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Spatial distribution of superfluidity and superfluid distillation of Bose liquids
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Under the assumption of two-fluid kinematics of a nonrelativistic Bose liquid in the presence of a local velocity
field v(x ), local Galilei transformations are used to derive formulas for the spatial distribution of superfluidity.
The local formulation is shown to subsume several descriptions of superfluidity, from Landau’s free quasiparticle
picture of the normal fluid to the fully microscopic winding number formula for superfluid density. We derive the
superfluid distribution of generic pure states of one-dimensional bosonic systems by using the continuum analog
of matrix product states. With a view toward spatially structured superfluid-based quantum devices, we consider
the limits to local distillation of superfluidity within the framework of localized resource theories of quantum
coherence.
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I. INTRODUCTION

The dissipationless flow of He II and its connection to
the structure of the bosonic many-body quantum state re-
main central problems in the study of strongly correlated
bosonic systems. Among the celebrated achievements for
zero-temperature systems are London’s proposal to describe
the He II wave function via a local phase field [1], Feynman’s
utilization of many-body quantum coherence to incorporate
density fluctuations and vortices [2–4], and Feynman and
Cohen’s inclusion of particle pair correlations leading to agree-
ment with Landau’s proposed excitation spectrum [5]. For
equilibrium He II at finite temperature, ad hoc quantification
of the local kinematic superfluidity based on the winding
number or projected area of imaginary-time polymers has
led to a microscopic understanding of superfluidity at the
nanoscale [6–11]. However, despite these major theoretical
advances, the local distribution of superfluidity in general
classes of bosonic variational wave functions has not been
analyzed, and furthermore, the estimators of local superfluid
density based on properties of imaginary-time polymers are
not applicable to generic bosonic states [12]. Therefore,
the development and interpretation of a widely applicable,
quantum-mechanical framework describing local superfluidity
in systems that exhibit two-fluid behavior is desirable. Recent
experiments demonstrating optomechanical control of excita-
tions in He II film [13] and He II–based interferometry [14],
which indicate the possibility of local control of superfluid
dynamics on a range of length scales, highlight the necessity
of a local theory of superfluidity for superfluid-based devices.

In the present work, we derive a general framework for
calculating the local normal-fluid distribution for bosonic sys-
tems that empirically exhibit local two-fluid behavior. Because
the framework is based on local Galilei transformations of a
generic bosonic system, it can be used to extend Landau’s
quasiparticle picture of the normal fluid or to analyze local
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superfluidity in the microscopic theory. We do not aim to derive
the two-fluid picture from quantum-mechanical principles,
which is the subject of various monographs [15–17], but
rather aim to determine how the superfluid kinematics (e.g.,
the distribution of superfluidity) depends on a given spatially
varying velocity field in the system and on the structure of the
bosonic quantum state. As examples, we generalize Landau’s
calculation of the contributions of free quasiparticle gases to
the normal fluid, determine the local superfluid distribution of
a k = 0 Bose-Einstein condensate in the presence of a generic
smooth velocity field, and derive a general formula based
on continuum matrix product states for the local superfluid
density in one spatial dimension. Finally, we formulate a
resource theory of quantum coherence with the aim of deriving
fundamental limits for distillation of a perfect superfluid state
in a spatial subregion of a bosonic system under a physically
relevant class of quantum operations. Our results greatly extend
the possibilities for numerical simulation of superfluid systems
in the presence of flow and can be applied to the design
of gratings and external potentials in bosonic matter-wave
interferometers [18–20] and local heat flux control protocols
for interacting bosonic liquids and gases [21,22].

To derive a formula for the local normal-fluid distribution,
we first generalize Landau’s quasiparticle picture of the normal
fluid. In a system of N atomic bosons, we consider a subset S
of particles [23] that follow integral curves of a velocity field
v(x), which defines a steady flow on a compact connected
subset � ⊂ Rd with volume |�| > 0. In Landau’s treatment,
this subset is idealized as a gas of noninteracting bosonic quasi-
particles, but we do not insist on this interpretation. According
to the local two-fluid model (see below), the local normal
density with respect to v(x) is the part of the fluid that is moving
with respect to a local reference frame that has velocity −v(x)
with respect to the subset S . In particular, the subset S con-
tributes to the normal density, which may have contributions
from other degrees of freedom, e.g., collective modes, pinned
vortices, etc. To derive the unitary operator that represents the
local Galilei transformation (LGT) mapping between these
local reference frames, we first use the bosonic canonical
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commutation relation [ψ (x), ψ (x ′)†] = δ(x − x ′) [24] to
show that for any differentiable vector field f : Rd → Rd

and for U [f (x)] := exp[i
∫

ddx f (x)T x ψ (x)†ψ (x)] a uni-
tary operator-valued functional

U [f (x)]ψ (x)U [f (x)]† = ψ (x)e−if (x)T x,
(1)

U [f (x)]ψ (x)†U [f (x)]† = ψ (x)†eif (x)T x .

