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Interplay of interlayer pairing and many-body screening in a bilayer of dipolar fermions
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In a bilayer system of fermionic dipoles, full control over the strength of the attractive interactions between
two layers leads to the BCS-BEC crossover. Here, using the BCS mean-field theory, we study such a crossover in
symmetric bilayers of ultracold dipolar fermions with their dipole moments perpendicular to layers. In particular,
we investigate how the pairing between two layers and the many-body screening of interlayer interaction affect
each other. We compare results for pairings obtained with three different approximations for the interlayer
interactions, namely, bare dipole-dipole interaction, the random-phase approximation for screening obtained
in the normal phase, and the self-consistent superfluid phase screening within the random-phase approximation.
We find that at weak couplings the screening further suppresses the pairing, while at strong couplings, the
screening is suppressed due to the pairing gap in the quasiparticle spectrum. Therefore a self-consistent treatment
of both screening and pairing on equal footings is necessary for obtaining the correct picture of the phase diagram
and order parameter at both small and large layer spacings and densities. We also notice that the signals of
highly speculated density-wave instability in dipolar bilayers only appear in the normal phase screened interlayer
interaction.
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I. INTRODUCTION

In a two-component fermionic system with attractive inter-
component interactions, there exists a continuous state evo-
lution from a condensate of weakly coupled particles, known
as the Bardeen-Cooper-Schrieffer (BCS) state, to a condensate
of tightly bounded particles, i.e., the Bose-Einstein condensate
(BEC), through increasing the strength of the attractive interac-
tion [1,2]. This smooth evolution is referred to as the BCS-BEC
crossover and was first investigated in excitonic systems [3–5].
In spite of numerous theoretical proposals for the observation
of this crossover in platforms such as GaAs-AlGaAs het-
erostructures, double-layer graphene, and hybrid structures of
graphene-GaAs [6–18], there is no clear experimental evidence
of interlayer superfluidity in such condensed-matter structures
[14]. To hold out hope for the experimental realization, one
has to make screening of the interlayer interactions very weak
[14–18]. On the other hand, the requirement for a very clean
system is felt [15].

Progress in cooling and trapping atomic gases in recent
decades, together with the immense tunability of the in-
terparticle interactions through the Feshbach resonance, has
provided a revolutionary route toward better investigation and
understanding of the condensed-matter systems. The exper-
imental observation of the BCS-BEC crossover in ultracold
atomic gases [19–25] might be a paramount example of
this. Furthermore, the recent successful achievement of the
quantum degenerate state of magnetic atoms [26–31] and
nearly degenerate states of polar molecules [32–36] in both
Bose and Fermi flavors has offered alternative scenarios, in
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which the long-range and anisotropic characteristic of the
dipole-dipole interaction, as well as its high controllability via
external fields, provided new avenues to observe topological
states [37,38], density waves [39–50], and exotic superfluidity
[51–54]. For instance, engineering layered structures of dipolar
fermions offers a very powerful platform to study interlayer su-
perfluidity, thanks to the attractive component of the interlayer
interactions. More importantly, layered structures provide
lower inelastic losses and chemical recombinations than bulk
ones [55]. This new paradigm has been extensively studied
using different analytical and numerical methods [56–61].

One of the key questions for the observation of the BCS-
BEC crossover is its stability against the many-body corre-
lation between particles, which can dramatically affect the
properties of interlayer pairing. This is particularly important
in condensed-matter systems where the interaction between
electrons is long range [13,14].

Here, we consider an equally populated bilayer system
of identical dipolar fermions, whose dipoles are oriented
perpendicular to the layers and where the polarization of
dipoles in two layers is in the same direction (see Fig. 1).

At the level of the mean-field approximation for such
systems, it has been shown that [56] the superfluid-normal
phase-transition temperature is higher than that of the ultracold
gases with contact interaction. As the mean-field approach for
two-dimensional systems is reliable only at zero temperature,
a beyond-mean-field study has been performed in Ref. [59]
at nonzero temperature, which shows that many-body effects
decrease (increase) the transition temperature on the BEC
(BCS) side of the crossover. The phase diagram of dipolar
bilayers has also been investigated within both BCS and
strong-coupling approximations at zero and finite temperatures
by Zinner et al. [60].
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FIG. 1. A bilayer system of parallel dipoles with interlayer sep-
aration d . The in-plane distance between dipoles r is shown. Two
dipoles belonging to different layers attract each other if the angle
between them θ is less than arctan(

√
2) ≈ 54.76◦.

