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Conductivity of anisotropic inhomogeneous superconductors above the critical temperature
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We propose a model and derive analytical expressions for conductivity in heterogeneous fully anisotropic
conductors with ellipsoid superconducting inclusions. This model and calculations are useful to analyze
the observed temperature dependence of conductivity anisotropy in various anisotropic superconductors,
where superconductivity onset happens inhomogeneously in the form of isolated superconducting islands.
The results are applied to explain the experimental data on resistivity above the transition temperature Tc in
the high-temperature superconductor YBa2Cu4O8 and in the organic superconductor β-(BEDT-TTF)2I3. The
comparison of resistivity data and diamagnetic response in β-(BEDT-TTF)2I3 allows us to estimate the size of
superconducting inclusions as d ∼ 1 μm.
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I. INTRODUCTION

The appearance of superconductivity with a temperature
decrease in many compounds occurs nonuniformly along the
sample. Such an inhomogeneous superconductivity onset is
typical for the majority high-temperature superconductors
(SC), e.g., copper-oxide and iron-based [1–4], and it has been
directly observed in numerous scanning tunneling microscopy
(STM) experiments on various compounds [4–10]. The two
main reasons for this inhomogeneity are the nonstoichiometry,
coming from doping, and the interplay between different types
of electronic ordering, often leading to phase separation. The
diamagnetic response and the decrease of resistivity far above
the superconducting transition temperature Tc are the typi-
cal precursors of inhomogeneous superconductivity [11–23],
which cannot be explained [14,20] by the standard theory [24]
of superconducting fluctuations. Using scanning SQUID mi-
croscopy, such diamagnetic response was even shown to be
highly inhomogeneous and extending far above Tc [13,15].
Thus, in 500-nm-thick La2−xSrxCuO4 films with Tc = 18 K,
the diamagnetic domains of the size ∼5–200 μm were ob-
served up to a temperature 80 K � Tc and attributed to isolated
superconducting islands as precursors of superconductivity
onset [13]. With lowering temperature these superconducting
islands become larger and finally cover most of the area at T ≈
Tc [13]. Similar diamagnetic domains of the size ∼100 μm
above Tc were also observed in YBa2Cu3O7−y films [15].

The materials, where superconductivity onset shows such
spatial inhomogeneity, are usually characterized by layered
crystal structure and strong anisotropy of electronic properties.
The resistivity drop above Tc in these compounds is often much
stronger along the least conducting axis [17–23], which again
contradicts [20] (see Appendix A for details) the theory [24,25]
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of superconducting fluctuations in homogeneous superconduc-
tors. This anisotropic effect of incipient superconductivity was
recently explained [19,20] using a classical effective-medium
model [26] for strongly anisotropic heterogeneous quasi-2D
metal with spheroidal superconducting inclusions, which is
a generalization of the well-known Maxwell’s approxima-
tion [26] for the case of anisotropic media with nonspher-
ical inclusions. This simple model predicts [19,20] that if
superconductivity in anisotropic conductors appears in the
form of isolated superconducting islands, it reduces electric
resistivity anisotropically with the maximal effect along the
least conducting axis.

The qualitative idea behind this model [19,20] is simple. In
a strongly anisotropic conductor with interlayer conductivity
σzz much less than intralayer conductivity σxx ∼ σyy , the
first, standard way of interlayer current perpendicular to the
conducting layers is small by the parameter η ≡ σzz/σxx � 1.
However, there is a second way via superconducting islands.
Since these islands are rare, the major part of the current path
goes in the normal phase. But instead of going along the
weakly conducting z axis in the nonsuperconducting phase,
this second current path between the superconducting islands
goes along the highly conducting layers until it comes to
another superconducting island, which allows the next lift
in the interlayer direction. Then there is no local current
density along the z axis in the nonsuperconducting phase,
and the interlayer conductivity contribution from this channel
does not acquire the small anisotropy factor σzz/σxx � 1.
Instead, it acquires another small factor—the volume fraction
φ of the superconducting phase. If the ratio φ/η � 1, the
second way makes the main contribution to the interlayer
conductivity.

In Refs. [19,20], analytical formulas for conductivity in such
heterogeneous superconductor were obtained. These formulas
provide a good quantitative agreement with experimental data
on resistivity in FeSe and allow extracting the temperature
dependence of the volume fraction φ of the superconducting
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phase in this compound [19,20]. If experimental data on the
temperature dependence of diamagnetic response are avail-
able in addition to transport measurements, their compari-
son also suggests the approximate shape of superconducting
inclusions [20]. However, the obtained expressions [19,20]
for conductivity in such a heterogeneous superconductor are
applicable only for the case when electronic properties in the
conducting a-b plane are isotropic. In FeSe it works well
because in spite of the nematic transition at T ≈ 90 K [2,3],
breaking the a-b isotropy, the real crystals of FeSe consist of a
large number of nanoscale monocrystals oriented differently
along the a or b axis, which restores the a-b isotropy on
average. This a-b isotropy in FeSe can be easily broken by
applying a uniaxial pressure.

The limitation to only the isotropic quasi-2D case does
not allow application of the expressions for conductivity of
Refs. [19,20] to a large number of superconducting compounds
with fully anisotropic electronic properties, where resistivity
along all three main axes differs. Among such fully anisotropic
compounds are most organic metals [27,28], where there are
extensive experimental data on resistivity anisotropy above the
superconducting transition temperature Tc. These data often
show a much stronger effect of incipient superconductivity on
interlayer resistivity above Tc [21–23], which is qualitatively
consistent with the model [19,20] of heterogeneous supercon-
ductivity onset. In many organic superconductors there are
quasi-1D Fermi-surface parts, and superconductivity competes
with a charge- or spin-density wave, leading to their phase
coexistence and possible spatial separation in some pressure
interval, as, e.g., in (TMTSF)2PF6 [22], (TMTSF)2ClO4 [23],
or α-(BEDT-TTF)2 KHg(SCN)4 [29]. The type of such phase
coexistence and the corresponding microscopic structure
of superconductivity in these compounds is still debated
[22,23,29–34], but this density-wave state can be suppressed
by pressure of several kbar [27,28]. Some organic
superconductors, e.g., β-(BEDT-TTF)2I3 [21], κ-(BEDT-
TTF)2Cu[N(CN)2]Br [35], and κ-(BEDT-TTF)2Cu
(NCS)2 [36], have only quasi-2D Fermi surfaces, which
are anisotropic in the conducting plane but do not have a
nesting property, and hence they are not subject to Peierls
or density-wave instability even at ambient pressure. The
temperature dependence of resistivity anisotropy, shown
in Fig. 6 of Ref. [21], reveals a stronger decrease of
interlayer resistivity ρc as compared to ρa and ρb above
the metal-superconductor transition, which may signify
an inhomogeneous superconductivity onset according
to the model of Refs. [19,20]. In many cuprate high-Tc

superconductors, such as YBa2Cu4O8, the chains between
conducting layers break the a-b isotropy. The a-b isotropy in
cuprates may also become broken due to the stripe electronic
ordering, as proposed for La2−xSrxCuO4 (x = 0.02–0.04)
and YBa2Cu6Oy (y = 6.35–7.0) [37]. In many iron-based
high-Tc superconductors, the a-b isotropy is also often broken
in the detwinned crystals [38].