Taking P := ∫
ddx g(x) to be the total momentum, where

g(x) := (1/2i)ψ (x)†(∇ −
←∇)ψ (x) is the momentum density

(we take h̄ = kB = 1 throughout), it then follows that (see
Appendix A)

U [f (x)]PU [f (x)]†=P −
∫

ddx {∇[f (x)T x]}ψ (x)†ψ (x).

(2)

The connection to the usual Galilei transformation [25–28] is
made by choosing f (x) = mv to be a constant momentum in
Eq. (2), where m is the atomic mass. However, in the present
work we do not make the assumption of homogeneity and
instead allow f (x) = mv(x), where v(x) is a smooth vector
field on Rd . We note that the function

∑N
�=1 mv(R(�) )T R(�),

where R(�) is the position of the �th atom, was proposed by
Feynman to give the phase of a superfluid state of N atoms
with slowly varying velocity (see Eq. (16) of Ref. [4]).

An outline of the paper is as follows: Section II reviews
the traditional approach to the calculation of a global value of
the normal-fluid density and introduces the local framework
for calculation of the normal-fluid distribution based on the
LGT in Eq. (1). In Sec. II A we apply the local framework to
the setting of quasiparticle gases and Bose-Einstein condensed
states. In Sec. II B, a local generalization of the winding
number estimator of superfluid density is derived, which
provides a link to numerical calculations of strongly interacting
bosonic systems. Section III contains a calculation of the
normal-fluid distribution for all bosonic states in one spatial
dimension, which is particularly useful when the state has an
efficient approximation by matrix product states. In Sec. IV,
a localized resource theory of quantum coherence is defined
which allows superfluidity to be considered a local quantum
resource, giving an information-based context for superfluid
distillation protocols based on, e.g., thermomechanical effects.

II. LOCAL SUPERFLUIDITY

Given a system of N bosons of mass m at thermal equi-
librium at temperature β−1 and density ρ = mN

|�| , where � is
defined as before, a standard derivation of the global normal-
fluid tensor consists of the following recipe [12,29–32]: (1) the
two-fluid assumption (ρs )i,j = ρ − (ρn)i,j , (2) the calculation
of the expectation of Pi in the Galilei-boosted Gibbs state
σ (β )vj

:= U [mvj ]e−βH U [mvj ]†/tre−βH , and (3) the use of
the two-fluid assumption and the correspondence principle to
equate the observed momentum to the expectation value of the
momentum

(ρn)i,j vj |�| = trPiσ (β )vj
. (3)

In the limit of zero relative momentum between super-
fluid and normal-fluid fractions, one has (ρn)i,j |vj =0 =
limvj →0(|�|vj )−1trPiσ (β )vj

.

A local equilibrium version of the normal-fluid tensor in
the presence of constant relative velocity between the normal
and superfluid components can be formulated in terms of the
momentum density g(x) [33]. We presently generalize this
approach to include a spatially varying relative velocity field
v(x) and an arbitrary bosonic quantum state associated with
positive trace class operator σ . The analogous framework
is as follows: (1′) the local two-fluid assumption is given
by ρs (x)i,j := trψ (x)†ψ (x)σ − ρn(x)i,j for all x ∈ �, (2′)
the calculation of the expectation of g(x)i in the locally
Galilei transformed state σv(x)j := U [mv(x)j ]σU [mv(x)j ]†,
and (3′) the use of the local two-fluid assumption and the local
correspondence principle to equate the observed momentum
density to the expectation value of the momentum density

[ρn(x)]i,j v(x)j = trg(x)iσv(x)j . (4)

In particular, prescription (3′) leads to the following formula
for the local normal-fluid tensor in the limit v(x) → 0:

ρn(x)i,j
∣∣
v(x)j =0 = lim

v(x)j →0
v(x)−1

j trg(x)iσv(x)j . (5)

We emphasize that the localized two-fluid assumptions (1′)–
(3′) are kinematic in nature; that is, they are well defined
without any assumption of the quantum dynamics of σ and
therefore without the assumption of the existence of a Lan-
dau critical velocity in the fluid [30]. Calculations of time-
dependent superfluid response, which have been carried out
in certain cases for both noiseless and dissipative quantum
evolution [34,35], can also be suitably localized.

