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Disorder in two-band superconductors with repulsive interband interaction induces a frustrated competition
between the phase-locking preferences of the various potential and kinetic terms. This frustrated interaction can
result in the formation of an s + is superconducting state that breaks the time-reversal symmetry. In this paper
we study the normal modes and their associated coherence lengths in such materials. We especially focus on
the consequences of the soft modes stemming from the frustration and time-reversal symmetry breakdown. We
find that two-band superconductors with such impurity-induced frustrated interactions display a rich spectrum of
physical properties that are absent in their clean counterparts. It features a mixing of Leggett’s and Anderson-Higgs
modes, and a soft mode with diverging coherence length at the impurity-induced second-order phase transition
from s±/s++ states to the s + is state. Such a soft mode generically results in long-range attractive intervortex
forces that can trigger the formation of vortex clusters. We find that, if such clusters are formed, their size and
internal flux density have a characteristic temperature dependence that could be probed in muon-spin-rotation ex-
periments. We also comment on the appearance of spontaneous magnetic fields due to spatially varying impurities.
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I. INTRODUCTION

The discovery of iron-based superconductors motivated
research on two-band superconductors where the pairing be-
tween electrons is produced by interband electron-electron
repulsion [1–3]. Such systems tend to form a state with two s-
wave gaps �i = |�i |eiθi (with i = 1,2), for which the relative
phase differs by π (that is, θ2 = θ1 + π ). This superconducting
state with a sign change between the gap functions is called s±,
in contrast to the more commonly studied s++ state, which has
a zero relative phase (θ1 = θ2). The s± superconducting state
behaves nontrivially when disorder is added. It is indeed known
that, under certain conditions, impurities induce a crossover
from the s± to the s++ state. At temperatures sufficiently
close to the critical temperature Tc, the transition from the
s± to the s++ state is realized as a direct crossover, with
little thermodynamic features, where one of the gap functions
is completely suppressed [4]. It was nonetheless recently
demonstrated that, due to competing kinetic and potential
terms, inhomogeneous states such as vortices or screening
currents become structurally nontrivial in the vicinity of that
crossover [5,6].

At lower temperatures, the impurity-induced transition to
the s++ state occurs via an intermediate state where the
intercomponent relative phase is different from 0 and π [7,8].
This state is called s + is state. It spontaneously breaks the
time-reversal symmetry, and is separated from the standard
s±/s++ states by a second-order phase transition (at mean-field
level). However, quantitative calculations of the phase diagram
demonstrated [9] that the impurity-induced s + is state occu-
pies a vanishingly small region of the phase diagram and is
unlikely to be observable directly. Note that this statement

applies only to weak-coupling mean-field theory of a dirty
two-band system. This behavior is drastically different from
that found in systems with three or more interacting bands,
where the s + is state appears as a result of the frustrated
interband repulsive pairing [10–14].

In this work we demonstrate that, even if the s + is state
occupies a very small region, its mere presence on the phase
diagram can still have important consequences. Indeed, as pre-
viously stated the s + is state spontaneously breaks the time-
reversal symmetry. Thus, in addition to the usual U (1) symme-
try, the s + is state also breaks the discrete Z2 symmetry asso-
ciated with the time-reversal operations. In other words, since
the relative phase between the gaps is neither 0 nor π , complex
conjugation leads to another state that cannot be rotated back
to the initial state by U (1) transformation. Because s±/s++
are different on symmetry grounds from the s + is state, at
the mean-field level the phase transition is second order. This
implies that there is a divergent coherence length inside the
superconducting state on both sides of the s + is domain [9].

Here we demonstrate that the emerging soft normal mode
with divergent coherence length is not only associated with the
relative phase (Leggett’s mode), but also with the amplitude
(Higgs modes). This leads to the situation that s±/s++ states
adjacent to the s + is domain should acquire unconventional
properties associated with the static and dynamic fluctuations,
the nature of topological excitations, and the magnetic response
to an external applied field. Therefore dirty two-band super-
conductors with a repulsive interband interaction have a much
more complex behavior than the well studied standard s++
state in clean systems where, by contrast, the existence of soft
modes away from superconducting phase transition requires
only weak interband coupling [15].
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The paper is organized as follows. In Sec. II, starting from
the microscopic Usadel theory of dirty two-band supercon-
ductors, we provide a detailed derivation of the corresponding
two-band Ginzburg-Landau model, and discuss the essential
properties of the phase diagram. Next, Sec. III is devoted to the
complete analysis of the linearized theory. This provides the
framework to describe the behavior of the coherence lengths
and their associated normal modes, across the different phases
of the phase diagram. The derived perturbation operator can
also be used to determine the upper critical fields of such
dirty two-band superconductors. This is discussed separately
in an Appendix. The perturbation operator features a divergent
length scale in the vicinity of the second-order phase transition
to the s + is phase. The existence of such a soft mode can
result in long-range attractive intervortex forces. In Sec. IV
we investigate this property beyond the linear regime regime,
and demonstrate that vortex clusters can form in the vicinity
of the s + is phase, and that they feature specific temperature
dependent properties.

Readers who are not interested in technical details of the
analysis of normal models but are interested in properties of
vortex states and their possible experimental manifestations
can, after Sec. II, directly proceed to Sec. IV.

II. GINZBURG-LANDAU MODEL DERIVED FROM
THE USADEL EQUATIONS

We investigate the properties of the superconducting states,
their characteristic length scales, and vortex structures within a
weak-coupling model of two-band superconductors with a high
concentration of impurities. Such material can be described
by a system of two Usadel equations coupled together by
interband impurity scattering terms [16]:

ωnfi = Di

2
(gi�

2fi − fi∇2gi) + �igi

+
∑
j �=i

γij (gifj − gjfi), (1)

where ωn = (2n + 1)πT , with n ∈ Z the fermionic Matsubara
frequencies. T stands for the temperature, Di are the electron
diffusivities, and γij are the interband scattering rates.

The quasiclassical propagators fi and gi , which are, re-
spectively, the anomalous and normal Green’s functions in
each band, obey the normalization condition |fi |2 + g2

i = 1.
The two components �j = |�j |eiθj of the order parameter are
determined by the self-consistency equations

�i = 2πT

Nd∑
n=0

∑
j

λijfj (ωn), (2)

for the Green’s functions that satisfy the Usadel equation
(1). Here Nd = �d/(2πT ) is the summation cutoff at the
Debye frequency �d . In the self-consistency equation (2), the
diagonal elements λii of the coupling matrix λ̂ describe the
intraband pairing, while the interband interaction is determined
by the off-diagonal terms λij (j �= i). The interband coupling
parameters and impurity scattering amplitudes satisfy the

symmetry relation [16]

λij = −λJ /ni and γij = 	nj , (3)

where λJ and 	 > 0. The impurity scattering rate is given in
units of Tc, ni = Ni/(N1 + N2) are the relative densities of
states, and N1,2 are the partial densities of states in the two
bands.

In general, the s± state is not favored by the impurity
scattering, which tends to average out the order parameter
over the whole Fermi surface, suppressing the critical tem-
perature. Still, provided the interband pairing interaction is
weak, superconductivity can be transformed into a s++ state
and survive even in the limit 	 � Tc0, characterized by the
critical temperature Tc∞ which reads as [3,8]

ln(Tc0/Tc∞) = N1(w11 + w12) + N2(w22 + w21), (4)

where Tc0 is the critical temperature in the absence of interband
scattering, ŵ = 
̂−1 − z−1Î , and z is the maximal eigenvalue
of the coupling matrix 
̂ with the elements λkk′ . In order to
avoid a drastic suppression of the critical temperature in the
s++ state, according to Eq. (4), the interband interaction λJ

should be sufficiently weak. To derive a criterion, note that
N1w11 + N2w22 > 0, so that the right-hand side of Eq. (4)
is larger than N1w12 + N2w21 = λJ /(λ11λ22). Therefore, in
order to have a Tc∞ which is not much smaller than Tc0, we
require the following condition λJ /(λ11λ22) < 1 to be satisfied.