In this paper, we derive analytical expressions for con-
ductivity in a fully anisotropic conductors with ellipsoid
superconducting inclusions, thus removing the limitation of
in-plane isotropy used in Refs. [19,20]. Then we apply our
results to analyze the experimental data on the temperature
dependence of resistivity along three main axes above Tc in

the high-Tc superconductor YBa2Cu4O8 and in the organic
superconductor β-(BEDT-TTF)2I3.

The paper is organized as follows. In Sec. II we describe
the mapping of the conductivity problem from the anisotropic
to the isotropic case. In Sec. III we present our main analytical
results for the anisotropic conductivity problem with the
superconducting inclusions (some technical details are also
described in Appendix B). In Sec. IV we apply the derived
analytical results to the analysis of experimental data on
YBa2Cu4O8 and β-(BEDT-TTF)2I3. In Secs. V and VI we
present a discussion and conclusions.

II. MAPPING OF THE CONDUCTIVITY PROBLEM
IN ANISOTROPIC MEDIA TO ISOTROPIC

First, consider a homogeneous anisotropic conducting
medium with conductivities σm

xx , σm
yy , and σm

zz along the princi-
pal axes. The electrostatic continuity equation for the medium
can be written as

−∇j = σm
xx

∂2V

∂x2
+ σm

yy

∂2V

∂y2
+ σm

zz

∂2V

∂z2
= 0. (1)

Here j is the current density and V is the electrostatic potential.
By the change of the coordinates

x = x ′, y = √
μy ′, z = √

ηz′, (2)

where

μ = σm
yy

σm
xx

, η = σm
zz

σm
xx

(3)

and by the simultaneous change of conductivity to σm = σm
xx it

transforms to the electrostatic continuity equation for isotropic
media:

−∇j = σm

(
∂2V

∂x ′2 + ∂2V

∂y ′2 + ∂2V

∂z′2

)
= 0. (4)

Hence, the initial problem of conductivity in anisotropic
media with some boundary conditions can be mapped to the
conductivity problem in isotropic media with new boundary
conditions, obtained from the initial ones by the anisotropic
dilatation given by Eq. (2).

Second, consider spherical inclusion particles with radii
a1 inside the media. Under the transformation (2), these
spherical inclusions x2/a2

1 + y2/a2
1 + z2/a2

1 = 1 transform to
ellipsoidal ones x2/a2

1 + y2/a2
2 + z2/a2

3 = 1 with semiaxes

a1, a2 = a1/
√

μ, a3 = a1/
√

η. (5)

If x is the direction of highest conductivity of the medium and z

is the direction of lowest conductivity (i.e., ifσm
xx > σm

yy > σm
zz),

then μ < η < 1 and the ellipsoids become z-elongated (i.e.,
a3 > a2 > a1). Note that generally μ and η can be temperature-
dependent.

If initially the inclusions are not spherical but have an
ellipsoidal shape with the principal semiaxes a = a1, b = βa1,
and c = γ a1, then after the mapping to the isotropic media
these inclusions keep the ellipsoidal shape but change the
principal semiaxes to

a1, a2 = a1β/
√

μ, a3 = a1γ /
√

η. (6)
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III. CONDUCTIVITY WITH ELLIPSOIDAL
SUPERCONDUCTING INCLUSIONS

Using the mapping described in the previous section, the
conductivity problem of an anisotropic conducive medium
with some inclusion particles can be mapped to an effective
isotropic media problem with the different shapes of the
particles.

Here we consider a medium, e.g., a normal metal, with the
isotropic conductivity σm, containing ellipsoidal islands with
conductivity σisl and the volume fraction φ. The macroscopic
conductivity of the sample σ ∗ = diag(σ ∗

xx, σ
∗
yy, σ

∗
zz) in the

effective-medium Maxwell’s approximation, applicable for
φ � 1, can be obtained from [see Eqs. (18.9) and (18.10) of
Ref. [26]

(1 − φ)(σ ∗
i − σm) + φ

σ ∗
i − σ isl

1 + Ai (σ isl − σm)/σm
= 0, (7)

where i = 1, 2, 3 corresponds to x, y, z axes, and coefficients
Ai are given by [see Eq. (17.25) of Ref. [26]

Ai = a1a2a3

2

∞∫
0

dt(
t + a2

i

)√(
t + a2

1

)(
t + a2

2

)(
t + a2

3

) . (8)

The integrals can be evaluated analytically (see Appendix B).
For superconducting islands σ isl → ∞, Eq. (7) simplifies to

(1 − φ)(σ ∗
i − σm) − φ

σm

Ai

= 0. (9)

Solving it for σ ∗
i , we obtain

σ ∗
i (φ) = σm

(
1 + φ

Ai (1 − φ)

)
≈ σm

(
1 + φ

Ai

)
. (10)

One can also calculate the resistivity

ρ∗
i (φ) = 1

σ ∗
i (φ)

= 1

σm

Ai (1 − φ)

φ + Ai (1 − φ)
≈ 1

σm

1

1 + φ/Ai

.

(11)
Transforming back from coordinates (x ′, y ′, z′) of the isotropic
media to the original coordinates (x, y, z) of the anisotropic
one [see Eq. (2)], we obtain the final result for resistivities
along the three principal axes of heterogeneous anisotropic
media with elliptic superconducting inclusions:

ρ1(φ) = 1

σm

A1(1 − φ)

φ + A1(1 − φ)
, (12)

ρ2(φ) = 1

μσm

A2(1 − φ)

φ + A2(1 − φ)
, (13)

ρ3(φ) = 1

ησm

A3(1 − φ)

φ + A3(1 − φ)
, (14)

where Ai are given by Eqs. (B1)–(B3) for arbitrary ratios of
ellipsoid semiaxes, or by Eqs. (B4)–(B6) for a3 � a1, a2.