A. Quasiparticle gases and Bose-Einstein condensates

As an application of Eq. (4), we outline the LGT gener-
alization of Landau’s formula for the contribution to ρn of a
noninteracting quasiparticle gas in equilibrium [29,36], leaving
detailed examples to a future work. Under an LGT in the j th
direction, the system Hamiltonian H is transformed to H −
H ′ + O(v(x)2), where H ′ := ∫

ddx {g(x)T ∇[v(x)j xj ] −
m
2 ‖∇[v(x)j xj ]‖2ψ (x)†ψ (x)} [see Eq. (C1) in Appendix C].
Taking the spectrum of the quasiparticle gas to be ε(k),
one finds that application of the LGT to the system Gibbs
state produces a bosonic Gaussian state of the quasipar-
ticles proportional to e−β[

∑
k ε(k)a†

kak−H ′], which reduces to
e−β

∑
k [ε(k)−kT v]a†

kak for v(x) = v. The right side of Eq. (4) can
then be calculated by standard methods, e.g., Wick’s theorem.

The LGT in Eq. (1) is defined for any bosonic quantum
state in the domain of

∫
ddx[f (x)T x]ψ (x)†ψ (x). Therefore,

formulas (4) and (5) do not require that a large fraction
of particles occupy a single-particle state. Of course, as a
special case, the present analysis can be used to determine the
conditions for which a local two-fluid description is valid for
a state that exhibits homogeneous Bose-Einstein condensation
(BEC) of excitations. For example, whereas several previous
calculations of kinematic superfluid density making use of
global Galilei transformations assign ρn|vj =0 = 0 to the zero-

momentum BEC state |ψk=0〉 := 1√
N!

a
†N
k=0|VAC〉 [33,37], we

obtain the following more descriptive result, the derivation of
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which is given in Appendix B:

ρn(x)i,j
∣∣
v(x)j =0 = Nm

|�| δi,j + Nm

|�| lim
v(x)j →0

xj∂iv(x)j
v(x)j

. (6)

In the case of v(x) = ω(−x2, x1) on R2, i.e., a rotating
film with angular frequency ω, Eq. (6) implies a complete
longitudinal response ρn(x)j,j = mN/|�|. By contrast, the
vanishing transverse response implies complete superfluidity
ρs (x)i,j = mN/|�|, in agreement with the analysis of the
rotating-bucket experiment by linear-response methods [33].
In the more general case of an inhomogeneous BEC, Eq. (6)
does not hold. In fact, in Sec. IV, we derive an inhomogeneous
BEC that satisfies ρn(x)i,j = 0 exactly for a given v(x); that
is, we derive the form of an inhomogeneous BEC that is an
isotropic superfluid.

B. Generalized winding number estimator

In ab initio numerical calculations of He II in equilibrium,
no assumption is made regarding the marginal quantum state
of quasiparticles arising from the microscopic theory. Instead,
the superfluid density is calculated from a Gibbs state of the
entire system from the second moment of a classical random
variable describing the sum of the winding numbers of the
imaginary-time paths that are in one-to-one correspondence
with the He atoms [38,39]. In order to generalize this estimation
method to allow for calculation of the spatial distribution
of superfluidity, we take the field operator ψ (x) [ψ (x)†] in
Sec. II to represent annihilation (creation) of a 4He atom,
i.e., the constituent boson, at the position x in the spatial
domain. In this microscopic description, the LGT given by
Eq. (1) is applied to the field of the constituent bosons.
Denoting |R〉 := |x (1)〉1 ⊗ · · · ⊗ |x (N )〉N for a quantum state of
distinguishable particles at positions {x (�)}�=1,...,N ⊂ Rd [40]
and letting |sR〉 := |x (s(1))〉1 ⊗ · · · ⊗ |x (s(N ))〉N be its image
under the action of an element s of the symmetric group SN ,
one finds that the locally Galilei-transformed Gibbs state of N

bosons is given in the particle position basis by the kernel

1

N !

∑
s∈SN

eim
∑N

�=1[v(x (�) )T x (�)−v(x ′[s(�)] )T x ′[s(�)]]〈R|e−βH |sR′〉, (7)

where H is the system Hamiltonian (e.g., defined by the
sum of kinetic energy and a suitable two-body interac-
tion). In Eq. (7), the presence of only a single sum over
permutations is valid as long as H commutes with the
projector to the symmetrized Fock space. Under a LGT,
the change in the Helmholtz free energy satisfies e−β�F =
Z−1 1

N!

∑
s∈SN

Ese
im

∑N
�=1[v(x (�) )T x (�)−v(x[s(�)] )T x[s(�)]], where Es is

the non-normalized expectation with respect to density
〈R|e−βH |sR〉 on RNd and Z = tre−βH = 1

N!