Our prime aim here is to examine BCS-BEC crossover at
zero temperature including the effects of intralayer screening
on the interaction between dipoles of different layers. To do
this, we keep only the s-wave paring between particles of dif-
ferent layers. The BCS mean-field theory enables us to obtain
an equation for the superfluid gap function, which should be
solved self-consistently together with the number equation to
ensure a fixed number of dipoles in each layer. In order to
solve these equations, one needs to first specify the interlayer
interaction. We employ three different approximations for
it. In the first approach, we use the bare (i.e., unscreened)
interlayer interaction. In the following, we will call it the
unscreened (US) method. In the second approximation, the
interaction between two particles belonging to different layers
is screened within the random-phase approximation (RPA),
while the system is considered to be in the normal state. In
other words, the dielectric function of a normal bilayer is used
to screen the interlayer interaction; then the superfluid gap
function is obtained with this screened interaction. We will
refer to this approximation as the normal-phase screening (NS).
Finally, in our most elaborate approximation, we consider the
bilayer system to be in the superfluid phase and use its dielectric
function to screen the interlayer interaction and obtain the
gap function. As the dielectric function itself depends on the
gap parameter, screening and gap equations should be solved
self-consistently. This third approximation will be referred to
as the superfluid-phase screening (SS).

In this paper, we compare the above-mentioned three differ-
ent schemes for interlayer interaction and quantify the interplay
between many-body screening and the pairing between two
layers. We obtain the phase diagram of the bilayer system
within these three approximations, where we also explore the
possibility of density-wave instability (DWI), originating from
the singularities of the density-density response function of the
system. The issue of DWI in layered structures has attracted a
lot of interest over the past three decades. It has been suggested
that the enhanced correlations in layered geometries would
make the observation of DWI and Wigner crystallization more
feasible in electron-electron and electron-hole bilayers em-
bedded in semiconductor heterostructure [62–66]. In dipolar
systems, the anisotropic form of the dipole-dipole interaction
would, in general, facilitate inhomogeneous density phases,

even in the single-layer structures [39–43]. DWI in bilayers
and multilayers of dipolar fermions has been theoretically
envisioned as well [45–50], but its competition with interlayer
pairing in layered structures, in particular when the dipoles are
aligned perpendicular to the plane and therefore the interaction
is totally isotropic, is not yet well understood.

The outline of the rest of this paper is as follows. In Sec. II
we present our model based on the BCS mean-field theory and
find the equations of the pairing gap and the particle density
of the system. Section III introduces our different screening
approaches and discusses how to explore the possible density-
wave instabilities of the system. Section IV contains our
numerical results, illustrating the interlayer interaction and the
effect of many-body screening on the BCS-BEC crossover and
on the condensate fraction within different screening scenarios.
Finally, our conclusions are presented in Sec. V, where we
also discuss the experimental relevance of our findings. The
density-density linear response function in the superfluid state
is summarized in the Appendix.

II. MODEL AND FORMALISM

In this section, we first present the model Hamiltonian
describing a bilayer of fermions interacting via the dipole-
dipole interaction. We then apply the BCS mean-field theory to
simplify the Hamiltonian into a single-particle problem, which
enables us to obtain the pairing gap and the chemical potential
and thereby the condensate fraction of the system.