IV. COMPARISON WITH EXPERIMENTS

In this section, we apply the developed model to the analysis
of two superconducting compounds at T > Tc, namely the
high-Tc superconductor YBa2Cu4O8 and the organic super-
conductor β-(BEDT-TTF)2I3.

A. High-Tc superconductor YBa2Cu4O8

Here we analyze the high-Tc superconductor YBa2Cu4O8

at T > Tc. To do this, we use the experimental data for
the temperature dependence of resistivities ρi (T ) along three
principal axes, extracted from Fig. 2 of Ref. [17] (in our
notation, axes 1, 2, and 3 with the descending resistivities
correspond to axes b, a, c of Ref. [17]).

To calculate conductivity with the correction due to the
superconducting inclusions, we first need to know the temper-
ature dependencies of conductivity in the nonsuperconducting
(metallic) phase above Tc along the principal axes. These
can be extracted from the experimental data in different
ways. For example, if superconductivity can be suppressed by
magnetic field, then conductivity in the high magnetic field
is approximately the same as without field in the metallic
phase. If such data are available, conductivity in the metallic
phase above Tc can be extracted as an extrapolation from the
high temperatures, where the effect of superconductivity is
absent or negligible. In YBCO, the available magnetic fields
are not sufficient to suppress superconductivity, and we use
extrapolation from higher temperatures.

Assuming that at high temperatures the volume fraction of
superconducting inclusions φ goes to zero sufficiently fast,
becoming negligible at T > 250 K, we extract the resistivity
of the medium from the high-temperature asymptotic behavior
of ρi (T ): ρm

i (T ) ≈ ρi (T ) (here ρm
i = 1/σm

i ). Along the z

and y axes, the resistivity is approximately linear at high T ,
and we extract ρm

yy = (43.5 + 0.772 K−1 T ) μ� cm and ρm
zz =

(6950 + 3.75 K−1 T ) μ� cm. For the x axis, the total conduc-
tivity is approximately a sum of contributions from conducting
planes and chains. The chain resistivity is not linear but rather
a quadratic function of T [17]. Hence, according to Ref. [17],
we use the chain resistivity obtained from 1/ρchain = 1/ρm

xx −
1/ρm

yy , with ρchain = (0.5 + 0.001 47 K−2 T 2) μ� cm. This
gives ρm

xx = ρchainρ
m
yy/(ρ chain + ρm

yy ) and σm = 1/ρm
xx . Using

Eq. (3), we obtain μ(T ) and η(T ).
Solving Eq. (14) for φ, we get

φ(T ) = 1 − ηρ3σ
m

1 + ηρ3σm
(
A−1

3 − 1
) . (15)

Equations (12) and (13) can also be used for the same purpose
of extracting φ(T ), but ρ3(T ) has the most pronounced drop
with decreasing T (compared to the linear extrapolation from
high to low temperatures), so it should give the most accurate
results. The least-conductive z direction has the smallest
coefficient among Ai [see Eqs. (B7)–(B9)]. Hence, according
to Eq. (10), σzz is the most sensitive to the concentration of
inclusions φ, unless the shape of superconducting inclusions
is too compressed along the z axis. Conductivity σxx along the
highest conductive direction is expected to be the least sensitive
to the variation of φ.

Assuming that the spatial extensions of the superconducting
inclusions are proportional to the coherence lengths ξi ∼
vF

i along the corresponding axes, we take the anisotropy
parameters β = vF

y /vF
x = 1, because superconductivity comes

from the conducting planes (not chains) where the electron
dispersion is isotropic, and γ ≈ vF

z /vF
x ≈ √

σzz/σxx ≈ 0.15.
This aspect ratio γ is very close to the aspect ratio γo ≈ 0.14
giving the best fit of the resistivity curves within our model.
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FIG. 1. Temperature dependence φ(T ) of the volume fraction
of superconducting inclusions extracted from formula (15) and the
experimental data from Ref. [17] for YBa2Cu4O8.

Figure 1 shows the temperature dependence φ(T ), derived
from Eq. (15) for the inclusions anisotropy parameters β = 1
and γ = 0.15. As expected, φ(T ) decreases with the increase
of temperature and becomes negligibly small (or zero) only
at T � 250 K, which is much higher than the transition
temperature Tc = 78 K. As one can see from the inset in Fig. 1,
where φ(T ) is plotted in the logarithmic scale, the dependence
φ(T ) is nearly exponential in the temperature range 80 < T <

200 K. This exponential decrease of φ(T ) with increasing T

is natural for the model of isolated superconducting inclusions
coming from disorder or electronic phase separation, but it
contradicts the prediction from the theory of superconducting
fluctuations in homogeneous superconductors [24,25].

From φ(T ) we derive ρi (T ) using formulas (12)–(14), and
in Fig. 2 we compare the obtained dependencies with the
experimental data of Ref. [17]. The calculated dependence
ρ3(T ) trivially coincides with the experimental one, since
we extracted φ(T ) from ρ3. Also, naturally we get a good
agreement for ρ1(T ), since resistivity in the highest conduc-
tivity x direction depends only weakly on φ, as explained
above. The most important role here is played by the ρ2(T )
dependence: the difference between the high-temperature fit
(green dot-dashed line) and our theoretical prediction (blue
solid line) comes from isolated superconducting inclusions
according to the the proposed model, which fits very well with
the experimental data (orange dashed line).

B. Organic superconductor β-(BEDT-TTF)2I3

In this subsection, we apply our theoretical model to
analyze the observed temperature dependence of conduc-
tivity anisotropy in a quasi-2D organic charge-transfer salt
β-(BEDT-TTF)2I3 with superconducting transition tempera-
ture Tc ≈ 1.5 K [21,39,40]. This compound is convenient for
the analysis because (i) both resistivity along all three main
axes and susceptibility data are available for it, and (ii) it does
not have several complicating features characteristic of high-Tc

cuprate superconductors.
We have taken the resistivity data ρi (T ) along three prin-

cipal axes, extracted from Figs. 2, 3, and 4 of Ref. [21] (in
our notation, axes 1, 2, and 3 with the descending resistivities

FIG. 2. Comparison between the proposed theory and the ex-
perimental data from Ref. [17] on the temperature dependence of
resistivity in YBa2Cu4O8 along three main axes, ρi (T ) for i = 1, 2, 3
in panel (a), (b), (c). In (a) the high-temperature fit coincides with
experimental data and is not shown.

correspond to axes a, b, c of Ref. [21]). The data from the
sample denoted by the open circles (◦) were used [41].