∑
s∈SN

Es (1).
Taking an LGT in the j th direction and assuming
that v(x)j is small and that the function v(x)j xj

varies slowly throughout the system, one can write
β�F ≈ m2

2Z
1

N!

∑
s∈SN

EsWs ({x (�)})2
j , where Ws ({x (�)})j :=∑N

�=1 ∇[v(x)j xj ]|Tx=x (�) (x (�) − x[s(�)] ). On the other hand, the
constitutive relation between 〈g(x)i〉ρ(β )v(x)j

and �F is calcu-
lated from the Hamiltonian by making use of the commutation
relation (1) (see Appendix C for details). Therefore, by Eq. (4),

the following formula holds:

ρn(x)i,j ≈ m
∂i[v(x)j xj ]

v(x)j
〈ψ (x)†ψ (x)〉ρ(β )v(x)j

− m2

2βh̄2N !Zv(x)j

δ
[∑

s∈SN
EsWs ({x (�)})2

j

]
δ∂i[v(x)j xj ]

,

(8)

where h̄ has been reintroduced for ease of comparison to the
original winding number estimator of superfluid density [38],
which is obtained from Eq. (8) for constant v(x) = v. The
expectation value in Eq. (8) can be calculated using, e.g., path-
integral Monte Carlo techniques.

III. SUPERFLUIDITY OF CONTINUUM MATRIX
PRODUCT STATES

In Sec. II B, we obtained a general formula for the dis-
tribution of superfluidity for bosons in equilibrium in any
spatial dimension. For general quantum states, it is of interest
to determine a simple expression for the right-hand side of
Eq. (4). Recent path-integral Monte Carlo calculations of Rényi
entanglement entropy have shown that the superfluid behavior
of liquid He II arises from quantum states that satisfy the area
law for entanglement entropy [41]. Due to the fact that a pure
state of a finite lattice quantum system obeys the area law
only if it is approximable by a matrix product state of finite
bond dimension [42,43], one expects that quantum states of
continuum quantum systems that obey the area law for Rényi
entanglement entropy can be expressed as continuum matrix
product states (cMPSs) in the appropriate spatial dimension.
This expectation has been established rigorously in one spatial
dimension [44]. By way of example, it is known that the ground
state of the Lieb-Liniger model, describing one-dimensional
bosons with a repulsive pair interaction given by V (x − x ′) =
gδ(x − x ′), g > 0, is well approximated by cMPSs [45].
The Lieb-Liniger system has been experimentally realized
in ultracold 87Rb confined in parallel optical tubes [46]. In
general, by calculating the right-hand side of Eq. (4) for generic
cMPSs, we derive a formula [see Eq. (10) below] that can be
directly compared to the microscopic result (8) in the limit
of zero temperature, which can be calculated in turn by, e.g.,
path-integral ground-state methods [47].

A cMPS |ψ (R,Q)〉 on the circle [−L
2 , L

2 ] (with periodic
boundary conditions assumed) is defined by two auxiliary D ×
D matrix-valued functions Q(x) and R(x) via |ψ (R,Q)〉 :=
TrP exp[

∫ L
2

− L
2
dx Q(x) ⊗ ID + R(x) ⊗ ψ (x)†]|VAC〉, where

Tr is the trace in the D2-dimensional auxiliary matrix space and
P is the path-ordering operator. In order to calculate ρn(x) for
a cMPS |ψ[Q,R]〉, it suffices to utilize the formula for the one-
body density ρ

(1)
Q,R (x, y) := 〈ψ (x)†ψ (y)〉|ψ[Q,R]〉 [48] and note

that 〈g(x)〉U [mv(x)]|ψ[Q,R]〉 = 1
2i

limx→y ( d
dy

− d
dx

)ρ (1)
Q,R (x, y).

Working with the gauge Q(x) = 0 and assuming that the
ground state |ψ (Q,R)〉 of the quasiparticles has no momentum
at any point, the result is given by

〈g(x)〉U [mv(x)]|ψ[Q,R]〉 = TrT

(
−L

2
,
L

2

)
A(x), (9)
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where T (y, x) := P exp[
∫ x

y
dz R(z) ⊗ R(z)] and A(x) :=

m[x dv
dx

+ v(x)]R(x) ⊗ R(x). Referring to Eq. (5) and noting
that the local density ρ(x) := 〈ψ (x)†ψ (x)〉 in cMPSs is given
by ρ(x) = TrT (−L

2 , L
2 )R(x) ⊗ R(x), we find the following

general formula for the velocity-dependent normal-fluid den-
sity in one dimension:

ρn(x) = mρ(x) + mx

v(x)

dv

dx
ρ(x). (10)

The similarity of Eq. (6) to Eq. (10) belies the fully quantum
nature of the latter result. Because the set of MPSs is dense
in the Fock space, Eq. (10) is an exact equation which can
be utilized in calculations of the local superfluid density even
in nontranslationally invariant, quasi-one-dimensional systems
of He II, which have been shown to exhibit Luttinger liquid
behavior [49,50].