A. Ginzburg-Landau expansion

The two-band Ginzburg-Landau (GL) expansion is an
expansion in two small gaps and small gradients [not to be
confused with a single-parameter expansion τ = (1 − T/Tc)].
A detailed discussion of the formal validity of multiband
expansions in the context of a clean system can be found in [17].
It was demonstrated in Ref. [9] that for dirty systems, in the
region of its applicability, the Ginzburg-Landau model gives
a phase diagram that matches that of the microscopic Usadel
theory. Here we provide the full derivation of the GL expansion
including gradient terms. In the case of a dirty system, by
inverting the self-consistency equation (2), it is found that

2πT

Nd∑
n=0

fi(ωn) = λjj�k − λij�j

detλ̂
and j �= i, (5)

defining the expansion for the fi from the Usadel equation (1).
In the first approximation we put g

(0)
i = 1 (at ωn > 0) and thus

find

f
(1)
i = γij�j + (ωn + γji)�i

ωn(ωn + γij + γji)
and j �= i . (6)

The corrections f
(3)
i from the nonlinear terms in Eq. (1) are

found by neglecting the gradients from which follows the
general relation

fi = �i(ωn + γjigi) + γij�jgj

ωn(ωn + γijgj + γjigi)
gi. (7)
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Then, when taking into account the corrections gi = 1 −
|f (1)

i |2/2, this yields

f
(3)
i = −

∣∣f (1)
i

∣∣2
�i[(ωn + γji)2 + γij (ωn + 2γji)]

2ωn(ωn + γij + γji)2

−
∣∣f (1)

i

∣∣2
�j (ωn + γij )γij

2ωn(ωn + γij + γji)2

+
∣∣f (1)

j

∣∣2
γij (ωn + γji)(�i − �j )

2ωn(ωn + γij + γji)2
. (8)

Finally, combining Eqs. (7) and (8) yields the nonlinear
terms in the Ginzburg-Landau expansion. The corrections
f

(g)
i from the gradient terms are obtained by linearizing the

Usadel equation (1), with respect to the corrections f
(g)
i . This

yields

f
(g)
i = Di(ωn + γji)2 + Djγij γji

2ω2
n(ωn + γij + γji)2

�2�i

+ γij [Di(ωn + γji) + Dj (ωn + γij )]

2ω2
n(ωn + γij + γji)2

�2�j . (9)

Finally, the Ginzburg-Landau functional reads as

F
F0

=
2∑

j=1

{
kjj

2
|��j |2 + ajj |�j |2 + bjj

2
|�j |4

}
(10a)

+ k12

2
((��1)∗��2 + (��2)∗��1) (10b)

+ 2(a12 + c11|�1|2 + c22|�2|2)Re(�∗
1�2) (10c)

+ (b12 + c12 cos 2θ12)|�1|2|�2|2 + B2

2
. (10d)

Here θ12 = θ2 − θ1 stands for the relative phase between the
complex fields �j = |�j |eiθj that represent the superconduct-
ing gaps in the different bands. The two gaps in the different
bands are electromagnetically coupled by the vector potential
A of the magnetic field B = ∇ × A, through the gauge deriva-
tive � ≡ ∇ + iq A. The coefficients of the Ginzburg-Landau
functional aij , bij , cij , and kij can be calculated from a given
set of input microscopic parameters λij , Di , T , and 	 of the
microscopic self-consistency equation. Their explicit formulas
are listed in Appendix A.

As can be seen in Eq. (9), the coefficients of the gradient
terms depend on both electronic diffusivity coefficients D1

and D2. Clearly the parameter space can be reduced by
absorbing one of the electronic diffusivity coefficients into the
gradient term. Without any loss of generality, we choose D1

to be the largest diffusivity coefficient (D1 > D2). Thus, in
the dimensionless units, the coefficients of the gradient term
depend only on the ratio of diffusivities, or relative diffusion
constant rd = D2/D1 < 1. The free energy (10) is expressed
in terms of dimensionless quantities, so the coupling constant q
should not be confused with 2π/�0. In such units, the coupling
constant q instead parametrizes the penetration depth of the
magnetic field (see units detail below). The dimensionless units

are defined as

∇ = ξ0∇̃, A = Ã/B0ξ0, � = �̃/Tc, (11)

where the variables with tildes are the dimensionful quantities.
Therefore, ξ0 = √

D1/Tc is the new unit of length, and B0 =
Tc

√
4πN1 is the unit of the magnetic field (here N1 is the

density of states in the first band). The free energy is then
scaled by F0 = B2

0/4π , while the electromagnetic coupling
constant becomes q = 2πB0ξ

2
0 /�0.

In these new units, the London penetration lengthλL is given
by λ−2

L = q2(kii�
2
i0 + 2k12�10�20), where �i0 is the bulk

value of the dimensionless gap. Correspondingly the gauge
field coupling constant is q = λL(kii�

2
i0 + 2k12�10�20)−1/2.

Eventually, for a given set of input microscopic parameters, λij ,
	, rd , and T close to Tc, we can reconstruct the coefficients
and investigate the ground-state properties of the GL theory by
minimizing the free energy (10) with respect to |�j | and θ12.

B. Phase diagrams

The mean-field phase diagram of the dirty two-band su-
perconductors was calculated in [9], using both Usadel and
Ginzburg-Landau formalisms. It was demonstrated there that
the phase diagrams are quantitatively similar within the range
of validity of GL expansion. Here we briefly outline the
structure of the diagram within the Ginzburg-Landau model.
Knowing the coefficients (see details in Appendix A) of
the microscopically derived Ginzburg-Landau functional (10)
allows us to investigate the ground-state properties of dirty
two-band superconductors by minimizing the free energy (10)
with respect to |�j | and θ12.

The phase diagrams are constructed in the plane of pa-
rameters 	,T of a two-band superconductor with interband
impurity scattering. For that purpose, we numerically minimize
the free energy (10) using a nonlinear conjugate gradient
algorithm. The results displayed in Fig. 1 demonstrate the
role of impurities on the ground-state properties, for various
representative cases. Namely nearly degenerate bands with
weak [Fig. 1(a)], intermediate [Fig. 1(b)], and strong [Fig.
1(c)] repulsive interband pairing interactions (as compared to
the intraband couplings). Also, we consider the case of inter-
mediate band disparity with intermediate interband coupling
[Fig. 1(d)].

Those diagrams illustrate the now well understood fact that,
in two-band superconductors, disorder may induce a transition
from the s± state (the red regions with θ12 = π in Fig. 1) to
the s++ state (the blue regions with θ12 = 0 in Fig. 1) [4,7–9].
The transition can occur in two qualitatively different ways.
Either via a direct crossover (denoted by a solid black line)
when one of the superconducting gap vanishes as a function of
impurity concentration [4], or via the intermediate complex s +
is state that breaks time-reversal symmetry with θ12 �= 0,π .
The crossover occurs without additional symmetry breaking
while the transition via an s + is state spontaneously breaks the
time-reversal symmetry, and both s±/s + is and s++/s + is

transitions lines are of the second order, at the mean-field level
[9]. As was mentioned in the Introduction, the existence of the
second-order phase transition on the phase diagram dictates
that there is softening of one of the normal modes near that
transition. This softening has a number of possible physical
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FIG. 1. Phase diagrams of the Ginzburg-Landau free energy
(10) describing two-band superconductors with interband impurity
scattering. These show the values of the lowest-energy state relative
phase θ12 = θ2 − θ1 between the components of the order parameter,
as a function of temperature and interband scattering 	. The different
panels correspond to different values of the coupling matrix λ̂. (a)–(c)
Correspond to nearly degenerate bands with λ11 = 0.29 and λ22 = 0.3
with weak λ12 = λ21 = −0.01, intermediate λ12 = λ21 = −0.05, and
strong λ12 = λ21 = −0.1 repulsive interband pairing interaction. (d)
The case of intermediate band disparity λ11 = 0.25 and λ22 = 0.3
with intermediate λ12 = λ21 = −0.05 repulsive interband pairing
interaction. The solid black line shows the zero of �2, which is the
crossover between s± and s++ states. In (a)–(c), the crossover line is
attached to a dome of time-reversal symmetry-breaking s + is state.
In (d), the crossover line does not connect to an s + is state.

consequences that motivates the study performed in the next
section, where we consider the normal modes of this system.