Unfortunately, we have not found experimental data on
resistivity in this compound under very high magnetic field,
which prevents SC island formation. Therefore, to find the
temperature dependence of metallic conductivity, we extrapo-
lated resistivity along the highest conductivity x axis, from
high temperatures T > 9 K down to T = 2–9 K as ρm

xx ≡
ρm

1 = (1.429 + 0.084 K−1 T + 0.006 K−2 T 2)ρ1(293 K)
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FIG. 3. Comparison of the temperature dependence of the SC
volume fraction φ in β-(BEDT-TTF)2I3 calculated from the re-
sistivity data [21] [φρ , solid blue curve, Eq. (15)], and from the
magnetic susceptibility data [42] using Eq. (16): with temperature-
independent constant C = 2600 (φχ , orange dot-dashed curve) and
with temperature-dependent coefficient C(T ) given by Eq. (18) (φC

χ ,
green dashed curve).

× 10−3 [where the value of ρ1(293 K) ≈ 54.15 m� cm was
extracted from Ref. [21]. In this extrapolation, we keep both
linear and quadratic terms, which may come from the electron-
electron interaction at low temperature. The volume fraction
φ(T ) of SC islands is found from the resistivity ρ3 along
the lowest conductivity z axis, using Eq. (15) for the SC
inclusions of the ellipsoidal shape with the principal semiaxes
ratios a2 = a3 = 3a1 in the mapped space, or β = b/a ≈ 2,
γ = c/a ≈ 0.13 in real coordinate space. The parameters β

and γ were found by minimizing the difference between the
theoretical prediction and the experimental data for resistivity
along the x and y axes. The result for φ(T ) is shown in Fig. 3
by the solid blue curve.

In Fig. 4 we compare the experimental data on resistivity
with the predictions of our model. The experimental and
theoretical curves for ρ3(T ) trivially coincide because we used
ρ3(T ) data to obtain φ(T ) using Eq. (15). The calculated
temperature dependence of two other resistivity components,
ρ1(T ) and ρ2(T ), given by solid blue curves in Fig. 4, agrees
well with the experimental data (dashed orange curves). The
values of resistivity used in Figs. 4(a) and 4(b) at T = 293 K
along the a axis (ρ293 K

1 = 54.15 m� cm) and along the b axis
(ρ293 K

2 = 86.64 m� cm), respectively, are calculated from the
experimental data given in Ref. [21]. The high-temperature fit
without SC inclusions is given by the green dot-dashed curve.

We can compare, at least qualitatively, the temperature
dependence of the SC volume fraction φρ (T ), calculated from
the resistivity data, with SC volume fraction φχ (T ), calculated
from the magnetic susceptibility data, taken from Fig. 1 of
Ref. [42]. In this figure, the magnetic susceptibility χ2.8 in
a weak magnetic field of 2.8 kOe has a pronounced drop.
This drop starts at T ∗ ≈ 8 K and was ascribed to incipient
superconductivity, because in higher magnetic field 8.0 kOe
the observed diamagnetic susceptibility χ8.0 does not have such
a drop [42]. The standard theory of SC fluctuations [24] does
not explain such a large difference between T ∗ ≈ 8 K and the
SC transition temperature Tc ≈ 1.5 K. Hence, also taking into
account the resistivity data [21], we suppose that the observed

FIG. 4. Comparison between the proposed theory and the
experimental data from Ref. [21] on the temperature depen-
dence of resistivity in β-(BEDT-TTF)2I3 along three main axes,
ρi (T ) for i = 1, 2, 3. The high-temperature fit is the resistiv-
ity extrapolated from T > 9 K down to low temperatures and
given by the second-order polynomials in T : ρm

1 (T ) = (1.429 +
0.084 K−1 T + 0.006 K−2 T 2)ρ1(293 K) × 10−3, ρm

2 (T ) = (2.616 +
0.063 K−1 T + 0.009 K−2 T 2)ρ2(293 K) × 10−3, and ρm

3 (T ) =
(47.821 + 0.025 K−1 T + 0.255 K−2 T 2) m� cm.

diamagnetic response originates from the SC islands, which
survive only at lower magnetic field. Assuming that the low
magnetic field 2.8 kOe almost does not affect the SC inclusions,
and in high magnetic field 8 kOe, on the contrary, the effect
of SC islands is negligible, we find that φχ is proportional to
the difference �χ ≡ (χ2.8 − χ8), divided by the susceptibility
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χSC = −1/4π of a perfect superconductor:

φχ = C�χ/χSC. (16)

In Fig. 3 we compare SC volume fraction φρ (T ) (blue solid
curve) extracted from the resistivity data [21] with φχ (T )
(orange dot-dashed curve), determined according to Eq. (16)
with the constant coefficient C = 2.6 × 103, found assuming
that around 1.8–2 K the values of φρ (T ) and φχ (T ) on average
become close to each other.

The coefficient C is not equal to unity mainly because
of three effects: (i) the demagnetizing factor n of the SC
ellipsoids, (ii) the finite penetration depth λ of a magnetic
field into the SC granules, and (iii) the penetration of vortices
if the applied magnetic field exceeds the lower critical field
Hc1. Susceptibility of a macroscopic SC ellipsoid is given by
χellipsoid = {−1/[4π (1 − n)]} [43,44]. The demagnetization
factor n along the longest semiaxis of the ellipsoid with
b/a = 2 and c/a = 0.13 is n ≈ 0.05, as calculated from Eq.
(2.1) of Refs. [45,46]. Hence, the first effect only gives a factor
(1 − n)−1 ≈ 1.05 ∼ 1.

The second effect is more important if the penetration depth
λ is comparable to or greater than the size d = 2R of SC
islands. Using the well-known expression for the diamagnetic
susceptibility χ = −R2/40πλ2 of a small spherical SC gran-
ule with radius R � λ [see Eq. (8.22) of Ref. [25], we can
approximate the measured susceptibility decrease �χ by

�χ ≈ χSCφχR2

10λ2(1 − n)
. (17)

The penetration depth λ depends on T and diverges at the
critical temperature [see Eq. (2.3) of Ref. [25]: λ(T ) ≈
λ(0)/

√
1 − (T/Tc )4. Here, instead of the macroscopic zero-

resistance value Tc we use the temperature T ∗ below which SC
islands start to appear. This gives the temperature dependence
of the constant C in Eq. (16) at R � λ:

C(T ) ≈ 10λ2(1 − n)

R2
≈ 10[λ(0)]2(1 − n)

R2[1 − (T/T ∗)4]
. (18)

For our estimate of the SC island radius R we take T ∗ ≈ 8 K
because (i) there is a clear drop of interlayer resistivity at
T = 6–8 K, suggesting the appearance of many SC islands
below T ∗ ≈ 8 K, and (ii) this T ∗ is close to the SC transition
temperature Tc ≈ 7.5 K of another group of crystals [21] of the
same compound but prepared in a different way. Moreover, this
simplification only leads to a minor error in our estimate of the
size of SC islands given below, because for this estimate we
compared the SC volume fraction at T = 2–4 K (see Fig. 3),
where the factor [1 − (T/T ∗)4] ∼ 1 is not very sensitive to the
precise value of T ∗.