Although systems of definite particle number are not de-
scribed by D = 1 cMPSs, the right-hand side of Eq. (10) is
still useful as a generating function for ρn(x). As an example,
note that given a sub-Hilbert spaceK of L2([−L/2, L/2]), any
state of the form [51]

M∏
k=1

a
†nk

|ψk〉√
nk!

|VAC〉, (11)

where
∑M

k=1 nk = N and the canonical boson operators a|ψ〉
and a

†
|ϕ〉 satisfy [a|ψ〉, a

†
|ϕ〉] = 〈ψ |ϕ〉 for any |ψ〉, |ϕ〉 ∈ K [52],

can be generated from a cMPS of bond dimension D =
1 with R(x) = ∑M

j=1 ξjψj (x), where ψj (x) := 〈x|ψj 〉 (see
Appendix D). Using the gauge freedom of cMPSs to take
Q(x) = 0, the normal-fluid distribution is given by

ρn(x) = v(x)−1

⎛
⎝ M∏

j=1

∂
nj

ξj

∂
nj

ξj

⎞
⎠〈g(x)〉U [mv(x)]|ψ[R]〉

∣∣
ξj ,ξ j =0

=
(

m + mx

v(x)

dv

dx

)⎛
⎝ M∏

j=1

∂
nj

ξj

∂
nj

ξj

⎞
⎠ρ(x)

∣∣
ξj ,ξ j =0. (12)

Despite the fact that cMPSs are dense in the bosonic
Fock space generated by L2([−L/2, L/2]) [53], they do not
provide an economical (i.e., low bond dimension) expression
for general quantum phases of systems of pairwise interacting
bosons. In particular, a more general class of states than
Eq. (11) that incorporates pair correlations can be written as

N/2∏
�=1

U (�)

⎛
⎝ ∞∑

j=1

λ
(�)
j a

†2

|e(�)
j 〉

⎞
⎠

r�

U (�)†|VAC〉, (13)

where U (�) is a particle-number-conserving unitary generated
by a quadratic Hamiltonian,

∑N/2
�=1 r� = N/2, r� ∈ Z�0, and

the use of a set of orthonormal bases {|e(�)
j 〉j=1,2,...}� for

K is justified by the Schmidt decomposition for arbitrary
two-particle pure states. The states in Eq. (13) are not, in
general, approximable by cMPSs of small D. However, they
appear as ground states of a class of exactly solvable bosonic
models [54], as probe states for quantum estimation of bosonic
Hamiltonians [55], and as variational Ansätze for ground states
of interacting Bose liquids and gases of a definite number of
particles. In the case of a single nonzero r�, the correlation

functions and large-N asymptotics of Eq. (13) have been
calculated [56]. Although calculation of the local superfluid
density of the class of states defined by Eq. (13) is beyond
the scope of the present work, we note that the methods used
to obtain, e.g., Eq. (6) are applicable to any Gaussian state
of the quasiparticle field and therefore to any projection of a
Gaussian state to a finite-particle-number sector. For example,
for r� = N

2 δ�,1, |e(1)
j 〉 := | 2πj

L
〉, a single-particle momentum

eigenstate (the sum over j is now taken from −∞ to ∞),
and U (1) = ∏

k>0 e−i π
4 (a†

ka−k+H.c.)ei π
4 (a†

kak+a
†
−ka−k ) with k ∈ 2π

L
Z,

Eq. (13) is simply the projection to the fixed depletion number
N of the k �= 0 Bogoliubov ground state e− ∑

k>0 αka
†
ka

†
−k |VAC〉

(which is Gaussian, with αk= 2πj

L
=: λ

(1)
±j determined by Bo-

goliubov transformation) [57]. The normal-fluid distribution
of the Bogoliubov ground state can then be straightforwardly
computed by applying an LGT and subsequently calculating
Eq. (4) using the same method as for thermal Gaussian states.