III. LINEAR ANALYSIS: NORMAL MODES AND
COHERENCE LENGTHS

An analysis of the perturbation operator around classical
solutions such as the ground state, or the normal state, provides
important information such as the length scales of the theory,
the zero modes, or the upper critical field. To facilitate this
analysis, we find it convenient here to rewrite the Ginzburg-
Landau free energy (10) in terms of a new rotated field basis
(linear combination) that eliminates the mixed gradient terms.

A. Elimination of mixed gradient terms

Because it features mixed gradient terms, the original
basis for the superconducting degrees of freedom is quite
inconvenient to work with. This is why it is worth rewriting
the model using a linear combination of the components of the
order parameter that diagonalizes the kinetic terms:

ψ1 =
√

k11�1 +
√

k22�2, ψ2 =
√

k11�1 −
√

k22�2. (12)

Within this new basis, we refer to as rotated basis, the kinetic
term has a much simpler form. The potential, on the other
hand, becomes more involved. Yet it is a convenient basis to
deal with, for the determination of the physical length scales
as well as describing various unusual properties. In the new

rotated field basis, the free energy reads as

F =
2∑

j=1

{
κj

2
|�ψj |2 + αjj |ψj |2 + βjj

2
|ψj |4

}
(13a)

+ 2(α12 + γ11|ψ1|2| + γ22ψ2|2)|ψ1||ψ2| cos ϕ12 (13b)

+ (β12 + γ12 cos 2ϕ12)|ψ1|2|ψ2|2 + B2

2
, (13c)

with the rotated superconducting degrees of freedom ψj =
|ψj |eiϕj , ϕ12 = ϕ2 − ϕ1, and the coefficients for the kinetic
term are now

κ1 =
√

k11k22 + k12

2
√

k11k22
and κ2 =

√
k11k22 − k12

2
√

k11k22
. (14)

Upon some algebraic manipulations, all coefficients αij , βij ,
γij of the potential are expressed in terms of the coefficients
aij , bij , cij , and kij of the original Ginzburg-Landau functional
(10). Detailed expressions of new parameters can be found in
Appendix B. Within the framework of new rotated variables
(12), the Ginzburg-Landau equations have no mixed gradients
and read as

�2ψj = 2
∂V

∂ψ∗
j

. (15)

The variation of the free energy (13) with respect to the vector
potential A determines Ampère’s equation ∇ × B + J = 0.
There the total current is the superposition of the partial
currents ( J = ∑

i J (i)) that read as

J (i) = qκiIm
(
ψ∗

i �ψi

)
. (16)

The reparametrization (12) simplifies drastically the
Ginzburg-Landau equations as there is no more coupling of
the components through mixed gradients. However, this comes
with the price of more complicated potential terms. This is
actually a minor issue, since the ground state within the rotated
basis can easily be determined from the one in the original field
basis according to the formulas

|ψ1|2 = k11|�1|2 + k22|�2|2 + 2
√

k11k22|�1||�2| cos θ12,

|ψ2|2 = k11|�1|2 + k22|�2|2 − 2
√

k11k22|�1||�2| cos θ12,

ϕ12 = tan−1

(−2
√

k11k22|�1||�2| sin θ12

k11|�1|2 − k22|�2|2
)

. (17)

To understand the role of excitations, as well as the funda-
mental length scales of the Ginzburg-Landau free energy (13),
it can be rewritten in terms of gauge invariant quantities (i.e., in
terms of charged and neutral modes, see a general discussion
in the context of a simpler model in [18,19]) by expanding the
kinetic term in (13a) and using (16):

F = 1

2
(∇ × A)2 + J2

2q2�2
+

∑
a

κa

2
(∇|ψa|)2

+ κ1κ2|ψ1|2|ψ2|2
2�2

(∇ϕ12)2 + V (|ψ1|,|ψ2|,ϕ12). (18)

Here again ϕ12 = ϕ2 − ϕ1 stands for the relative phase between
the condensates, and �2 = ∑

i κi |ψi |2. For this rewriting, we
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used the supercurrent defined from the Ampère’s equation ∇ ×
B + J = 0 that reads

J/q = q�2 A +
∑

i

κi |ψi |2∇ϕa. (19)

As discussed below, due to absence of mixed gradient terms,
this formulation allows an easier calculation of the length
scales and a better interpretation of the corresponding normal
modes.

B. Coherence lengths and perturbation operator

The length scales that characterize matter fields are called
coherence lengths. Fundamentally the coherence length ξ

associated with a field �(r) is defined through the exponent
that characterizes how, from a small perturbation, the field
recovers its ground-state value �̄ (see, e.g., [20–22]). That
is, from a perturbation �(r) ≈ �̄, the field recovers according
to the asymptotic behavior

�(r) − �̄ ∝ e
− r

ξ (r � ξ ). (20)

Note that typically in the context of superconductivity the
definition of the coherence length has an extra

√
2 factor

[20], while this factor is absorbed into the definition of ξ in
other contexts. Here we follow the more general definition
and absorb this factor into ξ . Note also that for the simplest
Ginzburg-Landau model the coherence length is occasionally
indirectly assessed, for example through overall vortex core
size or from the slope of the order parameter near the center of
the vortex core. Only in some special cases all these estimates
give consistent results. For example, even in the simplest
single-component s-wave superconductors, away from Tc all
these definitions give inconsistent results [23]. In multicompo-
nent systems the length scales physics is more complicated so
they should not be a priori expected to be easily assessable
from such quantities as the order parameter slope near the
origin. Another consequence of intercomponent interactions is
that it cannot be expected that independent coherence lengths
are associated with single fields �j . Instead, one can expect
to find linear combinations of the complex fields that recover
from a perturbation with different exponential laws (20) and
therefore are characterized by different coherence lengths.
In general, in multicomponent GL models, determination of
the various coherence lengths cannot be done analytically,
except in the cases of weak interband interaction, where the
intercomponent interactions can be addressed perturbatively
[24]. Thus generic determination of the coherence lengths has
to be carried out numerically.

To determine the coherence lengths one thus considers the
small perturbations in all relevant field degrees of freedom
around a physical solution, and linearizes the theory around
that solution. Such a physical solution is, for example, the
ground state, the normal state, etc. The eigenvalue spectrum
of the infinitesimal perturbation operator are the (squared)
masses of the normal modes, and the coherence lengths are
defined as the inverse masses. Thus, the eigenspectrum of the
obtained (linear) differential operator determines the masses of
the normal modes and consequently their corresponding length
scales. In the single-component limit that corresponds to the
standard calculation [20]. By contrast, the model we consider

here has four degrees of freedom associated with the matter
fields: two moduli and two phases of the complex fields.

If one neglects the coupling to vector potential then the sum
of the phases forms a mode with zero mass (the Goldstone
mode), since it is associated with a broken U (1) symmetry.
When coupling to the vector potential is included this mode
becomes massive via the London-Anderson-Higgs mecha-
nism. The inverse of that mass is the London’s magnetic field
penetration length. For the simplest two-band s++ material the
phase difference constitutes another massive mode that, in a
dynamical context, is called the Leggett’s mode [25]. In a static
case the length scale associated with this mode (i.e., the length
scale at which the phase difference recovers from a perturba-
tion) is also called Josephson length. However, it was discussed
in clean three-band superconductors that when time-reversal
symmetry is broken, there is no Leggett-type (phase-only)
mode, and instead the phase difference mode is hybridized (i.e.,
mixed) with the density (Higgs) modes [12,13,26,27]. Below
we find that in the impurities-induced s + is case the modes
are mixed as well. As dictated by the theory of the mean-field
second-order phase transitions, mass of one of the modes
should go to zero at the superconducting phase transition (in-
deed at this transition Z2 symmetry is broken and thus there is
divergence of one of the coherence lengths, while other length
scales should remain finite). In Ref. [9] it was demonstrated that
the transition to the s + is state from s++ or s± state is second
order at the mean-field level. This dictates that there should be
a divergent coherence length at that transition as well.

The perturbation theory is constructed as follows. The
fields are expanded in a series of a small parameter ε: ψi =∑

a εaψ
(a)
i and collected order by order in the functional.