A. Model Hamiltonian

The Hamiltonian below describes a bilayer system of
dipoles which are aligned perpendicular to the layers

H =
∑

k

ξa
k a

†
kak +

∑
k

ξb
k b

†
kbk + 1

2A

∑
q

VS(q )ρa
q ρa

−q

+ 1

2A

∑
q

VS(q )ρb
qρb

−q + 1

A

∑
q

VD(q )ρa
q ρb

−q . (1)

Here, the operators ak (a†
k ) and bk (b†k ) are annihilation

(creation) operators for dipoles in layers a and b, respectively.
ξ

a(b)
k = h̄2k2/(2ma(b) ) − μa(b) is the single-particle energy of

layer a (b) with respect to the chemical potential of the cor-
responding layer μa(b). We will consider here only symmetric
bilayers; therefore ma(b) = m and μa(b) = μ. The third and
fourth terms in Hamiltonian (1) are intralayer interactions
in each layer, and the last term is the interlayer interaction,
with ρa

q = ∑
k a

†
k+qak and ρb

q = ∑
k b

†
k+qbk being the density

operators of each layer, and A is the sample area. Also
note that the normal ordering of creation and annihilation
operators in the interacting terms of the Hamiltonian (1) is
understood [67]. The same-layer [VS(r )] and different-layer
[VD(r )] interactions in real space are written as [68]

VS(r ) = Cdd

4π

1

r3
, (2)

VD(r ) = Cdd

4π

r2 − 2d2

(r2 + d2)
5
2

, (3)
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where Cdd is the dipole-dipole coupling constant and depends
on the nature of dipole moments, r is the in-plane distance
between two dipoles, and the separation of two layers is indi-
cated by d. Note that the bare intralayer interaction is purely
repulsive, while the bare interlayer interaction is attractive
for small in-plane separations, i.e., r �

√
2d, and becomes

repulsive at larger separations. This introduces a critical angle
of separation θc = arctan(

√
2) (see Fig. 1).

The corresponding Fourier transforms of intralayer and
interlayer potentials can be obtained as [48]

VS(q ) = Cdd

4

[
8

3
√

2πw
− 2qeq2w2/2erfc

(
qw√

2

)]
, (4)

VD(q ) = −Cdd

2
qe−qd . (5)

Here, erfc is the complementary error function, and w is a
short-distance cutoff introduced to heal the divergence of the
Fourier transform of VS(r ) [48].

B. BCS mean-field formalism

As the layer indices could be regarded as the pseudospin
degrees of freedom, one can use the standard BCS mean-field
approximation to reduce the many-body Hamiltonian (1) to a
tractable single-particle problem. For the sake of simplicity, we
neglect the intralayer interactions in the mean-field decoupling,
as their primary effect would be the Hartree-Fock renormaliza-
tion of the single-particle energies [60]. However, we should
note that the effects of intralayer interactions in the many-body
screening of the interlayer interaction will be accounted for
later on. We keep only the s-wave pairing between particles
of different layers, which is the dominant pairing symmetry at
low energies. Defining the gap function as

�k = − 1

A

∑
k′

VD(k − k′)〈b−k′ak′ 〉, (6)

the mean-field Hamiltonian can be written in the matrix form
as

H MF =
∑

k

(
a
†
k b−k

)( ξk −�k

−�∗
k −ξk

)(
ak

b
†
−k

)
. (7)

With the help of the Bogoliubov transformations one finds the
excitation energies of Hamiltonian (7) as E±

k = ±Ek , where
Ek =

√
ξ 2
k + �2

k . It is evident from the excitation spectrum
that, contrary to the case of imbalanced bilayers of dipoles
[51], the system is always gapped in the superfluid state.
Minimizing the free energy with respect to the order parameter,
one obtains the gap equation as

�k = − 1

2A

∑
k′

VD(k − k′)
�k′

Ek′
tanh

(
βEk′

2

)
, (8)

where β = 1/(kBT ) is the inverse temperature. The fixed
density of dipoles in each layer will give the number equation
that complements the gap equation to investigate the states of
the system. For our symmetric system (i.e., na = nb = n), we

have

n = 1

A

∑
k

〈a†
kak〉 = 1

2A

∑
k

[
1 − ξk

Ek

tanh

(
βEk

2

)]
. (9)

In order to provide a description of the ground state of the
system, the interlayer interaction VD should be specified in the
first place (see the next section). Afterward, a self-consistent
solution of the gap and number equations (8) and (9) will
provide all the ingredients to describe the system at the mean-
field level. Once the gap function and the chemical potential
are known, we are in the position to calculate the condensate
fraction of the system, which for a uniform system is given by
[69,70]

n0

n
= 1

4nA

∑
k

�2
k

E2
k

tanh2

(
βEk

2

)
, (10)

where n0 is the density of particles in the condensate state.