Equation (18) explains why at high temperatures T > 4 K,
when λ(T )/λ(0) � 1, there is a strong difference between
φρ and φχ calculated for a constant C. Therefore, it is more
physically motivated to use the SC volume fraction φC

χ (T ),
which takes into account the temperature dependence of the
coefficient C(T ). We extract φC

χ (T ) from the experimental
data [42] on susceptibility according to Eqs. (16) and (18)
with λ(0)/R = 16; it agrees with φρ (T ) much better than
for the temperature-independent coefficient C, as shown in
Fig. 3. Thus we can estimate the typical size of the SC islands

as d = 2R ≈ λ(0)/8. The usual in-plane London penetration
depth in organic metals is rather large, λ(0) � 1 μm, while the
out-of-plane penetration depth is even ∼30 times larger [47].
Using the in-plane London penetration depth λ(0) ≈ 6 μm of
the compound α-(BEDT-TTF)2I3 from the same family [47],
we obtain the typical size d ≈ 0.75 μm ∼ 1 μm of SC
inclusions in β-(BEDT-TTF)2I3. This is much greater than
the in-plane SC coherence length ξ‖ ≈ 10–80 nm [48] in this
compound. Thus the proximity effect and Josephson coupling
give only small corrections to our formulas.

There is a third effect, influencing the diamagnetic response
and the coefficient C in Eq. (18). Due to the penetration
of magnetic vortices, if the applied magnetic field exceeds
the lower critical field Hc1, then the diamagnetic signal of
a bulk superconductor is much smaller than that of an ideal
diamagnet. However, if the size of SC islands R is small,
much smaller than SC penetration depth λ, the penetration of
magnetic vortices to SC may be energetically unfavorable, so
that no or very few vortices are in the small superconducting
islands. The effective lower critical field in a thin cylinder of
radius R at ξ � R � λ was shown to increase Hc1 ∝ (λ/R)2

[see Eq. (4) of Ref. [49] and even exceed upper critical fields
Hc2 and Hc3 at R < 1.5ξ (see Fig. 1 of Ref. [49]). For
λ/R ≈ 16, as we estimated above, the magnetic field must
exceed the bulk Hc1 more than 300 times for the penetration
of a single vortex becoming energetically favorable, which is
probably not the case in the experiment in Ref. [42], although
the applied magnetic field there is much larger than Hc1 in a
bulk superconductor. If the applied magnetic field in Ref. [42]
exceeds this enlarged Hc1, a few vortices may penetrate the SC
islands and reduce the diamagnetic response. Then our estimate
of the SC island radius R from Eqs. (17) and (18) gives a lower
bound for R. This is also helpful, because this lower bound is
still larger than the SC coherence length, thus substantiating
the applicability of our model.

V. DISCUSSION

To calculate the classical conductivity of heterogeneous
media, we have used the Maxwell’s or Maxwell-Garnett
approximation, generalized for anisotropic media. It is valid
only in the limit of low volume fraction φ of the second phase,
i.e., of superconducting inclusions in our case. In particular,
it gives an incorrect percolation threshold φ = 1. However,
Maxwell’s approximation has several important advantages:
(i) it is exact in the limit φ � 1; (ii) it coincides with the
optimal Hashin-Shtrikman bounds [50], i.e., it equals the
lower bound for the effective conductivity of media with
superconducting inclusions for arbitrary φ; (iii) it does not
require the usually unknown information about the distribution
function of superconducting islands and about their typical size
d; (iv) it gives a simple analytical result.

There are several other approaches to this classical
conductivity problem that have their own advantages and draw-
backs [26,50]. Among the most popular analytic approaches,
we have the self-consistent effective-medium approximation,
the cluster expansions, and the contrast expansions, giving
various bounds for the effective conductivity tensor. The
self-consistent effective-medium approach is the simplest one
after Maxwell’s approximation. It gives nontrivial percolation
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thresholds in 2D and 3D cases, which are close to the numerical
results for the isotropic case. However, for anisotropic systems
these percolation thresholds differ for different directions,
which is incorrect in a general case. The self-consistent
approximation does not have a strict substantiation even in the
low-φ limit, but it was shown to describe correctly some fractal
inhomogeneous structures, which are similar on different
length scales [26,50]. Thus, it is not clear if the self-consistent
or Maxwell’s approximation gives better accuracy for our
strongly anisotropic case.

The cluster expansions coincide with Maxwell’s approxi-
mation for the dilute dispersions of superconducting islands or
in the first order in φ and give better accuracy in the higher
orders. However, this approach requires the distribution and
correlation functions of superconducting inclusions, which are
unknown. In addition, the cluster expansions do not usually
give simple analytical formulas. The contrast expansions work
well when the conductivities of two phases do not differ much,
which is not applicable to our case where the conductivity
ratio is infinite. In addition, the contrast expansions also
require knowledge of the correlation function and do not give
simple analytical results. The various numerical methods of
calculating the effective conductivity of such a heterogeneous
classical system [50] give much more accurate results but
are not convenient for the physical analysis. In addition,
the accuracy of our classical model is limited, especially
without knowledge of the size distribution and the correlation
function of superconducting islands. Thus, among various
methods, the applied Maxwell-Garnett approximation seems
to be reasonable for our qualitative study.

The applied classical model does not take into account
several quantum superconducting features: the Andreev reflec-
tion, the proximity effect, and the Josephson coupling between
superconducting islands [25]. All these three effects increase
the electric conductivity in such a heterogeneous medium.

The Andreev reflection increases an electric current through
the normal-superconductor (N-S) interface. The increase de-
pends on the strength of the potential barrier on this interface
(see Sec. 11.5.1 of Ref. [25]), but it does not exceed the factor
of 2. Since in our case the superconducting islands are made of
the same material as the metallic matrix, the potential barrier
at their interface is not large, and the Andreev reflection may
almost double the current through a flat N-S interface. For an el-
lipsoidal or arbitrary shape of SC granules, this increase factor
is less than 2 and closer to unity; it should be taken into account
in a rigorous quantitative theory, but is beyond our study.