IV. LIMITS ON DISTILLATION OF SUPERFLUIDITY

Phenomena in He II such as the fountain effect and dis-
sipationless flow through nanoporous Vycor packing provide
examples of quantum dynamics that result in the conversion of
a partially superfluid system of N atoms to a system of N ′ < N

atoms with a greater superfluid fraction. As superfluid devices
such as matter-wave interferometers become controllable by
local modification of quasiparticle states and dynamics, the
ultimate limits to such distillation protocols, taking into ac-
count potentially very many system copies, become relevant.
Furthermore, it is known from early studies that the flow
of He II through capillaries of diameter O(1 nm) constitutes
an “entropy filter” [32,58], but a quantum-information-based
analysis of this phenomenon has not been carried out. However,
recent axiomatic formulation of a resource theory of quantum
coherence (RTQC) allows us to calculate asymptotic concen-
tration and dilution rates between quantum states in terms
of coherence measures [59]. Given a fixed total number of
particles N , the form of the LGT and Eq. (4) allow us to identify
quantum states of N ′ < N particles that exhibit maximal
superfluid behavior in a subregion of the system domain in
a sense that we make precise below. By equating maximal
superfluidity with a maximal resource in an RTQC, one can
rigorously consider the limits to formation and distillation of
superfluid systems. We note that modern quantum technologies
based on ultracold bosonic or fermionic atoms trapped in
optical lattices often utilize several thousands of individually
controllable spatial subregions, so the asymptotic results of
RTQC are not necessarily as remote as they may appear. Before
deriving the form of the maximal local superfluid resource
based on the LGT of Eq. (1), we first provide a concise
definition of an RTQC which is specialized to the present
purpose (a general definition of quantum resource theories can
be found in Ref. [60]).

An RTQC is defined by a four-tuple (B,�, T , C), where
B = {|fj 〉}j∈J is an orthonormal set in Hilbert space H, �

is the set of probability measures over the set of projections
{|fj 〉〈fj |}j∈J (i.e., � is the set of incoherent quantum states),T
is the set of completely positive, trace-preserving maps � such
that �(�) ⊂ �, and C is a coherence monotone that satisfies
the RTQC axioms.
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To apply RTQC with the aim of deriving the rates for
distillation of maximally superfluid states in a subdomain �

of the system, we first define for a region � and bosonic
quantum state σ the quantity N� := �∫

�
ddx〈ψ (x)†ψ (x)〉σ �.

For any value of N�, we define B� := {∏N�

j=1 ψ (xj )†|VAC〉 :
xj ∈ �} and use an index I to label elements of B� [61].
One can clearly see that any |φi〉 ∈ B�, i ∈ I , has ρs (x)j,j ′ =
0 for all x ∈ �. For any bosonic state σ of N particles,
one defines σ� := ∑

i,i ′∈I 〈φi |trN\{1,...,N�}σ |φi ′ 〉|φi〉〈φi ′ | as the
marginal state corresponding to N� particles in �, where
|�| is the volume of �. By defining the decohering map
��(σ�) := ∑

i∈I 〈φi |σ�|φi〉|φi〉〈φi |, one forms the coherence
measure C�(σ ) := S[�(σ�)] − S(σ�), where S is the von
Neumann entropy of a quantum state. By defining the Hilbert
spaces H� := spanCB� and associating with any relatively
open set �′ ⊂ � the product of linear maps PN�′ P�′,� : H� →
H�′ , where P�′,� := ∫

�′ d
dx ⊗N�

j=1 |xj 〉j 〈xj |j is the domain
projection to �′ and PN is the projection to the N particle
sector, one obtains a sheaf of RTQCs over the system domain.

With these definitions in place, RTQC theorems can now
be applied to calculate the asymptotic rate of distillation of
superfluid states in �. In the following, we use the term strongly
superfluid state to mean a pure state such that the action of
U [mv(x)] on that state gives a zero eigenvector of g(x). Given
a velocity field v(x), a rectangular subregion �, and the state
σ , Eqs. (1) and (4) imply that the state

|SF�〉 ∝
(

1√|�|
∫

�

ddx e−imv(x)T xψ (x)†
)N�

|VAC〉 (14)

is strongly superfluid in � [because it is defined so that
the action of U [mv(x)] produces a k = 0 Bose-Einstein
condensate of N� particles in �], and it is readily veri-
fied that C�(|SF�〉) = N� log2 |�|. The state |SF�〉 is also
a maximally coherent state of the RTQC. It now follows
from the basic distillation theorem of RTQC that for any
ε > 0, there is an incoherent operation T and an m ∈ N such
that ‖T (σ⊗n

� ) − |SF�〉〈SF�|⊗nR‖1 < ε for all n > m if and
only if R < �C�(σ )/N� log2 |�|�, where ‖ · ‖1 is the trace
norm [62,63]. The rate R gives the ultimate limit for distillation
of a perfect superfluid in independent copies of the domain
� from independent copies of a marginal state of a Bose
liquid under potentially noisy quantum operations that, roughly
speaking, map solid phases to solid phases.