III. SCREENING THE INTERLAYER POTENTIAL WITHIN
THE RANDOM-PHASE APPROXIMATION

Although in deriving the gap equation (8) we have ignored
the intralayer interactions, their effects through the many-body
screening of the interlayer potential VD cannot be underesti-
mated. In fact, the details of the approximations one uses to
include these effects can qualitatively alter the final results
[14]. In this section we aim to include the effects of screening
in our formalism, utilizing the previously introduced NS and
SS approaches. As interlayer interactions in both approaches
are screened within the RPA, this section starts with a review of
this approximation applicable to a double-layer configuration.
Afterward, we present the formalisms of the NS and SS
schemes in Secs. III B and III C.

A. Random-phase approximation

The effective interaction matrix within the RPA is [67]

W (q, ω) = [1 + V (q )χRPA(q, ω)]V (q ), (11)

where V (q ) is the matrix of the bare interactions,

Vq =
(

VS(q ) VD(q )
VD(q ) VS(q )

)
, (12)

and χRPA(q, ω) is the matrix of density-density response
functions in the RPA, written as

χRPA(q, ω) = [1 − V (q )�(q, ω)]−1�(q, ω). (13)

Here, �(q, ω) is the matrix of the noninteracting density-
density response function, which for a symmetric bilayer reads

�(q, ω) =
(

�S(q, ω) �D(q, ω)
�D(q, ω) �S(q, ω)

)
. (14)

We can write the eigenvalues of the RPA density-density
response matrix (13) as

χRPA
± (q, ω) = �±(q, ω)

1 − V±(q )�±(q, ω)
, (15)

014513-3



AZADEH MAZLOOM AND SAEED H. ABEDINPOUR PHYSICAL REVIEW B 98, 014513 (2018)

where the symmetric (+) and antisymmetric (−) components
of the bare interaction and noninteracting response function
are defined, respectively, as

V±(q ) = VS(q ) ± VD(q ), (16)

�±(q, ω) = �S(q, ω) ± �D(q, ω). (17)

Note that the dispersions of collective modes of a bilayer
system could be obtained from the poles of interacting density
responses χRPA

± (q, ω) in Eq. (15), while its possible singular-
ities in the static limit (i.e., ω = 0) signal instabilities toward
density-modulated phases such as density waves.

Finally, we can easily find the screened interactions

WS(D)(q, ω) = 1
2 [W+(q, ω) ± W−(q, ω)], (18)

where we have defined

W±(q, ω) = V±(q )

1 − V±(q )�±(q, ω)
. (19)

Improvements upon RPA, which is essential at strong cou-
plings, could be done through the inclusion of the local-
field factors (LFFs) [67] in the bare interparticle interaction
matrix of Eq. (12). In the following we will use the bare
interlayer interaction VD(q ) because knowledge of interlayer
LFFs for dipolar interactions, especially in the presence of
superfluidity, is lacking, but for the intralayer interaction we
will use the Hubbard LFF [67], which has proven to work
well at intermediate and strong couplings for dipolar systems
[71,72]. This will improve our model in two ways: (i) The
spurious dependence of the bare intralayer interaction potential
(4) on the short-range cutoff w will be removed, and (ii) the
effects of the exchange hole will be partially accounted for.
Therefore in the following, we will replace the bare intralayer
interaction VS(q ) with

V H
S (q ) = [1 − GH(q )]VS(q ) = Cdd

2

[√
k2

F + q2 − q

]
.

(20)

Here, GH(q ) = VS(
√
k2

F + q2)/VS(q ) is used, kF = √
4πn is

the Fermi wave vector of a single-component two-dimensional
Fermi gas, and the w → 0 limit is taken at the end.

B. Screening in the normal state

When the bilayer system is in the normal state (i.e., �k = 0),
we have �D(q, ω) = 0, while �S(q, ω) is the Stern-Lindhard
function of a two-dimensional Fermi gas, which in the static
limit reads [67]

�N
S (q ) = −ν0[1 − �(q − 2kF )

√
1 − (2kF /q )2], (21)

where ν0 = m/(2πh̄2) is the density of states. In this case, for
the static effective interlayer interaction we find

WN
D (q ) = VD(q )[

1 − V+(q )�N
S (q )

][
1 − V−(q )�N

S (q )
] . (22)

In order to study the effect of normal screening on the pairing,
one has to replace VD(k − k′) with WN

D (k − k′) in Eq. (8).