The proximity effect creates a nonzero superconducting
condensate in the surrounding shell of the thickness ∼ξ around
each of the superconducting islands. Since ξ ∝ vF has the same
anisotropy as electron velocity vF , in layered compounds this
shell is thicker along the conducting layers and thinner along
the interlayer z direction. When the typical size d and distance
l between SC islands are greater than ξ , the proximity effect
is qualitatively equivalent to the effective increase of the SC
island size by a length ∼ξ . Then it increases the calculated
correction �σi to conductivity along the axis i due to SC
islands by a quantity ∼(ξi/di )�σi . For small SC islands of
the size d � ξ , the proximity-effect correction to �σi is not
small and must be taken into account in a quantitative theory,
because it increases the effective volume fraction φ of SC

phase and changes the effective shape of SC islands, making
them closer to an ellipsoid with the main axes d∗

i ∝ ξi . For
naturally inhomogeneous superconductors, when both SC and
metallic regions consist of the same compound, the size of SC
islands d � ξ , and our analysis remains valid. For example,
in β-(BEDT-TTF)2I3 the typical size of SC inclusions d ∼
λ(0)/8 ∼ 1 μm � ξ‖ ∼ 10–80 nm � ξ⊥ ∼ 1 nm, and the
proximity effect gives only a small correction. However, even
in the case d|| � ξ||, the qualitative effect that the strongest rela-
tive increase of conductivity due to SC islands is along the least
conducting axes of metallic matrix may persist if d⊥ � ξ⊥.

For the small interisland distance l � ξ , the Josephson cou-
pling between superconducting inclusions becomes important.
It gives the phase coherence to the SC condensates on the
neighboring islands and may even lead to superconductivity
of the whole sample if this phase coherence is long-range. The
conductivity of an array of SC granules in a dielectric medium
has been extensively studied in various regimes, and the cor-
responding superconductor-insulator phase diagram has been
obtained theoretically and experimentally (see Ref. [51] for a
review). Arrays of SC granules in a metallic matrix received
less attention but have also been investigated in artificial [52]
and natural [53–55] systems. The metal-superconductor tran-
sition in these systems occurs in two stages. First, with
lowering temperature, at T < T ∗

c , superconductivity appears
in isolated granules, which reduces electric resistivity and
gives a diamagnetic response. At lower temperature, the long-
range coherence between isolated SC islands or clusters is
established, and at the resistive transition temperature Tc < T ∗

c

the whole sample becomes superconducting. For a random
spatial and T ∗

c distribution of SC islands, this leads to a
continuous decrease of resistivity between T ∗

c and Tc. Finite-
temperature effects break this coherence when T becomes
comparable to the Josephson coupling energy EJ ≡ h̄Ic/2e,
where Ic is the critical current of the Josephson junction [25],
which depends exponentially on the intergranular distance l:
Ic ∝ exp (−l/ξ ). Near T ∗

c of SC granules, the critical current
has a linear temperature dependence, Ic ∝ T ∗

c − T , and for
l > ξ it acquires additional exponential temperature damping.
Hence, in our limit of low volume ratio φ � 1 of the SC
phase, where l > ξ , the Josephson coupling is most probably
suppressed by temperature and can be neglected.

Thus, the applied model is quantitatively valid only in the
macroscopic limit, when the size of superconducting islands
d and the distance between them l are much larger than the
coherence length ξ . In the limit of low fraction φ � 1 of
the SC phase, when the applied Maxwell’s approximation
is valid, l � d. Then our analysis is quantitatively valid at
ξi � di and gives correct qualitative predictions at ξi � di .
The typical size d of SC islands can be measured for a par-
ticular compound using the STM [4–10] or scanning SQUID
microscopy [13,15]. In all these experiments, the typical SC
domain size d was at least several times larger than the SC
coherence length ξ . The smallest SC domain size d � 3 nm
was detected in Bi2Sr2CaCu2O8+δ [5], where the in-plane
coherence length ξab ≈ 1.6 nm, thus the ratio d/ξ � 2. In
YBa2Cu6Oy , the observed diamagnetic domain size was much
greater [15], d ∼ 1 μm � ξab ∼ 2 nm. In NbN, the observed
SC domains have the size d ≈ 20–50 nm � ξ ∼ 6 nm [7].
In β-(BEDT-TTF)2I3, as we estimated above, the size of SC
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islands is also d ∼ 1 μm � ξ . Thus, typically d/ξ � 1, and
our formulas are applicable. However, we did not find any
experimental data on the domain size in YBa2Cu4O8.

Using torque magnetization measurements, in
La2−xSrxCuO4, Bi2Sr2−yLayCuO6, Bi2Sr2CaCu2O8+δ ,
and YBa2Cu6Oy the diamagnetic response as a precursor
of superconductivity was shown to survive at temperatures
much higher than the superconducting transition temperature
Tc [11]. In particular, in La2−xSrxCuO4 and Bi2Sr2−yLayCuO6

the onset temperatures T M
onset of this diamagnetic response

exceed more than three times Tc in wide doping intervals
and nearly coincide with the onset temperatures T ν

onset of the
enhanced Nernst signal (see Fig. 11 of Ref. [11]), presumably
corresponding to the vortex-liquid state. Even in the optimally
doped YBa2Cu6Oy with Tc ≈ 92 K, the diamagnetic response
is observed up to T M

onset ≈ 130 K [11]. According to Ref. [4],
it should coincide with the onset temperature T ∗ of the
pseudogap, which for YBa2Cu4O8 exceeds 200 K. Hence, it
is not very surprising that some traces of superconductivity
appear in YBa2Cu4O8 at T � 200 K, as we see from Fig. 1.
However, we note that the aspect ratio γ ≈ 0.14, giving the
best fit of resistivity curves, coincides within the accuracy
of our model with the ratio of coherence lengths along and
perpendicular to conducting layers. This may indicate that SC
fluctuations, probably heterogeneous and located at the SC
islands, may also be partially responsible for the resistivity
drop and nonzero φ(T ) at T ∼ 200 K.