The zeroth order is the original functional, while the first
order is identically zero provided the leading order in the
series expansion satisfies the equations of motion. Because
we expand near a classical state (for example the ground
state), a physically relevant correction thus appears at the order
ε2 of the expanded Ginzburg-Landau functional. The length
scale analysis is done by applying the previously discussed
perturbative theory to the case where the leading order is the
ground state.

We choose the following expansion in small perturbations
around the ground state:

|ψi | = ui + εfi√
κi

, ϕ12 = ϕ̄ + ε

√
κ1u

2
1 + κ2u

2
2

κ1κ2u
2
1u

2
2

φ, (21)

where ui and ϕ̄ denote the ground state while fi and φ stand
for the perturbations. ε is the arbitrarily small parameter of
the series expansion. Collecting the perturbations in a single
vector ϒ = (f1,f2,φ)T , the term which is second order in ε in
the Ginzburg-Landau functional (18) reads as

1
2ϒT (∇2 + M2)ϒ, (22)

where the diagonal entries of the (squared) mass matrix are

M2
fifi

= 2

κi

(
αii + 3βiiu

2
i + (β12 + γ12 cos 2ϕ̄)u2

j

+ 6γiiu1u2 cos ϕ̄
)
, (23a)
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M2
φφ = −κ1u

2
1 + κ2u

2
2

κ1κ2u
2
1u

2
2

(
4γ12u

2
1u

2
2 cos 2ϕ̄

+ 2
(
α12 + γ11u

2
1 + γ22u

2
2

)
u1u2 cos ϕ̄

)
, (23b)

and the off-diagonal elements are

M2
f1f2

= 1√
κ1κ2

(
4(β12 + γ12 cos 2ϕ̄)u1u2

+ 2
(
α12 + 3γ11u

2
1 + 3γ22u

2
2

)
cos ϕ̄

)
, (24a)

M2
fiφ

= −
√

κ1u
2
1 + κ2u

2
2

κ2
1 κ2u

2
1u

2
2

(
4γ12uiu

2
j sin 2ϕ̄

+ 2
(
α12 + 3γiiu

2
i + γjju

2
j

)
uj sin ϕ̄

)
, (24b)

with j �= i. From here, the benefit of using the rotated basis for
the fields (12) together with the gauge invariant formulation
(18), becomes rather clear. Indeed, within that formulation,
the perturbation operator (22) has off-diagonal terms coupling
various excitations only in the mass matrix. It is worth empha-
sizing here that the perturbation operator (22) can be used not
only to determine the physical length scales of the Ginzburg-
Landau theory, but also to obtain the second critical field Hc2.
This is presented as a separate discussion in Appendix D.

Finally, the length scales are given by finding the eigenstates
of (22). More precisely, the eigenvalues m2

a of the (symmetric)
mass matrix M2, whose elements are given in Eqs. (23)
and (24), are the (squared) masses of the elementary exci-
tations. The corresponding coherence lengths are the inverse
(eigen)masses: ξa = 1/

√
m2

a (and a = I, II, III). Similarly, the
London’s penetration depth of the magnetic field is the inverse
mass of the gauge field: λ = 1/mA. The mass of the gauge
field can be read from the prefactor of A in Eq. (19). That is
m2

A = (q�)2, which implies that London’s penetration depth
reads as λ = q�.

The theory thus comprises four elementary length scales
associated with the different elementary perturbations of the
ground state. The length scale associated with the gauge field
excitations is the penetration depth λ, and the three remaining
quantities are the coherence lengths ξa (with a = I, II, III).
They describe at which distance the system recovers the
ground state if one applies small perturbations of different
linear combinations of the complex fields moduli and phase
differences. If for example, one perturbs only one gap’s
modulus, several modes will be excited since it enters several
linear combinations corresponding to different normal modes.
Therefore there will, in general, be several length scales in the
recover of the gap module from the perturbation.

Figure 2 shows such length scales in the case of ratio
of diffusivities rd = 1, as functions of the temperature and
interband scattering 	. First of all, as can be seen in the
first and last column of Fig. 2, both the largest coherence
length (ξI) and the penetration depth λ naturally diverge at
Tc, thus signaling the restoration of the U (1) symmetry via a
second-order phase transition. The model features additional
phase transition associated with the time-reversal symmetry
breaking: from s++/s± [that breaks U (1)] to the s + is state
[that breaks U (1) × Z2]. If this phase transition is second order
then the largest coherence length (ξI) should be divergent at

that line as well. Figure 2 shows that this is indeed the case.
A similar conclusion on the order of the phase transitions was
reached in Ref. [9] through analysis of the effective potential
of the model. Note, however, that from the quantities reported
in Ref. [9], one cannot deduce the coherence lengths because
they depend on the gradient terms.

Interestingly, the second largest coherence length ξII is
always finite except at a single point of the phase diagram
that corresponds to the summit of the s + is dome, where ξII

also diverges. The shortest length scale (ξIII) is always finite.
As can be seen from the various panels in Fig. 2, all length
scales are finite at the crossover lines (denoted by the solid
black line), where one of the gap vanishes.

Physical interpretations of the different coherence lengths
can be deduced from the analysis of eigenvectors that corre-
spond to the normal modes. First of all, one should emphasize
that the eigenvectors of (22) are expressed in the rotated basis,
and thus do not have a direct physical interpretation in terms
of the original pairing gaps fields. Thus the eigenvectors of
perturbation operator (22) should be expressed in the original
basis. In analogy with the perturbative expansion (21) in the
rotated basis, the fields in the original basis are expanded in
small perturbations around the ground state, as

|�i | = Ui + εδ|�i |, θ12 = θ̄ + εδθ12. (25)

There Ui and θ̄ denote the ground state while δ|�i | and
δθ12 stand for the perturbations in the original basis, and ε

is the small parameter of the series expansion. The detailed
expressions of the perturbations in the original basis can be
found in Appendix C. It is also convenient to introduce the
perturbations associated with the total (δ|�+|) and relative
(δ|�−|) density variations, defined as δ|�±| = δ|�1| ± δ|�2|.

Now, given the infinitesimal perturbations (25), in terms
of the perturbations fi and φ of the rotated basis, we can
investigate the behavior of the length scales and their corre-
sponding physical modes. Figure 3 shows the length scales
and the corresponding modes as functions of the temperature
for a given interband scattering 	 = 0.7275. This corresponds
to a vertical scan in Fig. 1(b), going across s±, s + is and s++
phase. That vertical scan covers four qualitatively different
regimes. At low temperature, the system is in the s++ state.
The eigenmode associated with the largest length scale actually
changes its nature during that scan. Indeed, the mode associated
with the divergent length scale at Tc is a total amplitude mode,
while the one that diverges at the s + is transition is related to
the relative phases. It is thus convenient to label the modes by
their “critical” behavior. For example ϒcrit.

Tc
is the mode that is

associated with the length scale that diverges at Tc. The choice,
Fig. 3, of two different background colors for the s± phase is
to emphasize this fact that the mode ϒcrit.

Tc
that dominates in the

vicinity of Tc has a completely different nature than ϒcrit.
s+is that

is critical at the s + is transition.
Interestingly, in the s++/s± phases, the mode ϒcrit.

s+is

contributes both to relative phase and relative densities, and
is decoupled from the total density variations. This picture
produced by impurity scattering is in contrast to a clean
two-band case [25] where phase difference is fully decoupled
from densities at a linear level. Thus starting from a low
temperature state in the s++ phase, ϒcrit.

s+is does not contribute to
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FIG. 2. Physical length scales corresponding to various phase diagrams of the Ginzburg-Landau free energy (10). These are calculated from
the eigenvalue problem (22). From left to right, the panels in the different columns show the three coherence lengths ξi and the penetration depth
λ, as functions of the temperature and interband scattering 	. The lines correspond to different values of the coupling matrix λ̂ that are displayed
in Fig. 1. Namely (a)–(c) correspond to nearly degenerate bands with weak, intermediate, and strong repulsive interband pairing interaction
respectively. (d) The case of intermediate band disparity with intermediate repulsive interband pairing interaction. The ratio of diffusivities here
is set to rd = 1 and the solid black line shows the crossover between s± and s++ states. The largest coherence length (ξI) diverges both at Tc and
the transition lines from s++/s± to the time-reversal symmetry-breaking s + is state, indicating a second-order phase transition. Interestingly,
the second largest length scale ξII also diverges in a single point of the phase diagram corresponding to the summit of the s + is dome. Note the
absence of any strong features of coherence lengths at the crossover line between s± and s++ states. Note also that since the minority component
vanishes at the crossover line, this illustrates that coherence length estimate ξ ∝ 1/� cannot be used in multiband systems.

the total density, but couples relative phase and relative density.
At a higher temperature a second-order phase transition to the
time-reversal symmetry-breaking s + is state occurs, signaled
by the divergence of the largest coherence length. In the s + is

state, all the modes contribute to the density modes (total and
relative) and to the relative phase excitations as well. Further
increasing the temperature drives the system through another
second-order phase transition to the s± state. Importantly,
when approaching Tc, the critical mode at s + is transition
ϒcrit.

s+is that was dominating becomes subdominant in favor of
ϒcrit.

