enters the Josephson current via the effective gauge field Z =
−mx (my∇mz − mz∇my )/2m2

⊥, where m⊥ =
√

m2
y + m2

z . Z

is a crucial factor giving rise to the DW dynamics, as it is
explained below. In more general case, when the DW is wide
dw > d or the DW is located in the vicinity of a S/F interface,
the amplitudes jσ also depend on dw via boundary conditions
[41], but consideration of the DW dynamics presented below
is not applicable in this case.

The rotated-frame spin current J̃ z ≡ J̃ z
x is given by the

difference of the partial spin-up/down currents

J̃ z(χ ) = 1

2e

∑
σ=±

σjσ sin

(
χ + 2σ

∫ d/2

−d/2
Zxdx

)
. (30)
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The Josephson energy can be obtained according to the usual
relation

FJ = const − 1

2e

∑
σ=±

jσ cos

(
χ + 2σ

∫ d/2

−d/2
Zxdx

)
. (31)

The current-phase relation (29) is given by j (χ ) =
2e(dFJ /dχ ). Therefore, calculating the correction to effective
field H̃eff = −δFJ /δM (see details in Appendix), we obtain

γ M × H̃eff = 2μBJ̃ z(2mF Bx × m − ∇xm). (32)

Substituting the result (32) to the LLG equation, we get the
spin-transfer torques identical to Eqs. (25)–(27).

The above energy consideration demonstrates that a direct
coupling between the magnetization and superconducting cur-
rent exist even in the limit when the spontaneous charge current
is absent. Indeed, the spontaneous phase shift of the Josephson
current-phase relation (29) is given by tan χ0 = tan ϕ(j+ −
j−)/(j+ + j−), where ϕ = 2

∫ d/2
−d/2 Zxdx. Therefore χ0 = 0 in

the limit when the spin subbands are formally degenerate,
j+ = j−. At the same time, the Josephson spin current (30)
and correspondingly the spin torque in Eq. (32) are nonzero.

This result generalizes the previously suggested mechanism
of the supercurrent-induced spin-orbital torque stemming from
the χ0 = χ0(m) dependence [31,32]. In our case, it is not
only the phase shift, but in addition the overall critical cur-
rent in Eq. (29), which depends on the magnetization jc =√

j 2
+ + j 2

− + 2j+j− cos(2ϕ) through ϕ = ϕ(m). This provides
the nonzero effective field even in the case of degenerate bands.

V. SUPERCURRENT DRIVEN MAGNETIC TEXTURE
DYNAMICS

A. General case of the texture dynamics driven by
the adiabatic STT

The first striking consequence of the dissipationless super-
current spin torques is the possibility to realize the quasiequi-
librium magnetic texture dynamics driven solely by the adi-
abatic STT generated by the superconducting current. In the
absence of dissipation, the LLG equation (1) has a solution in
the form of a traveling wave m = m(x − ut ) with a constant
velocity determined by the spin current u = 2μBJ̃ z/M . For a
periodic magnetic structure, e.g., magnetic helix, this yields
a locally rotating magnetization with a frequency defined
by ω ∼ u/L, where L is the period. However, these time-
dependent quasiequilibrium solutions do not correspond to the
ground state. It can be reached only in the presence of the
Gilbert damping, which transforms the magnetic texture in
such a way to compensate the effective field generated by the
spin-polarized supercurrent. Therefore, eventually the systems
will stop at the stationary state when Heff = 0. In the absence
of dissipation, the same quantityudetermines the characteristic
velocity of the domain wall motion by the adiabatic STT in
the system. In principle, current-driven motion of DWs in
Josephson junctions with strong ferromagnets can be realized
in different systems with high enough critical current densities.
High critical currents through strong ferromagnets are typically
carried by equal-spin triplet correlations, which decay on the
length scale ξNσ inside the ferromagnet [25]. The Josephson
current carried through strong ferromagnets by equal-spin

triplet pairs was experimentally reported in different systems
[54–58] (see also Ref. [26] for review), which are the promising
elements for the dissipationless superconducting spintronics.
Here, we can estimate u for the parameters of half-metallic
CrO2 nanostructures [56]. The maximal Josephson current
density through the CrO2 nanowire is jc ∼ 109 A/m2, which
determines the spin current J̃ z = jc/(2e). Taking into account
the saturation magnetization M = 4.75 × 105 A/m, we get the
speed of the order of u = 1 m/s. As we show below, in case
if the initial state contains DW, the ground state modified by
the supercurrent can correspond either to the distorted DW or
to the homogeneous state when the DW is eliminated from
the sample. The dynamics of the initial state containing a DW
under the applied supercurrent in the presence of the Gilbert
damping in the LLG equation is also considered below.