C. Screening in the superfluid state

As already mentioned, in the SS approach the superfluid gap
is assumed to be finite in obtaining the screening. Therefore,
the interlayer component of the noninteracting density-density
response function �D in Eq. (14) is nonzero. Starting from
the mean-field Hamiltonian (7), the intralayer and interlayer
components of the noninteracting susceptibility are obtained
as (see the Appendix for details)

�S(q ) = 1

2A

∑
k

{(
1 + ξk−ξk+

Ek−Ek+

)
nF(Ek− ) − nF(Ek+ )

Ek− − Ek+

−
(

1 − ξk−ξk+

Ek−Ek+

)
1 − nF(Ek− ) − nF(Ek+ )

Ek− + Ek+

}
,

(23)

�D(q ) = − 1

2A

∑
k

�k−�k+

Ek−Ek+

{
nF(Ek− ) − nF(Ek+ )

Ek− − Ek+

+ 1 − nF(Ek− ) − nF(Ek+ )

Ek− + Ek+

}
, (24)

respectively, where k± = k ± q/2 and nF(E) is the Fermi-
Dirac distribution function. It is clear that as the screening
itself is a function of the gap function �k, Eqs. (23) and (24)
should be solved self-consistently together with the gap and
number equations (8) and (9).

IV. RESULTS AND DISCUSSION

In this section, we present our numerical results for the
BCS-BEC crossover at vanishing temperature and within
the three above-introduced approximations for the interlayer
interaction, namely, unscreened, screened within the RPA for
the normal state, and screened within the RPA in the superfluid
state. We also address the possibility of DWI within different
approximations. We should also note that throughout this pa-
per, we have scaled all the lengths with r0 = mCdd/(4πh̄2) and
all the energies with ε0 = h̄2/(2mr2

0 ). Moreover, we note that
at zero temperature this symmetric bilayer system is identified
by two dimensionless coupling constants, the dimensionless
density parameter or the intralayer coupling constant defined
asλ = kFr0 [73] and the dimensionless interlayer spacingd/r0.

A. Screened interlayer interaction and density-wave instability

Before turning to present our numerical results for the
superfluid order parameter, we first investigate the behavior of
interlayer potential WD(q ) within different approximations for
screening. In Fig. 2 we compare the bare interlayer interaction
with the screened ones (i.e., NS and SS) at a fixed layer
density and for different interlayer spacings d. When the layer
spacing is large [Fig. 2(d)], as the pairing gap is expected
to be negligible, both NS and SS give similar results, and
the screened interactions are weaker than the bare one. At
intermediate and small layer separations [Figs. 2(a)–2(c)], the
finite pairing gap suppresses the screening, and therefore the
SS gives results similar to those of the unscreened potential.
When the separation between two layers becomes very small
[Fig. 2(b)], the normal phase screening signals a sharp peak
around a specific wave vector and eventually diverges at
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FIG. 2. Comparison of the interlayer interaction obtained within
different approximations for screening at λ = 1 and for several values
of the layer spacing. Note that for λ = 1 the interlayer potential within
the NS diverges below d = 0.23r0.

smaller distances [Fig. 2(a)]. This behavior originates from
the vanishing of the dielectric function in the denominator
of Eq. (22) and could be a sign of a homogeneous system
becoming unstable toward density-modulated phases. Such a
density-wave instability is a common issue in layered struc-
tures at strong interlayer couplings. But as is clear from the SS
results, this divergence goes away once the effects of pairing
are incorporated in the response functions. Therefore we
surmise that the DWI in layered structures where the attractive
interlayer interaction would essentially lead to pairing gap in
the spectrum would be implausible. On the other hand, when
the bare interlayer interaction is repulsive, which is the case for
bilayers of two-dimensional electron liquids [62] and dipoles
with an antiparallel polarization of the dipoles in two layers
[72], as the interlayer pairing is either absent or extremely
weak, one may expect DWI at strong interlayer couplings.