The alternative interpretation of the resistivity decrease
in YBa2Cu4O8 in the interval Tc < T < T ∗ is based on the
crossover between coherent metallic at low-T and incoher-
ent at high-T interlayer transport [17]. The idea of such a
crossover was developed to explain the nonmonotonic temper-
ature dependence of interlayer conductivity observed in var-
ious layered conductors, including graphite compounds [56],
TaS2 [57], Sr2RuO4 [58], organic metals [59], etc. The most
puzzling in this nonmetallic behavior was that the nonmono-
tonic temperature dependence of resistivity with a maximum
at ∼ 100 K was observed only along the interlayer direc-
tion, while the in-plane conductivity shows metallic behavior.
First, this crossover from coherent to incoherent interlayer
transport was believed to happen when the electron intralayer
mean scattering time τ becomes greater than the interlayer
hopping time τz = h̄/tz, so that electrons scatter many times
before tunneling to the adjacent layer. The limit τ/τz � 1
received the special term “weakly incoherent,” but even in
magnetoresistance no considerable changes of behavior have
been found at τ/τz � 1 [60]. Later it was realized that even
at τ/τz � 1 the coherent interlayer transport survives, and
one needs to include the phonon-assisted interlayer tunneling
or/and resonance impurities between the conducting layers into
the theoretical model to explain such behavior [61–63]. In any
case, the resistivity decrease at Tc < T < T ∗ in YBa2Cu4O8 is
probably mainly due to the heterogeneous SC onset discussed
above rather than due to this coherence-incoherence crossover,
because the analyzed experimental data [17] on the temperature
dependence of resistivity in YBa2Cu4O8 do not have the
resistance maximum, typical for this coherence-incoherence
crossover. Moreover, these data correspond to the samples with
higher resistance at room temperature, suggesting their strong
spatial inhomogeneity. Of course, both of these effects, namely

SC inclusions and the incoherent channels of conductivity, may
be present and contribute in parallel, leading to the observed
decrease of resistivity in YBa2Cu4O8 below 250 K.

The proposed model and analytical results are rather general
and can be used for the analysis of experimental data in other
strongly anisotropic compounds. Let us briefly summarize the
main steps of the comparison of this model with experimental
data. First, one chooses a compound where, presumably,
superconductivity appears in the form of isolated islands. It
is very helpful, but not necessary, if there are STM or other
measurements, supporting this heterogeneous SC onset and
giving the typical size of SC inclusions. Then one extracts
from experimental resistivity data the excess conductivity
as a function of temperature along three main axes due to
superconducting inclusions. This can be done more easily if
there are also experimental data on conductivity in magnetic
field or under other conditions, suppressing superconductivity.
If the resistivity data without superconducting inclusions are
not available, the excess conductivity can be approximately
extracted using the extrapolation from higher temperature,
where superconductivity is suppressed. These data on excess
conductivity along the main axes are fitted by the formulas
derived above, which gives the temperature dependence of the
volume fraction φ(T ) of superconducting inclusions and their
aspect ratios γ and β. If, in addition to transport measurements,
the diamagnetic response due to superconducting inclusions is
measured, it can be used for independent measure of φ(T ).
The comparison of φ(T ) from resistivity and susceptibility
measurements is helpful to check the consistency and applica-
bility of the proposed model to studied material. It can also be
used to estimate the size of superconducting inclusions.

VI. CONCLUSIONS

In this paper, we developed a classical model and derived
analytical expressions, given by Eqs. (12)–(14) and (B1)–
(B6), for conductivity in a heterogeneous fully anisotropic
conductors with ellipsoid superconducting inclusions. This
model and the analytical results obtained are useful and
convenient to analyze experimental data on the temperature
dependence of conductivity anisotropy in various anisotropic
superconductors, where superconductivity onset happens inho-
mogeneously in the form of isolated superconducting islands.
We illustrate this by analyzing the experimental data on the
temperature dependence of resistivity along three main axes
above the transition temperature Tc in the high-temperature
superconductor YBa2Cu4O8 and in the organic superconductor
β-(BEDT-TTF)2I3. In β-(BEDT-TTF)2I3 we compared the
temperature dependence of the superconductivity fraction ex-
tracted from resistivity and diamagnetic response data, which
allows estimating the size of superconducting inclusions as
d ∼ 1 μm. We described the comparison between our theory
and the experimental data in detail to make this procedure clear
for applications to other anisotropic superconductors. In spite
of its simplicity, the proposed classical model of an anisotropic
heterogeneous superconductor gives a reasonable qualitative
and often quantitative description of the temperature depen-
dence of resistivity and of its anisotropy above the transition
temperature in the compounds with inhomogeneous supercon-
ductivity onset in the form of isolated superconducting islands.
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APPENDIX A: CONDUCTIVITY ANISOTROPY IN THE
STANDARD THEORY OF SUPERCONDUCTING

FLUCTUATIONS

The model in Refs. [19,20] predicts that if superconductivity
in an anisotropic conductor appears in the form of isolated su-
perconducting islands, it reduces electric resistivity anisotrop-
ically with the maximal effect along the least conducting axis.
This prediction is supported by the experimental data in various
compounds [17–23]. These results cannot be explained by
the standard theory [24] of superconducting fluctuations in
homogeneous superconductors, as was argued in Ref. [20]. In
this appendix, we briefly repeat these arguments [20] for com-
pleteness and discuss possible extensions of the homogeneous
theory of superconducting fluctuations.

According to Chap. 3 of Ref. [24], within the time-
dependent Ginzburg-Landau equations (i.e., nearTc) the excess
conductivity due to fluctuations in layered quasi-2D super-
conductors in the absence of a magnetic field is given by the
expressions

�σxx (ε, h = 0, ω = 0) = e2

16s

1√
ε(ε + r )

, (A1)

�σzz(ε, h = 0, ω = 0) = e2s

32ξ 2
xy

(
ε + r/2√
ε(ε + r )

− 1

)
, (A2)

where s is the interlayer distance, r = 4ξ 2
z (0)/s2, ξxy and ξz

denote the superconducting coherence length in the conducting
layers and across them, respectively, and ε ≡ ln (T/Tc ) ≈
(T − Tc )/Tc � 1. At ε � r , Eq. (A2) gives

�σzz ≈ e2s

16ξ 2
xy

ξ 2
z (0)/s2

√
ε(ε + r )

= �σxx

ξ 2
z (0)

ξ 2
xy

, (A3)

and at r � ε from Eq. (A2) we have

�σzz = e2s

32ξ 2
xy

r2

8ε2
� �σxx

s2

ξ 2
xy

. (A4)

In both cases, the excess conductivity across conducting layers
�σzz is much lower (namely, by the parameters ξ 2

z /ξ 2
xy � 1

or s2/ξ 2
xy � 1) than the excess conductivity along the lay-

ers �σxx . This small parameter ξ 2
z /ξ 2

xy ∼ v2
z /v

2
x ∼ σzz/σxx .