V. DISCUSSION

Given a velocity field v(x), we have utilized local Galilei
transformations to develop a framework for the analysis of
local kinematic superfluidity for quantum states of a wide

variety of bosonic systems. If the system exhibits a basic local
two-fluid behavior in the sense that a local subset of particles
moves along integral curves of v(x) while the complementary
subset remains approximately motionless, then v(x) can be
considered the velocity vn(x) of the local normal component.
Experimental methods for inducing a velocity field in interact-
ing bosonic systems range from pressure differentials across
aperture arrays separating reservoirs of liquid 4He [64] to
stimulated Raman adiabatic-passage-based imprinting of an
optical phase field on ultracold atomic Bose gases [65].

The present results set the stage for further numerical and
analytical calculations of local superfluidity. For example,
the local generalization of the winding number estimator of
superfluid density [which follows from Eq. (8)] allows us to
calculate the superfluid distribution via path-integral Monte
Carlo techniques. On the other hand, we utilized the same
framework to construct the local RTQC in Sec. IV, which
provides a way to consider the distillation of superfluidity
in the context of modern quantum information theory. We
note that our assumption in the present work of a single
defining velocity field is a simplification. Realistic systems of
interacting bosons may exhibit such phenomena as boundary
adsorption, free surface dynamics, and phase coexistence that
require a description in terms of more than one motional
mode. Mathematically, one could envision generalizations
of the state in Eq. (14) of the form |ψ ({�j }, {vj (x)})〉 ∝∏

j [
∫
�j

ddx e−imvj (x)T xψ (x)†]N�j |VAC〉, such that
∑

j N�j
=

N . In addition to these more complicated situations, extension
of the present approach to spin-dependent flows accessible in
systems of spinor bosons [66] and the quantum-mechanical
treatment of localized superfluidity for relativistic two-fluid
systems [67] constitute two of several potential avenues of
future research.
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APPENDIX A: PROOF OF EQ. (2)

The proof utilizes the commutation relations
[ψ (x),∇′ψ (x ′)†] = ∇′δ(x − x ′) and [ψ (x)†,∇′ψ (x ′)] =
−∇′δ(x − x ′). In detail, by defining A := ∫

ddx

f (x)ψ (x)†ψ (x) and using P = −i
∫

ddx ψ (x ′)†∇′ψ (x ′), it
follows that

AP − PA = −i

∫
ddx

∫
ddx ′ f (x)[δ(x − x ′)ψ (x)† + ψ (x ′)†ψ (x)†ψ (x)]∇′ψ (x ′) − PA

= −i

∫
ddx f (x)ψ (x)†∇ψ (x)−i

∫
ddx

∫
ddx ′ f (x)ψ (x ′)†{−[∇′δ(x−x ′)]ψ (x) + [∇′ψ (x ′)]ψ (x)†ψ (x)} − PA

= −i

∫
ddx f (x)ψ (x)†∇ψ (x) + i

∫
ddx

∫
ddx ′ f (x)ψ (x ′)†[∇′δ(x − x ′)]ψ (x)

= i

∫
ddx [∇f (x)]ψ (x)†ψ (x), (A1)
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where the last line follows from integration by parts. Then,
since [

∫
ddxf1(x)ψ (x)†ψ (x),

∫
ddxf2(x)ψ (x)†ψ (x)] = 0

for any functions f1, f2, it is clear that eiAP e−iA =
P − ∫

ddx [∇f (x)]ψ (x)†ψ (x). �

APPENDIX B: PROOF OF EQ. (6)

To prove Eq. (6), we specialize to the box � = [−L
2 , L

2 ]×d .

The action of an LGT on the creation operator a
†
k is given by

U [mv(x)]a†
kU [mv(x)]† = 1

Ld/2

∫
ddx ei[mv(x)T x+kT x]ψ (x)†.

(B1)

It then follows that U [mv(x)]|ψk=0〉 = 1√
N!

(
∑

k cka
†
k )

N

|VAC〉, where

ck = 1

Ld

∫
ddx ei[mv(x)−k]T x

= δk,0 + i
m

Ld

∫
ddx v(x)T xe−ikT x + O(v2). (B2)

The expectation value of g(x) in a state of the

form 1√
N!