Since the self-consistent solution of the gap and particle
number equations would fail due to the divergence in the
normal screened interlayer potential at small layer spacings,
below we analyze the criteria for this divergence, and we will
always stay in the homogeneous-liquid region when employing
the NS scheme.

The density-wave instability is identified by the poles
of Eq. (15) in the static limit. Within the NS approach
one can get the critical distance, below which W+(q ) and
therefore WD(q ) are divergent. This critical spacing at weak
and intermediate couplings (i.e., λ � 4) reads [72] 2kFdc =
ln [

√
5/2 − 1 + 1/(2λ)].

Another quantity of interest is the average interlayer inter-
action

∫
d rVD(r ) = VD(q = 0), which from Eq. (5) evidently

vanishes for the bare interlayer interaction as the attractive and
repulsive regions of interlayer interaction cancel each other.
The same is also true for the screened interaction in the normal
phase, which is clear from Eq. (22). However, at finite pairings,
the average interlayer interaction could be finite. This behavior
is captured only by the superfluid screening scheme.

FIG. 3. The wave-vector dependence of the pairing gap (in units
of ε0) is shown for a fixed intralayer coupling constant λ = 1 and for
different interlayer spacings d . (a) lies in the region where the normal
screened interlayer potential diverges; therefore the corresponding
gap function is absent there.

B. BCS-BEC crossover within different screening schemes

Figure 3 illustrates the wave-vector dependence of the
superfluid gap, corresponding to the same set of parameter
values used in Fig. 2. The behaviors of the pairing gaps
are exactly as one expects from the behavior of interlayer
potentials. The superfluid gaps obtained from the UN and SS
schemes are almost on top of each other in Figs. 3(a)–3(c).
In Fig. 3(a), the gap function for the NS is absent, as its
corresponding effective interlayer interaction is divergent. The
larger superfluid gap of the NS in Fig. 3(b) with respect to the
bare one is just an artifact of the enhanced screened interlayer
potential in the vicinity of the DWI. In Fig. 3(d), where the
magnitude of the pairing gap is very small, the NS and SS
schemes give similar results. We should also note that our
results for the pairing gap obtained with the bare potential
agree qualitatively with those of Zinner et al. [60].

Figure 4 shows different behaviors of the excitation energy
on the BCS and BEC sides of the crossover. In the BEC
region (top panel), where the chemical potential is negative,
the minimum of the excitation spectrum is at k = 0. In the
BCS region (bottom panel) the chemical potential is positive,
and the minimum of the excitation energy is at kr0 ≈ √

μ/ε0.
We illustrate the pairing gap and the condensate fraction

of a dipolar bilayer system in the λ-d plane in the left and
right panels of Fig. 5, respectively. We clearly observe that at
a fixed layer density, with increasing layer spacing, the pairing
gap decreases, and eventually, the system becomes normal.
Incorporating the many-body screening into the formalism, the
transition into the normal phase moves into smaller interlayer
separations. On the other hand, the superfluid gap has a
nonmonotonic behavior as a function of the intralayer coupling
constant λ at a fixed value of the interlayer separation, and the
maximum value of the pairing gap occurs at a density value
which strongly depends on the screening scheme (see Fig. 6). It
is also interesting to note that, at low densities, superfluidity is
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FIG. 4. The quasiparticle energies (in units of ε0) as functions
of the wave vector obtained within different approximations for the
interlayer interaction in the BEC region (top), where μ < 0, and in
the BCS region (bottom), where μ > 0.

stable against the many-body screening, whereas at high den-
sities screening suppresses the superfluidity. The condensate
fraction of the system decreases rapidly with increasing both
the interlayer separation and the density of the system.

In Fig. 7, we have plotted the phase diagram of the system
based on the sign of the chemical potential. Clearly, the NS
slightly decreases the area of the region with negative chemical
potential (i.e., the BEC side). We note that the SS screening has
almost the same BCS-BEC crossover boundary as that of the
US interaction and therefore is not shown. The hatched area in

FIG. 5. The behaviors of the maximum values of the pairing gap
(left) and the condensate fraction (right) in the d-λ plane within three
different screening schemes.