Tc
, a pure density (amplitude) mode that is relevant for the

restoration of the normal state.
The results of the length scale analysis reported in Figs. 2

and 3 are performed for equal electron diffusivities in the
different bands (rd = 1). Varying the relative diffusion constant
alter the results only quantitatively, while the overall picture
described above remains qualitatively the same. Quantitative
detail on the influence of the relative diffusion constant rd on

the length scales and on the upper critical field are reported in
Appendix E. The analysis above shows that, at the linear level,
the normal modes of a dirty two-band superconductor always
couple the density and the relative phase excitations. Therefore,
such a system does not feature a phase-only Leggett’s mode.
This has to be contrasted with the case of a similar but clean
two-band system [15,17], where the Leggett’s modes and
density modes always decouple.

Complicated variations of the coherence lengths in the dirty
case, as well as the existence of diverging coherence lengths,
are consequences of competing s± and s++ and the s + is

states. They should have physical manifestations through the
various responses that involve spatial or dynamical variations
of the fields. Although their detailed analysis is beyond the
scope of the current paper, we mention a few phenomena that
can arise as a consequence of the rich interplay of the normal
modes and their corresponding length scales. The above
calculations do not consider dynamics but it demonstrates the
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FIG. 3. Behavior of the magnetic field penetration length, the
coherence lengths, and their associated normal modes, in a dirty two-
band superconductor with nearly degenerate bands and intermediate
repulsive interband pairing interaction [corresponding to Fig. 1(b)].
The first panel shows the penetration depth and the three coherence
lengths, as functions of the temperature, and for a fixed interband
impurity scattering 	 = 0.7275. It thus corresponds to a vertical scan
in Fig. 1(b). There are different normal modes that are associated with
the different coherence lengths. The green curve refers to the mode
ϒ crit.

Tc
, whose coherence length diverges at Tc, which is critical at the

superconducting phase transition. The pink curve is associated with
ϒ crit.

s+is , the mode whose coherence length diverges at the breakdown
of time-reversal symmetry. The blue curve corresponds to the mode
that is not critical. The last three panels thus display the contributions
of the different normal modes ϒ to the infinitesimal perturbations
δ|�+|, δ|�−|, and δθ12. Note that as ϒ are eigenvectors or a linear
operator, they are defined up to a normalization factor and only
their relative contributions are meaningful. The different background
colors denote different physical regimes. The s++ state is realized
at lowest temperatures, then the time-reversal symmetry-breaking
s + is state occurs for an intermediate temperature range and is
delimited by two second-order phase transitions with a diverging
coherence length. Finally, the s± is realized until Tc where another
second-order phase transition occurs. Note that within the s± phase,
there are two different background colors. This stresses that the mode
which is critical at Tc, ϒ crit.

Tc
, is essentially different from ϒ crit.

s+is ,
the critical mode at the s + is transition. Thus the green (pink)
background denotes the regions where ϒ crit.

Tc
(ϒ crit.

s+is) dominates.

existence of massless and soft dynamical modes that can be
directly probed in experiment [28]. The mixed modes also
dictate nontrivial thermoelectric properties [29,30] and their
softening manifests itself in anomalies of flux flow viscosity
[31]. Likewise by the same mechanism the mode mixing
produces nontrivial magnetic signatures of impurities [32,33],
we discuss this in more detail below. Another interesting
feature, which follows from the fact that one length scale
diverging near the transition to the s + is state, is that it can
result in a particular length scale hierarchy where the magnetic
field penetration length becomes an intermediate length scale.
In the next section we consider implications of such a length
scale hierarchy on vortex matter, and in particular illustrate
that some behavior that can be deduced from the length scale
analysis, actually survive beyond the linear regime.

IV. VORTICES IN THE VICINITY OF THE s + i s REGION,
PHYSICS BEYOND THE LINEAR REGIME

Here we discuss the physical properties associated with
the topological excitations of dirty two-band superconduc-
tors, especially focusing on the possible consequences of the
presence of the s + is critical line on the phase diagram. We
thus construct a vortex solution by numerically minimizing
the free energy (10). The physical degrees of freedom �1,
�2, and A are discretized using finite-element formulation
[34], and the free energy is minimized using a nonlinear
conjugate gradient algorithm. To construct vortex solutions the
minimization procedure is started with an initial configuration,
in which both components �1 and �2 have the same vorticity.
This initial vorticity specifies the number of vortices that
originally seeded in the numerical grid. The minimization
procedure leads, after convergence of the algorithm, to a vortex
configuration that carries the number of flux quanta that was
specified by the initial phase winding. Note that the numerical
grid has to be chosen much larger than the vortex configurations
that are constructed. This is important to ensure that vortex
matter do not interact with the domain boundaries and thus
that the obtained configurations are not artifacts of boundary
interactions. In particular, in the results that are displayed
below, the numerical grid is larger than the displayed region
which are close up views of the regions carrying vortices [35].
Note also that here we are interested in the physical properties
of the vortex matter, such as intervortex forces, rather than
magnetization process. This is why vortices are constructed
here in zero external field, and seeded by the initial guess.
By contrast in an external field, the vortex matter is not only
subjected to its own intervortex interactions, but also to the
interaction with Meissner currents, surface barriers, etc.

The determination of the length scales of the theory, de-
scribed in the previous section, relies on the linearization of the
theory around the ground state. This analysis is thus relevant
in the asymptotic regions that are far away from the vortex
cores. As a result, the long-range intervortex interactions (that
is, the interactions in the asymptotic region where the linear
theory holds) are described in terms of the coherence lengths
associated with the normal modes of the system [the solutions
of the eigenproblem (22)]. Their nontrivial evolution and mix-
ing across the phase diagram indicates the possible realization
of nontrivial intervortex physics beyond the linear regime
and thus a likely unusual magnetic magnetic response of the
system. Because the dirty two-band superconductors described
here feature a critical line that segregates the s + is state from
the other s-wave states, one coherence should diverge in the
vicinity of that transition. Thus varying the temperature can
drive the system from an s-wave state through the second-
order phase transition to the time-reversal symmetry-breaking
s + is state. Interestingly, as stressed in Fig. 3, for some
fixed values of the impurity scattering rates, there can be
two successive second-order phase transitions: one from the
s± → s + is followed by a second s + is → s++ transition
at lower temperature. As illustrated in Fig. 3, it immediately
follows that a temperature-driven phase transition to the s + is

state goes along with the divergence of the largest coherence
length at the transition line, while all other length scales,
including the magnetic field’s penetration depth, remain finite.
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Since the other length scales, including the magnetic field’s
penetration length are finite at this transition, there are only two
possible hierarchies of the length scales near that transition:
(i) all coherence lengths are larger than λ (which is a type-1
behavior) and (ii) ξI > λ but λ is larger than some of the other
coherence lengths. Since intervortex interactions are related
to the long-range asymptotics, such a hierarchy of the length
scales suggests long-range attractive, short-range repulsive
intervortex forces. This regime was earlier termed “type-1.5”
[36] while an associated phase separation was termed “semi-
Meissner” state [37]. As emphasized above, in a dirty two-band
superconductor, the normal mode with the largest coherence
length typically mixes density modes and phase-difference
mode. This implies that, in the vicinity of the s + is transition,
vortices feature a long-range tail of density suppression. This
results in long-range attractive intervortex forces (dominated
by the core-core interactions). On the other hand, at intermedi-
ate scales specified by the magnetic field’s penetration depth,
the interactions are dominated by current-current interactions
which are repulsive. The long-range intervortex interacting
potential predicted by the linear theory can be expressed as
a combination of modified Bessel functions of the second kind
K0 as

U (r) = −C2
λK0

( r

λ

)
+

∑
i=I, II, III

[
C2

i K0

(
r

ξi

)]
. (26)

The coefficients Cλ and Ci depend on the eigenstates of the
perturbation operator (the normal modes) and on nonlineari-
ties. Thus, in the vicinity of the second-order phase transition to
the time-reversal symmetry-breaking s + is state, the interplay
between the long-range attraction driven by the core-core
interactions, and the short-range repulsion due to the current-
current repulsion, yields nonmonotonic intervortex forces (cf.
with calculations in different two-band models [15,24,37,38]).