Hence, within the Ginzburg-Landau theory, the relative in-
crease of conductivity due to superconducting fluctuations is
isotropic, which cannot explain the observed [17–23] temper-
ature dependence of conductivity anisotropy above Tc.

A stricter microscopic theory of the fluctuation contribution
to the conductivity (see Chap. 7 in [24] and references therein)

is applicable far away from Tc and includes not only the
Aslamazov-Larkin correction given by Eqs. (A1)–(A4) but
also the Maki-Thompson correction and the correction due
to the renormalization of electron density of states. However,
this stricter theory predicts [64] an increase in the transverse
resistance (not conductivity) above Tc, observed [65] in some
cuprates as a resistance peak just above Tc. Thus, the much
stronger excess conductivity across the conducting layers can-
not be explained within the existing theory [24] of fluctuation
conductivity in spatially homogeneous superconductors.

A possible extension of the existing homogeneous the-
ory [24] of SC fluctuations to a spatially inhomogeneous
superconductor, where SC fluctuations appear only in some
special spots, may be useful to explain the observed anisotropic
correction to resistivity far above Tc, where the SC volume
fraction according to our model is very small. Such spots of
highly probable SC fluctuations somewhat resemble the spots
of higher conductivity in our model of SC islands, but instead
of steady SC islands with zero resistance one takes islands
with reduced resistance due to SC fluctuations. The frequency
dependence of conductivity in such a heterogeneous theory of
SC fluctuations probably differs considerably from that in our
model. Such a model of heterogeneous SC fluctuations, being
beyond the scope of this paper, may be relevant and useful for
superconductors with nonuniform doping concentration, with
nonuniform charge- or spin-density-wave structure, or with
other types of heterogeneity.

APPENDIX B: ELLIPTIC INTEGRALS

In this appendix, we calculate integrals (8) and find exact
expressions for coefficients A1, A2, A3 as well as their asymp-
totic behaviors for different cases.

Let a1 < a2 < a3. Denote ν = arcsin
√

a2
3 − a2

1 /a3 an-
gular eccentricity, q =

√
(a2

3 − a2
2 )/(a2

3 − a2
1 ), and q ′ ≡√

1 − q2 =
√

(a2
2 − a2

1 )/(a2
3 − a2

1 ). Using the table elliptic
integrals (integrals 6, 12, and 18 from Sec. 3.133 of Ref. [66]),
we obtain

A1 =a1a2a3

2

∞∫
0

dt(
t + a2

1

)√(
t + a2

1

)(
t + a2

2

)(
t + a2

3

)

=a1a2a3

2

⎛
⎝ 2(

a2
1 −a2

2

)√
a2

3 −a2
1

E(ν, q ) + 2

a2
2 −a2

1

a2

a1a3

⎞
⎠,

(B1)

A2 = a1a2a3

2

∞∫
0

dt(
t + a2

2

)√(
t + a2

1

)(
t + a2

2

)(
t + a2

3

)

= a1a2a3

2

⎛
⎝ 2

√
a2

3 − a2
1(

a2
2 − a2

1

)(
a2

3 − a2
2

)E(ν, q )

− 2(
a2

3 − a2
2

)√
a2

3 − a2
1

F (ν, q ) − 2

a2
2 − a2

1

a1

a2a3

⎞
⎠, (B2)
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A3 = a1a2a3

2

∞∫
0

dt(
t + a2

3

)√(
t + a2

1

)(
t + a2

2

)(
t + a2

3

)

= a1a2a3

2

⎛
⎝ 2(

a2
3 − a2

2

)√
a2

3 − a2
1

[F (ν, q ) − E(ν, q )]

⎞
⎠.

(B3)

Here F (ν, q ) and E(ν, q ) are incomplete elliptic integrals of
the first and the second kind, respectively, with amplitude ν

and the elliptic modulus q [66]. It can be easily checked that
indeed A1 + A2 + A3 = 1.

Let us simplify formulas (B1)–(B3) for two limiting cases:
(i) a3 � a1, a2 and (ii) a2 − a1 � a3.

(i) a3 � a1, a2. In this case, ν → π/2 and q → 1. Using
the double asymptotic expansions forF (ν, q ) andE(ν, q ) [67],
we find

A1 ≈ a2

a1 + a2
− a1a2

2a2
3

ln
4a3/e

a1 + a2
, (B4)

A2 ≈ a1

a1 + a2
− a1a2

2a2
3

ln
4a3/e

a1 + a2
, (B5)

A3 ≈ a1a2

a2
3

ln
4a3/e

a1 + a2
. (B6)

Substituting here ai from formula (6), we get

A1 ≈ β√
μ + β

, (B7)

A2 ≈
√

μ√
μ + β

, (B8)

A3 ≈ βη

γ 2√μ
ln

4γ

e
√

η(1 + β/
√

μ)
. (B9)

(ii) The case a2 − a1 � a3 (i.e., a2 − a1 → 0). In
this case, q → 1 and we use E(ν, q ) = E(ν,

√
1 − q ′2) ≈

sin ν + 1/2{ln[(1 + sin ν)/ cos ν] − sin ν}q ′2 and F (ν, q ) ≈
F (ν, 1) = ln[(1 + sin ν)/ cos ν] and obtain

A1 ≈ A2 ≈ 1

2
− a2

1a3

2
(
a2

3 − a2
1

)3/2 ln
a3 +

√
a2

3 − a2
1

a1

+ a2
1

2
(
a2

3 − a2
1

) , (B10)

A3 ≈ a2
1a3(

a2
3 − a2

1

)3/2 ln
a3 +

√
a2

3 − a2
1

a1
− a2

1

a2
3 − a2

1

. (B11)

For a1 = a2, formulas (B10) and (B11) become exact. In the
double limit (a2 − a1) → 0 and a3/a1 → ∞ we get A3 ∼
(a2

1/a
2
3 ) ln(2a3/ea1), which coincides with (B6) when a1 = a2.

Recalling thata1/a3 = √
η∗ ≡ √

η/γ , we can recast (B11) into

A3 ≈ η∗
(1 − η∗)3/2

ln
1 + √

1 − η∗√
η∗

− η∗
1 − η∗

, (B12)

which after algebraic manipulations can be transformed into
the form of Eq. (17.30) of Ref. [26] or Eq. (5) of Ref. [19]. For
η∗ → 0, the formula (B12) simplifies to A3 ∼ η∗ ln(1/η∗)/2,
which is consistent with Eq. (6) of [19].
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