B. Domain wall motion

Now we consider the magnetic texture of the ferromagnet in
the form of the DW. We are interested in its dynamics induced
by the supercurrent spin torques, discussed above. The two
particular types of DW are considered: head-to-head DW and
Neel DW.

The particular shape of the DW is dictated by the combi-
nation of the anisotropy energy and the exchange energy. We
start with the head-to-head DW. In this case, the corresponding
energy term can be written as follows:

F = 1

2

∫
d3r

[
K⊥m2

y − Km2
x + Aex(∇xm)2

]
, (33)

where K > 0 and K⊥ > 0 are the anisotropy constants for the
easy and hard axes, respectively. Aex is the constant describing
the inhomogeneous part of the exchange energy. The effective
magnetic field Heff = (1/M )(Kmx x − K⊥my y + Aex∇2

x m).
It is convenient to parametrize the magnetization as follows:

m = (cos θ, sin θ cos δ, sin θ sin δ), (34)

where in general the both angles depend on (x, t ). At zero
applied supercurrent, the equilibrium shape of the DW is given
by δ = π/2 and

cos θ = ± tanh[(x − x0)/dw], (35)

where dw = √
Aex/K is the DW width. The above ansatz

corresponds to the head-to-head DW, lying in the xz plane.
The tail-to-tail DW can be obtained by θ → θ + π .

Let us consider the behavior of the head-to head DW under
the applied supercurrent and the presence of SOC given by
the superposition of the Rashba-type term 2mF μB Bx/M =
(0,−βR, 0) and the Dresselhaus-type term 2mF μB Bx/M =
(βD, 0, 0).

First, we follow the Walker’s procedure [59] by assuming
that δ = δ(t ) and the DW is moving according to the time-
dependent shift x0(t ) = ∫ t

0 v(t ′)dt ′ in Eq. (35). Substituting
this ansatz to the LLG equation, we obtain that this type of the
solution exists only in the absence of Rashba SOC, βR = 0.
We assume that the distortion of the wall is small during
the wall motion, that is, δ = π/2 + δ1, where |δ1| � 1. In
this case, taking into account that dw∇xθ = sin θ for the DW,
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we obtain

∂tδ1 = −αv

dw

− 2J̃ zβD, (36)

(1 + α2)v − u = γ dwK⊥δ1

M
− 2dwJ̃ zαβD. (37)

In this case, Eqs. (36) and (37) yield the following equation
for v(t ):

∂tv + γαK⊥
M (1 + α2)

v = −2dwγK⊥uβD

M (1 + α2)
. (38)

Taking into account the initial condition determined by
Eq. (37), (1 + α2)v(t = 0) = u − 2dwαβDJ̃ z, which follows
from δ1(t = 0) = 0, we determine the solution of Eq. (38) in
the form

v(t ) =
[
u + 2dwJ̃ zβD

α

]
e−t/td

(1 + α2)
− 2dwJ̃ zβD

α
, (39)

δ(t ) = π

2
+ td (1 − e−t/td )

1 + α2

[
uα

dw

− 2J̃ zβD

]
. (40)

where td = (1 + α2)M/(αγK⊥) is the characteristic time
scale. The solution for the moving DW expressed by Eqs. (39)
and (40) exactly coincides with the solution found for the
DW motion in normal ferromagnets under the influence of
the adiabatic and nonadiabatic torques [60]. But, nevertheless,
there is an important physical difference between the spin-orbit
torque, considered here, and the nonadiabatic spin torque. As
it can be seen from Eq. (27), the SO torque is equivalent
to the torque, generated by an external applied field γ H =
−4μBmF J̃ z