Such forces can promote the formation of a bound state
of vortices. In such a bound state, the distance separating the
vortices does not directly follow from linearized theory, but is
determined by full nonlinear theory. As a result, since all the
parameters of the Ginzburg-Landau model (10) are tempera-
ture dependent (see the exact formulas of the coefficients in
Appendix A), it is quite expectable that if vortex bound states
are formed in the full nonlinear model, their typical size should
also be temperature dependent.

Below we present the results of such an analysis of the
full nonlinear response in the Ginzburg-Landau model. Using
the numerical procedure described earlier in this section,
we systematically construct sets of several vortices for fixed
impurity scattering rates and decreasing temperatures similar
to the parameter set investigated in Fig. 3 (thus corresponding
to a vertical scan in the phase diagrams Fig. 1). The situation
that is considered now mimics a dilute group of vortices that
form in a field-cooled sample in fields far from upper critical
magnetic field. Figure 4 displays the behavior of a set of 20
vortices at different temperatures. The selected temperatures
are representatives of the various phases shown in Fig. 3.

Depending on the regime, when starting from an initial set of
20 vortices, the numerical procedure leads after convergence to
a characteristic picture corresponding to either a type-2 regime
or to vortex clusters that are typically realized in the type-1.5

regime. In the vicinity of the superconducting transition, as
illustrated by the configuration in the first column of Fig. 4,
which is close to Tc and deep in the s± region, the vortex
configuration is typical of a type-2 regime. Note that a type-
2 regime theoretically implies an infinite vortex separation,
but the strength of the repulsion decays exponentially with
the separation. So for all practical purposes, the repulsion
between vortices ends when the strength becomes smaller than
the numerical accuracy: that is similar to the experimental
situation of remnant vorticity where intervortex repulsion or
vortex-boundary interaction is too small to reach the truly
lowest energy state.

Upon decreasing the temperature, the largest coherence
length ξI increases rapidly, as the system gets closer to the
transition to the s + is state. This triggers the expected long-
range attractive mode which leads to the formation of a vortex
cluster. The last three columns in the left panel of Fig. 4
correspond, at the linear level, to type-1.5 regimes. In other
words, as can be read from the values of the length scales in
Fig. 2, the penetration depth there is an intermediate length
scale. The corresponding regimes in the last three columns of
Fig. 4 show that, in the nonlinear regime, vortices aggregate
in a cluster. As can be seen from the two central columns of
Fig. 4, the vortex coalescence occurs near the phase transition
to the s + is state, and the most compact cluster forms in the
s + is phase (this can seen from the third column). Further
decreasing of the temperature drives the system through an-
other second-order phase transition to the s++ state. While
moving away from criticality, the largest coherence length
shortens. Correspondingly, the range of attractive interaction
also shortens, and the attractive forces weaken. Eventually,
repulsive forces will become dominant again, and the set of
vortices will fall back in a type-2 regime. Observe that Fig. 4
clearly shows that the scale of strong suppression of gaps in
the vortex core is not directly related to coherence lengths.

For a system with nonmonotonic interactions, standard
kinetic mechanisms (see for example [39]) leads to different
patterns of phase coexistence. In the case studied here the
vortex clusters coexist with domains of Meissner state. The
temperature dependence of intervortex forces opens up a
possibility to discriminate the effect described here from a
phase separation originating in vortex pinning. The formation
of vortex cluster can be probed by the direct vortex visual-
ization techniques such as magneto-optics, scanning Hall, and
scanning SQUID probes. This could also be experimentally
probed for example in muon-spin rotation measurements
(μSR) like the ones conducted in Ref. [40]. That is, when μSR
detects a phase separation into vortex clusters and Meissner
domains, the above considered contraction of a vortex cluster
when the temperature is lowered should result in a local
increase of magnetic field: quantity that, again, can be extracted
from μSR data [40]. In order to connect the effect of vortex
clusterization with this experimentally measurable quantity,
we calculate the local mean magnetic flux density for a vortex
cluster as the system is cooled down. The evolution of the
mean magnetic flux density of a cluster during the cool-down
process is displayed in the right panel of Fig. 4. There is a
strong peak in the magnetic flux density in correspondence
to an increase of the vortex binding forces near the s + is

transition.
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FIG. 4. Evolution of bound state of 20 vortices during a cooling procedure like that displayed in Fig. 3. Apart from the temperature, all
other paramaters are fixed: the interband scattering rate is 	 = 0.7275, the gauge coupling constant is q = 0.5, and electronic diffusivities are
equal (rd = 1). In the left panel, the displayed quantities on the different lines are, respectively, the magnetic field B, the amplitudes of the gap
in majority (|�2|), and minority (|�1|) components. The last line shows the relative phase θ12 from which the ground-state phase can be directly
read. Different vortex configurations, at different temperatures, can be read from the various columns displayed in the left panel. The first column
shows a type-2 regime where the largest length scale is the penetration depth and thus the repulsion forces dominate. The other columns, on
the other hand, show the typical realization of a type-1.5 regime. There, due to the proximity with the s++/s± → s + is transition, the largest
coherence length increases and this triggers the long-range attractive forces resulting in the formation of a compact cluster of vortices. The right
panel shows the flux-carrying area (defined as the area of the region where the magnetic fields is above some threshold δ = 0.005Bmax), and the
internal mean magnetic flux density in the flux-carrying region. The internal flux density shows a strong peak where the attractive intervortex
forces are strongest and thus the clusters are the most compact. Here this peak is near the s + is transition. The numerical values of the various
length scales corresponding to the different regimes displayed in the left panel are shown in the top right table.

The appearance of this kind of signal assumes phase sepa-
ration due to kinetic reasons. However, similar signal should
also be expected for dilute vortex lattices that can contract
due to emerging attractive forces as well. The strength of the
effect will also depend on the magnetic penetration lengths:
the longer is λ, the weaker are the intervortex attractive forces.
On the quantitative side: an interesting feature is the vortex
clusterization can start very far away from the s + is phase
transition. This is fully consistent with linear analysis where
we find, in Fig. 3, a broad region of increased largest coherence
length associated with the critical mode. Therefore, even if
the s + is phase occupies an unobservably small domain on
the phase diagram the soft modes implied by that criticality
exist and modify magnetic response in a wide range of
parameters.

Having established vortex clustering due to existence of a
critical mode, we briefly discuss a few of the structural features
of vortex clusters. A detailed study of the vortex cluster struc-
ture is beyond the scope of this paper and is perhaps a fruitful
direction of application of methods developed in research on
filament bundles. Yet, it should be emphasized that indeed
the vortex clusters are not a simple superposition of single
vortex solutions. Correspondingly, Eq. (26), which is based

on the linear theory with the assumption of axially symmetric
composite vortices, can received nonlinear corrections. One
of the possible nonlinear effects is that clusters can exhibit
disintegration of the composite character of vortices: namely a
small splitting of the vortex cores in the different components
near clusters boundary. This behavior can clearly be seen in
the numerical solutions shown in Fig. 5 for a cluster of seven
vortices. As can be seen in Fig. 5, clearly the phenomena
of vortex splitting occurs at the boundary, while the inner
vortex sitting at the center of the cluster shows no splitting.
Such a splitting of vortex cores at the boundary of clusters
excites a mode that is not present in the interaction between
single vortices, but that should contribute to the intercluster
interactions.