(
∑

k cka
†
k )

N |VAC〉 is given by 〈g(x)〉 =
N

2Ld

∑
k,k′ ckck′ (k + k′)e−i(k−k′ )T x . Therefore,

〈g(x)〉U [mv(x)j ]|ψk=0〉

= Re
iNm

L2d

∑
k

∫
ddx ′ v(x ′)j x ′

j

(
i∂x ′

i
e−ikT x ′)

eikT x +O(v2)

= Nm

Ld
[xj∂xi

v(x)j + v(x)j δi,j ] + O(v2), (B3)

where the second line follows from integration by parts. Taking
the limit in Eq. (B3) as prescribed in Eq. (5) gives Eq. (6).

APPENDIX C: PROOF OF EQ. (8) AND RELATION TO THE
WINDING NUMBER FORMULA FOR ρs

From the unitary action in Eq. (1), an LGT in the j th direc-
tion transforms a normal-ordered Hamiltonian H describing
the dynamics of bosons of mass m interacting pairwise with
potential V (x − x ′) to the following Hamiltonian:

U [mv(x)j ]HU [mv(x)j ]† ≈ 1

2m

∫
ddx ∇ψ (x)† · ∇ψ (x) −

∫
ddx g(x)T ∇[v(x)j xj ] + m

2

∫
ddx ‖∇[v(x)j xj ]‖2ψ (x)†ψ (x)

+
∫

ddxddx ′ V (x − x ′)ψ (x)†ψ (x ′)†ψ (x)ψ (x ′), (C1)

where we have neglected terms in O(v2), O(vv). It follows from this LGT that

− δ�F

δ∂i[v(x)j xj ]
≈ 〈g(x)i〉ρ(β )v(x)j

− m∂i[v(x)j xj ]〈ψ (x)†ψ (x)〉ρ(β )v(x)j
. (C2)

Equation (4) is now used to relate 〈g(x)i〉ρ(β )v(x)j
to ρn(x)i,j .

Taking the appropriate functional derivative of the equation
�F ≈ m2

2N!βZ

∑
s∈SN

EsWs ({x (�)})2 derived in the main text
and setting it equal to the right-hand side of Eq. (C2) results in
Eq. (8). �

Let us consider ρn(x)j,j , which is relevant for isotropic
systems. In this case, the local two-fluid relation ρs (x)j,j +
ρn(x)j,j = m〈ψ (x)†ψ (x)〉 implies that Eq. (C2) becomes

− δ�F

δ∂i (v(x)j xj )
≈ −ρs (x)j,j v(x)j

−mxj∂jv(x)j 〈ψ (x)†ψ (x)〉ρ(β )v(x)j
.

(C3)

The second term in the above equation vanishes if v(x)j =
vj = const for all x, and therefore, in the special case of a
constant velocity field, Eq. (8) implies that

ρs (x)j,j ≈ m2

2βN !Zh̄2vj

d

dvj

∑
s∈SN

EsWs ({x (�)})2
j , (C4)

where, for v(x)j = vj , Ws ({x (�)})j = vj

∑N
�=1(x (�)

j − x
[s(�)]
j ).

Taking d = 3 and averaging 1
3

∑3
j=1 ρs (x)j,j gives the well-

known result, Eq. (22) of Ref. [39], independent of x.

APPENDIX D: cMPSs FOR STATES OF THE
FORM OF EQ. (11)

We define the displacement operator for cMPSs by

D(Q,R) = P exp[
∫ L

2

− L
2
dx Q(x)⊗I + R(x)⊗ψ (x)†], where

Q(x) and R(x) are D × D matrix-valued distributions, D

is the bond dimension, and P is the path-ordering operator.
For any n ∈ Z�0, the state a

†n
|ψ〉|VAC〉 can be written as

∂n
ξ TrD(Q, ξR)|VAC〉|ξ=0, where R(x) = ψ (x) is the wave

function corresponding to |ψ〉 and Q(x) = λ for any λ ∈
R (i.e., the bond dimension of the generating cMPS is
D = 1), and ξ ∈ C. For the purposes of the present ap-
pendix, Q(x) can be gauged away [43]. Analogously, given
a collection {|ψj 〉}j=1,...,M and defining Rj (x) = ψj (x) ∈
L2([−L/2, L/2]), one has the following generating functional
form of

∏M
j=1 a

†nj

|ψj 〉|VAC〉 in terms of a nontranslationally
invariant cMPSs, again with D = 1:

M∏
j=1

a
†nj

|ψj 〉|VAC〉 =
M∏

j=1

∂
nj

ξj

M∏
j=1

TrD(ξjRj )|VAC〉∣∣{ξj }=0

=
M∏

j=1

∂
nj

ξj
TrD(R̃{ξj })|VAC〉∣∣{ξj }=0, (D1)

where R̃{ξj }(x)= ∑M
j=1 ξjψj (x) and Q̃(x)= ∑M

j=1 λj , λj∈R.
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