j Bj /M . Consequently, it moves DWs of opposite
types (+/− and −/+) to opposite directions as opposed to the
action of the nonadiabatic torque, which moves all the DWs in
one and the same direction. At the same time, it is seen from
Eqs. (36) and (37) that the Rashba SO torque is equivalent to
the field perpendicular to the wall plane, therefore it does not
move the DW and only distorts it. The solution (39) and (40) is
only valid for small enough electric and, correspondingly, spin
currents, applied to the system. If the current is large enough,
the condition |δ1| � 1 is violated and Eqs. (36) and (37) are
not valid. It was shown [15] that in this regime for J̃ z > J̃crit

the DW can be moved even by the adiabatic torque only.
We consider the regime of arbitrary values of the applied

current numerically by solving Eq. (2) together with the
expressions for the torque, Eqs. (25)–(27), and the effective
field Heff , found from Eq. (33). The results for the case of
small enough applied currents, when our analytical solutions
are valid, are represented in Fig. 1. The figure demonstrates
the displacement of the DW center as a function of time.
The black curve corresponds to the case of no spin-orbit
torque. The blue and pink curves are for the Rashba case,
βR �= 0, βD = 0. They demonstrate that the Rashba spin-orbit
torque does not move the DW in this case, as it was mentioned
above. The green and red curves demonstrate the influence of
the Dresselhaus SO torque on the DW motion. In agreement
with our analytical calculations, the numerics gives that at
t � td the DW moves with a constant velocity. The direction
of the motion is determined by the sign of βD or, in other
words, by the sign of the effective magnetic field. In this case,

0 2 4 6 8 10
−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

x
/d

w

tγK/M

FIG. 1. The displacement of the DW as a function of time in the
regime below the threshold current J̃crit . βR = βD = 0 (black), βR =
−0.05, βD = 0 (blue), βR = 0.05, βD = 0 (pink), βR = 0, βD =
−0.05 (green), βR = 0, βD = 0.05 (red). The other parameters are
K⊥/K = 3.0, α = 0.2 and J̃ z = −0.1Kdw for all the curves.

it is possible that the DW reverses the direction of its motion
if the adiabatic spin torque tends to displace it in the direction
opposite to the one dictated by the effective field. This case is
illustrated by the red curve in Fig. 1.

The regime of large applied currents J̃ z > J̃crit , when the
DW can be moved by the adiabatic torque only, is shown
in Fig. 2. We have obtained that the value of J̃crit is rather
close to Kdw. Therefore the critical electric current density
is of the order eKdw/h̄ ∼ 1010 A/m2, which is an order of
magnitude larger than the Josephson critical current obtained
in experiment [56]. Again, the black curve in Fig. 2 shows the
displacement of the DW in the absence of the SO torques. The
initial dynamics of the DW at small t coincides with Fig. 1,
but at larger values of t the situation changes, so that in this
regime the DW moves, but its velocity is not constant. The
Rashba SO torque does not cause any essential influence on
the DW dynamics, as in the case of the small applied currents.
However, the effect of Dresselhaus SOC is significant and at the
first glance unexpected. Indeed, as shown in Fig. 1, the torque
generated by this type of SOC, e.g., for βD < 0, moves the
DW to the direction x > 0. However, in the above-threshold
regime, it can also reduce the averaged DW velocity (green

5 10 15 20
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10

15

20

x
/
d

w

tγK/M

FIG. 2. The displacement of the DW as a function of time
in the regime above the threshold current J̃ z > J̃crit . βR = βD =
0 (black), βR = −0.05, βD = 0 (blue), βR = 0.05, βD = 0 (pink),
βR = 0, βD = −0.05 (green), βR = 0, βD = 0.05 (red). The other
parameters are K⊥/K = 3.0, α = 0.2 and J̃ z = −1.5Kdw for all the
curves.
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FIG. 3. The displacement of the DW as a function of time in the
regime above the threshold current J̃crit for the case of βR = 0 and
different values of the Dresselhaus SO coupling. (a) βD = 0 (black),
0.025 (pink), 0.05 (blue), 0.075 (red); (b) βD = 0 (black), −0.025
(dashed black), −0.05 (green), −0.075 (dashed green), −0.1 (tan),
−0.15 (dashed tan). The other parameters are as in Fig. 2.

curve in Fig. 2), that is, the combined action of the adiabatic
ST torque and SO torque cannot be viewed just as a simple sum
of independent motions due to the both reasons. Vice versa, the
SO torque generated at βD > 0, which by itself tends to move
the DW to the direction x < 0, can slightly enhance the average
DW velocity, as it is demonstrated by the red curve.