It should finally be stressed that the coherence lengths
cannot be related in a simple way to overall vortex core
sizes, because of the nonlinear nature of the coupled system.
It can clearly be seen in Fig. 4 that although one of the
length scales diverges in the vicinity of the s + is transition,
this has a relatively little influence on the size of substantial
density suppression in vortex cores (but dramatically affects the
long-range weak density suppression and thus the intervortex
interactions).
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FIG. 5. Splitting of composite integer flux quanta vortices into
fractional vortices, at the boundary of clusters formed due to the long-
range attractive forces near the s + is transition. Here a cluster of
seven vortices for the same parameters as in Fig. 4 besides q = 0.8,
both in the s± state (first column) and s + is (second column). The
relative phase shows the splitting of vortices at the boundary of the
cluster.

V. EFFECTS OF SPATIAL GRADIENTS
IN IMPURITY DENSITY

The previous sections describe the effect of impurities on
the phase diagram of dirty two-band superconductors and,
in particular, how it affects the different length scales. We
further demonstrated that, in the vicinity of the impurity-
induced second-order phase transition associated with the
spontaneous breakdown of the time-reversal symmetry, it
results in nonmonotonic intervortex forces that can lead to
the formation of vortex clusters whose typical signature can
in principle be probed in μSR measurements. The discussion
so far focused on the case of a spatially uniform distribution
of impurity density. It is instructive to consider one more
example, where the impurity density is not uniformly dis-
tributed in space. Spatially varying impurity will result in
an inhomogeneous superconducting state which will feature
gradients both of densities and relative phases of the field
components as a consequence of mode mixing. This in turn can
produce spontaneous magnetic fields. Spontaneous magnetic
fields were indeed shown to occur in various models of s + is

states for different kind of inhomogeneities such as impurities
and domain walls and their combinations [32,33,41,42], and
impuritylike inhomogeneities produced by the local heating
of a superconductor [29,30]. In this section we report that
spontaneous magnetic fields arise when there are gradients of
impurity density. The magnetic field discussed in the previous
section will be superimposed with the spontaneous magnetic
field. This can have direct implications for the vortex states
previously considered, since both the inhomogeneities and the
spontaneous magnetic fields induced by them can provide a
pinning landscape for vortices.

To illustrate that inhomogeneities can indeed yield spon-
taneous magnetic fields, we consider an idealized situation
of a sinusoidal modulation of the impurity scattering rates
	 = 0.7275 ± 0.02, where the period of the modulation is
of the order of the size of a vortex. Figure 6 shows this
situation where spontaneous magnetic field appears due to
the modulation of impurities. Moreover, it shows that it can

also substantially affect vortex structures such as the clusters
previously reported in Fig. 4. Indeed, in this example, inho-
mogeneities of the impurity scattering rates clearly result in
the fragmentation of the vortex cluster into smaller clusters.
In other words, inhomogeneities induce a pinning landscape
due to gap modulations and due to appearance of spontaneous
multipolar magnetic field, which affects the structure of vortex
clusters.

The spontaneous magnetic field that arises exclusively due
to inhomogeneities (i.e., without vortices) is displayed in the
second panel of the first row of Fig. 6, and it is maximal where
the modulation of 	 has its larger gradients. The spontaneous
magnetic field is spatially alternating and its total flux across
the sample is zero in the absence of vortices. Note that there

FIG. 6. Appearance of spontaneous magnetic fields and fragmen-
tation of vortex cluster due to small periodic modulation of the
impurity scattering rate 	. All the microscopic parameters are the
same as in Fig. 4. The temperature is T/Tc = 0.7, while the impurity
scattering strength is modulated sinusoidally with amplitudes 	 =
0.7275 ± 0.02. The panels on the top row show the modulated
impurity and the induced magnetic field, in the absence of vortices.
The middle line displays the amplitudes of the gap in minority (|�1|)
and majority components (|�2|) of the fragmented of vortex cluster.
The bottom row shows the corresponding magnetic field B and
the relative phase θ12. Modulation of impurity provides a pinning
landscape that favors placing vortices where the impurity is increased,
and this tends to break a cluster into smaller clusters, as compared
to Fig. 4. Nonetheless, the clearly large areas of gap suppression
indicates the presence of attractive intervortex forces. In addition,
the modulation of 	 produces a small spontaneous magnetic field in
the s + is state as can be seen from the last panel. Note however that
the spontaneous field is several orders of magnitude smaller than that
of vortices, and it is typically dominated by the vortex background.
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is an enhanced spontaneous field near the boundaries that is
dipolelike, rather than quadrupolelike in the bulk. This is not
a generic property, but rather a consequence of the particular
choice of the modulation here that has stronger gradients whose
contribution is less compensated at the boundary.

The presence of spatially inhomogeneous distribution of
impurities can thus have experimental manifestations that can,
for example, be detected in a zero field by μSR and scanning
SQUID experiments. Moreover, as can be seen from the other
panels in Fig. 6, besides the spontaneous magnetic fields,
the inhomogeneities can also act as a pinning landscape for
vortices that will alter the structure of the clusters discussed
in the previous section. Such a cluster fragmentation due to
pinning should result in a reduction of the μSR signatures
discussed in the previous section, in the case of homogeneous
systems.

VI. CONCLUSION

In conclusion, in this work we studied the properties
of dirty two-band superconductors with repulsive interband
interaction. We used the microscopically derived Ginzburg-
Landau theory to give qualitatively consistent solutions with
the Usadel model, not too far from superconducting Tc.
We investigated the normal modes, and their corresponding
coherence lengths. The normal modes of dirty systems are
much more complex than those in clean two-band cases due
to the frustration between various interband interaction terms.
One of the new features is the mixing of the Leggett mode
with the density modes that occurs even without time-reversal
symmetry breaking. An important property of the dirty two-
band superconductors is the presence of a region of s + is

state on the phase diagram. This s + is domain is surrounded
by a line of second-order phase transition that dictates the
existence of a soft mode and an infinite disparity of coherence
lengths. A striking feature is that the disparity of the coherence
lengths and relatively soft mode persists for a wide range
of coupling constants and temperatures, even if the domain
of the s + is phase is too small to be directly resolvable
in experiment. This makes such systems very different from
the clean two-band s-wave case [15]. This should also have
consequences for various properties associated with the static
and dynamic fluctuations. We focused here on consequences
to the vortex physics and demonstrated the existence of a
region where the hierarchy of the length scales is such that
the penetration depth becomes an intermediate length scale
(the so-called type-1.5 regime). This leads to long-range
attractive and short-range repulsive intervortex forces, leading
to formation of vortex bound states or clusters. These clusters,
due to the temperature dependence of the mean magnetic field’s
density, have specific signatures that can be discriminated from
other mechanisms also responsible of cluster formation. This
should be experimentally measurable in muon-spin-rotation
experiments. Note finally that qualitatively similar features
should also be expected in other realizations of s + is states
[10–14,43].
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APPENDIX A: GINZBURG-LANDAU COEFFICIENTS

There, the coefficients of the Ginzburg-Landau functional
aij , bij , cij , and kij can be calculated from the inputs λij , T ,
and 	 of the microscopic self-consistency equation. Ni are the
densities of states and Di are the electron diffusivities. First,
the coefficients of gradient terms are given by [5]

kii = 2πT Ni

Nd∑
n=0

Di(ωn + γji)2 + γij γjiDj

ω2
n(ωn + γij + γji)2

, (A1a)

kij = 2πT Niγij

Nd∑
n=0

Di(ωn + γji) + Dj (ωn + γij )

ω2
n(ωn + γij + γji)2

, (A1b)

with j �= i. The coefficients of the potential terms can be found
for example from Ref. [8] and they read as

aii = Niλjj

det(λ̂)
− 2πT

Nd∑
n=0

(ωn + γji)Ni

ωn(ωn + γij + γji)
, (A2a)

aij = − Niλij

det(λ̂)
− 2πT

Nd∑
n=0

γijNi

ωn(ωn + γij + γji)
. (A2b)

The other parameters read as

bii = πT Ni

Nd∑
n=0

(ωn + γji)4

ω3
n(ωn + γij + γji)4

+πT Ni

Nd∑
n=0

γij (ωn + γji)
(
ω2

n + 3ωnγji + γ 2
ji

)
ω3

n(ωn + γij + γji)4
,

(A3a)

bij = −πT Ni

Nd∑
n=0

γij

(ωn + γij + γji)4

+πT Ni

Nd∑
n=0

γij (γij + γji)[ωn(γij + γji) + 2γij γji]

ω3
n(ωn + γij + γji)4

,

(A3b)
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and

cii = πT Ni

×
Nd∑
n=0

γij (ωn + γji)
[
ω2

n + (ωn + γji)(γij + γji)
]

ω3
n(ωn + γij + γji)4

,

(A4a)

cij = πT Ni

Nd∑
n=0

γij (ωn + γji)(ωn + γij )(γij + γji)

ω3
n(ωn + γij + γji)4

.

(A4b)

Thus for a given set of input microscopic parameters, λij ,
	, and T close to Tc, we can reconstruct the coefficients
(A1)–(A4) and investigate the ground-state properties of the
GL theory by minimizing the free energy (10) with respect to
|�j | and θ12.

APPENDIX B: GINZBURG-LANDAU COEFFICIENTS OF
THE MIXED GRADIENTS FREE BASIS

Rewriting the original Ginzburg-Landau model (10) using a
linear combination of the components of the order parameter:

ψ1 =
√

k11�1 +
√

k22�2, (B1a)

ψ2 =
√

k11�1 −
√

k22�2, (B1b)

allows a much simpler form of the kinetic terms which is
convenient to investigate physical length scales. Within the
new basis, the coefficients for the kinetic term of the rewritten
Ginzburg-Landau functional (13) read as

κ1 =
√

k11k22 + k12

2
√

k11k22
and κ2 =

√
k11k22 − k12

2
√

k11k22
. (B2)

The coefficients of the potential read as

α11 = a11k22 + a22k11 + 2a12
√

k11k22

4k11k22
, (B3a)

α22 = a11k22 + a22k11 − 2a12
√

k11k22

4k11k22
, (B3b)

α12 = a11k22 − a22k11

4k11k22
, (B3c)

and

β11 = b11k
2
22 + b22k

2
11

16k2
11k

2
22

+ b12 + c12

8k11k22
+ c11k22 + c22k11

4(k11k22)3/2
,

(B4a)

β22 = b11k
2
22 + b22k

2
11

16k2
11k

2
22

+ b12 + c12

8k11k22
− c11k22 + c22k11

4(k11k22)3/2
,

(B4b)

β12 = b11k
2
22 + b22k

2
11

8k2
11k

2
22

− c12

4k11k22
. (B4c)

Finally

γ11 = b11k
2
22 − b22k

2
11

16k2
11k

2
22

+ c11k22 − c22k11

8(k11k22)3/2
, (B5a)

γ22 = b11k
2
22 − b22k

2
11

16k2
11k

2
22

− c11k22 − c22k11

8(k11k22)3/2
, (B5b)

γ12 = b11k
2
22 + b22k

2
11

16k2
11k

2
22

+ c12 − b12

8k11k22
. (B5c)

APPENDIX C: PERTURBATIONS IN THE ORIGINAL
BASIS

Using Eqs. (21) and (25), the perturbations are recon-
structed, and they are expressed in terms of the perturbations
in the rotated basis as

δ|�1|2 = 1

2k11

(
f 2

1

κ2
1

+ f 2
2

κ2
2

)

−
(

u1f2

κ2
+ u2f1

κ1

)√
κ1u

2
1 + κ2u

2
2

k2
11κ

3
1 κ3

2 u2
1u

2
2

sin ϕ̄φ

− 1

k11κ1κ2

[(
f1f2 + κ1u

2
1 + κ2u

2
2

2u1u2

)
cos ϕ̄

]
,

(C1a)

δ|�2|2 = 1

2k22

(
f 2

1

κ2
1

+ f 2
2

κ2
2

)

+
(

u1f2

κ2
+ u2f1

κ1

)√
κ1u

2
1 + κ2u

2
2

k2
22κ

3
1 κ3

2 u2
1u

2
2

sin ϕ̄φ

+ 1

k22κ1κ2

[(
f1f2 + κ1u

2
1 + κ2u

2
2

2u1u2

)
cos ϕ̄

]
,

(C1b)

δθ12 =
−2u1u2

(
u2

1 + u2
2

)
cos ϕ̄

√
κ1u

2
1+κ2u

2
2

κ1κ2u
2
1u

2
2

φ(
u2

1 + u2
2

)2 + 4u2
1u

2
2 sin2 ϕ̄

− 2u1u2(u1 − u2)
(

u1f2

κ2
− u2f1

κ1

)
(
u2

1 + u2
2

)2 + 4u2
1u

2
2 sin2 ϕ̄

. (C1c)

APPENDIX D: SECOND CRITICAL FIELD

Hc2 can be obtained by considering the perturbation oper-
ator around the normal state. More precisely, in the original
parametrization the normal state is |�1| = |�2| = 0. Using
(17), this implies that the normal state in the new variables is
|ψ1| = |ψ2| = 0 and thus u1 = u2 = 0 and ϕ̄ = 0.

Close to the second critical field Hc2 the magnetic field is
approximately constant: B = B0ez and the densities are small.
Thus the Ginzburg-Landau equations (15) can be linearized
around the normal state as

�2ϒ = M2
∣∣
u1=u2=ϕ̄=0ϒ ≡ M2

0ϒ. (D1)
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FIG. 7. Upper critical field Hc2, as defined in (D7), as a function of
temperature and interband scattering 	, for equal diffusivities in both
bands (rd = 1). The different panels correspond to different values
of the coupling matrix λ̂ that are displayed in Fig. 1. Clearly the
complexity of the phase diagram of the model has little effect on the
behavior of Hc2.

Because of the gauge invariance, the vector potential can be
parametrized in the Landau gauge as A = (0,B0x,0)−1. As a
result, the linearized Ginzburg-Landau equations read as

[∇2 − (qB0x)2]ϒ = M2
0ϒ. (D2)

For the simple Gaussian ansatz ϒ = C exp (− x2

2ξ 2 ) with the

vector C = (C1,C2)T and qB0 = 1/ξ 2. Equation (D2) further
simplifies:

M2
0ϒ = −1

ξ 2
ϒ. (D3)

Thus 1/ξ 2 is an eigenvalue of −M2
0. More precisely, its

largest:

qHc2 = 1

ξ 2
:= max

(
Eigenvalue

[ − M2
0

])
. (D4)

It is easy to realize that the perturbations of the relative phase
ϒ decouple from density perturbations. The mass matrix thus
becomes

M2
0 = 2

(
α11/κ1 α12/

√
κ1κ2

α12/
√

κ1κ2 α22/κ2

)
, (D5)

and its eigenvalues are

κ2α11 + κ1α22 ±
√

(κ2α11 − κ1α22)2 + 4α2
12κ1κ2

κ1κ2
. (D6)

As a result, we find the second critical field in the dimensionless
units of Eq. (10),

qHc2 = −α11

κ1
− α22

κ2
+

√(
α11

κ1
− α22

κ2

)2

+ 4
α2

12

κ1κ2
. (D7)

FIG. 8. Effect of relative diffusion constant on the different
length scales and on the upper critical field Hc2 [corresponding to
Fig. 1(b)]. The top block displays the length scales as functions of
the temperature for a given interband scattering 	 = 0.7275. The
relative diffusion constant affects only quantitatively the different
length scales and does not affect the phase diagram. Similarly, the
bottom-most panel shows upper critical field Hc2 as a function of
the temperature for the same parameter set. Increasing the relative
diffusion constant also increases the upper critical field.

Figure 7 shows the upper critical field Hc2, defined in (D7),
as a function of temperature and interband impurity scattering
	, in the case of equal diffusivities. This shows the case of two-
band superconductors with different intraband and interband
coupling.

APPENDIX E: EFFECT OF THE RELATIVE DIFFUSION
CONSTANT

Figure 8 shows the effect of the relative diffusion constant on
the different length scales and on the upper critical field Hc2,
for a dirty two-band superconductor with nearly degenerate
bands and intermediate repulsive interband pairing interaction
[corresponding to Fig. 1(b)]. Relative diffusion constant has
only a quantitative influence on the various length scales, while
it increases the upper critical field Hc2.
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