The influence of the Dresselhaus SOC on the DW average
velocity is represented in Fig. 3 in more detail. Figure 3(a)
demonstrates the displacement of the DW as a function of
time t for several values of βD > 0. It is seen that there is a
weak increase of the average velocity at βD > 0, but the more
important and pronounced effect is that increasing βD leads to
the decrease of the velocity oscillation period. The case βD < 0
is shown in Fig. 3(b), where one can see that the dependence
of the average DW velocity on βD is nonmonotonous. While at
smaller values of |βD| the average velocity is indeed reduced
with respect to the case βD = 0, at larger values of |βD|,
the velocity starts to increase and exceed its value at βD = 0
considerably.

This behavior can be understood in the framework of
the analogy between the SO torque and the magnetic-field
induced torque. For the situation when the DW moves under
the combined action of the current-induced torque and field-
induced torque, it is known that the steady motion of the DW
with δ̇ = 0 is only possible for a range of fields and currents
[61]. The lines in the (J̃ z, H ) plane, separating the regions
of steady motion and precession motion δ̇ �= 0, are called by
the Walker-like stability lines [61]. This limit condition for the

steady motion is strictly equivalent to the Walker breakdown
[59] condition in the case where only an external magnetic
field is applied. For the problem under consideration, the
increase of βD absolute value at fixed current is equivalent
to the increase of the applied field (at fixed current). When at
zero βD the system is in the precession regime, as in Fig. 2, the
increase of |βD| at βD < 0 moves the system towards the steady
motion region, where the wall velocity is higher. Therefore the
transition from the precession regime to the steady regime in
Figs. 1 and 2 is analogous to crossing the Walker-like stability
lines for problem of DWs motion under the combined action
of the current-induced torque and field-induced torque.

Let us now consider the Neel DW. In this case, the combi-
nation of the anisotropy energy and the exchange energy takes
the form

F = 1

2

∫
d3r

[
K⊥m2

z − Km2
y + Aex(∇xm)2

]
. (41)

It is convenient to parametrize the magnetization as

m = (sin θ sin δ, cos θ, sin θ cos δ). (42)

At zero applied supercurrent, the equilibrium magnetization
profile is described by Eqs. (35) and δ = π/2. It can be shown
that the problem of the Neel DW motion in the presence
of the Rashba SO coupling is mathematically equivalent to
the considered above motion of the head-to-head DW in the
presence of the Dresselhaus SO coupling with the substitution
βD → −βR . Therefore, in this case, the Rashba SO torque
plays the part of the field-induced torque moving DWs.

The above analysis demonstrates that the dynamics of a
DW under an applied supercurrent depends strongly (i) on
the particular type of the DW and (ii) on the particular type
of the SO coupling, which induces the spin-orbit torque. The
stationary motion of the DWs induced by small supercurrents
is possible even in the absence of the nonadiabatic torque if
the spin-orbit torque is present in the system.

Due to the presence of the Gilbert damping, the motion
of a DW by a supercurrent is not a disspationless process.
Interestingly, the DW motion generates voltage across the
junction in the regime when the charge current is fixed but
its magnitude is smaller than the Josephson critical current of
the system. In this situation, the voltage can manifest itself
as an additional step at the current-voltage characteristics of
the junction at j < jc, where jc is the critical current of the
junction. The voltage amplitude V can be roughly estimated
from the balance of the energy dissipation rate in the magnetic
subsystem due to the Gilbert damping and the power put in by
the current source. The characteristic energy dissipation rate
can be estimated as Ḟ ∼ �F/td , where �F is the difference
between the free energies of the equilibrium state of the DW
at zero current and the nonequilibrium state of the distorted
wall in the presence of the current. Our quasiequilibrium
consideration of the DW dynamics is strictly valid only if eV

is small with respect to the characteristic inverse timescale of
the problem γK/M . For small distortions of the DW, �F can
be obtained as follows:

�F = 1

2

∫
d3r[K⊥ sin2 θ + Aex(∇xθ )2 cos2 θ ]δ2

1 . (43)
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Substituting the equilibrium profile of the DW θ (x) given by
Eq. (35) into Eq. (43), we obtain

�F = Spdw(K⊥ + K/3)δ2
1, (44)

where Sp is the cross-section area of the ferromagnet. The
voltage, generated at the Josephson junction can be estimated
as V ∼ Ḟ /Spjc, which yields

V ∼ γ δ2
1αdwK⊥(K⊥ + K/3)

jcMh̄
, (45)

where we have assumed that α � 1.
For estimations, we use the material parameters of the

CrO2 nanostructures [62], which are the promising systems
for the dissipationless spintronics [56]. Taking the maxi-
mal Josephson current density through the CrO2 nanowire
to be jc ∼ 109 A/m2, the saturation magnetization M =
4.75 × 105 A/m, dw = 10−6 cm, K = 1.43 × 105 erg/cm3,
and K⊥ = 3 K, we obtain V ∼ 0.1δ2

1 mV, where we took
into account the typical values of the Gilbert damping α ∼
0.01. The amplitude of DW distortion angle can be varied in
wide limits, e.g., δ2

1 ∼ 10−4–10−3 for the red curve in Fig. 1,
δ2

1 ∼ 10−3 for the green curve in Fig. 1 and δ2
1 ∼ 10−1 for the

dashed green curve in Fig. 3(b). The estimated values of the
induced voltage V are small with respect to the characteristic
superconducting scales ∼0.1 mV for Al superconductors,
therefore our assumption of quasiequilibrium quasiparticle
distribution works rather well. From the other hand, the strict
calculation of the voltage induced at the Josephson junction
requires accounting for dynamics of the superconducting phase
induced by the DW motion in the current-phase relation. This
is beyond the scope of the present paper and will be done
elsewhere.

VI. CONCLUSION

To conclude, we have calculated the spin-transfer torques
acting on the magnetic textures from the spin-polarized super-
conducting current flowing through the ferromagnetic mate-
rial. For this, we take the advantage of the widely used adiabatic
approximation, bringing it from the realm of single-electron
dynamics into the field of superconductivity governed by the
propagation of the spin-triplet Cooper pairs generated at the
SC/FM interface. This approximation enables us to find the
analytical expression for the spin torques in the most general
case of the spin texture and develop the efficient formalism of
the generalized quasiclassical theory for calculating the charge
and spin supercurrents through the inhomogeneous magnetic
systems. We show that the supercurrent-driven dynamics of
DWs crucially depends on the type and magnitude of the
spin-orbital coupling. The obtained results demonstrate that

the DW motion by the supercurrent is a phenomenon realistic
for the recently developed Josephson junctions through CrO2
nanowires.
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APPENDIX: CALCULATION OF THE EFFECTIVE
FIELD (32)

From Eqs. (30) and (31), we obtain

∂FJ

∂ M
= 2J̃ z

x

M

δ
∫ d/2
−d/2 Zxdx

δm
. (A1)

Let us consider the following form of the unitary matrix
Û = exp[−iσx ( δ

2 + π
4 )] exp[−iσy ( θ

2 + π
4 )], which yields the

texture part of the gauge field Zm = − cos θ∇δ/2, where
mx = cos θ and tan δ = mz/my so that ∇δ = (my∇mz −
mz∇my )/m2

⊥, where m⊥ =
√

m2
y + m2

z . Then we get

δ

δmx

∫ d/2

−d/2
Zmdx = − x

2m2
⊥

(my∇mz − mz∇my ), (A2)

δ

δmy

∫ d/2

−d/2
Zmdx = − y

2m2
⊥

mz∇mx, (A3)

δ

δmz

∫ d/2

−d/2
Zmdx = z

2m2
⊥

my∇mx. (A4)

Hence

2

(
M ×

δ
∫ d/2
−d/2 Zxdx

Mδm

)
y

= 1

m2
⊥

[mz(mz∇xmy − my∇xmz) − mymx∇xmx] = ∇xmy.

(A5)

Treating analogously other components and the spin-orbital
part of the gauge field, we get

2

(
M ×

δ
∫ d/2
−d/2 Zm

x dx

Mδm

)
= ∇xm, (A6)

2

(
M ×

δ
∫ d/2
−d/2 Zso

x dx

Mδm

)
= −2mF Bx × M. (A7)

Combining that into the total effective field yields Eq. (32).
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