FIG. 6. The effects of many-body screening on the pairing gap
(top), the chemical potential (middle), and the condensate fraction
(bottom) shown as functions of the interlayer spacing (left panels)
at a fixed λ and as functions of the intralayer coupling constant at a
fixed layer spacing d (right panels). Green lines in the middle panels
indicate the line of zero chemical potential μ = 0, separating the BCS
region from the BEC one.

Fig. 7 shows the region where the normal screened potential
diverges, signaling the DWI.

V. CONCLUSION

In layered structures of ultracold polarized dipolar fermions,
the attractive part of the interlayer interaction would be

FIG. 7. Phase diagram of a bilayer system of dipolar fermions
as a function of the interlayer spacing d and intralayer coupling
constant λ. BCS (i.e., μ > 0) and BEC (i.e., μ < 0) regions are
characterized by the sign of the chemical potential. The solid and
dashed lines indicate the μ = 0 region obtained within the US and
NS schemes, respectively. The results of SS were indistinguishable
from the unscreened one and therefore are not shown. The hatched
area shows the region where the interlayer potential screened in the
normal phase becomes divergent.
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responsible for the interlayer pairing, and the BCS-BEC
crossover is expected through the tuning of the interlayer
separation or layer densities. We have investigated the interplay
between many-body screening and interlayer pairing and its
impact on the BCS-BEC crossover as well as the much-
speculated density-wave instability. We have employed the
BCS mean-field theory to find the gap function for interlayer
pairing, for which the effective interlayer interaction plays
a prominent role. To include the effects of screening on the
interlayer interaction, we have employed two approaches.
Within the RPA, we have screened the interlayer interaction
assuming that the system is either in the normal phase or in
the superfluid phase. After a self-consistent solution of the gap
and number equations, we compared the interlayer pairing in
the unscreened case with NS and SS ones.

We have shown that the boundary between the BCS and
BEC regions in the case of unscreened interactions does not
change remarkably if one screens the interlayer interactions
within the SS, while the NS approach moves the boundary
toward the BEC region. Our findings also indicate that in
low-density systems (i.e., on the BEC side of the crossover),
screening has no significant effect on the superfluid gap. In
contrast, at high densities (i.e., approaching the BCS regime),
the screening destroys superfluidity. Furthermore, screening
causes the condensate fraction to decrease more quickly
with increasing interlayer spacing and/or intralayer coupling
constant. However, we should note that a proper description
of the strongly coupled BEC side requires going beyond BCS
mean-field techniques [60].

Moreover, we have observed that within our NS scheme
the bilayer system becomes unstable toward the density-wave
instability at small layer spacings, in agreement with many
similar studies [43–45]. But once the effects of interlayer
pairing are included in the screening, this instability goes away.
Therefore we conclude that the interlayer pairing in a bilayer
system of dipolar fermions with parallel polarization makes
the emergence of DWI unlikely. On the other hand, if the
polarization of dipoles in two layers is antiparallel, the DWI
may dominate over interlayer pairing [72]. However, a full
understanding of the phase diagram of both systems requires
further investigation by means of more accurate tools such as
quantum Monte Carlo.

Finally, we would expect both the BCS and BEC regimes
in dipolar bilayers to be experimentally accessible with polar
molecules such as LiCs and KRb once they have been cooled
down to the quantum degenerate regime.
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APPENDIX: DERIVATION OF THE DENSITY-DENSITY
RESPONSE FUNCTIONS IN THE SUPERFLUID STATE

Here, we will illustrate how to get the density-density
response functions of the BCS mean-field Hamiltonian. To do
this, we begin with writing the mean-field Hamiltonian (7) in
the Nambu notation as

H MF =
∑

k

�
†
kε̄k�k, (A1)

where �
†
k = (a†

k b−k ) and

ε̄k =
(

ξk −�k

−�∗
k −ξk

)
. (A2)

The total density operator with this notation is

ρq =
∑

k

�
†
k−q/2τ

z�k+q/2, (A3)

where τ z is the z component of the Pauli matrix which acts
on the layer degree of freedom. The layer-resolved density
operator for layer α reads

ρq,α =
∑

k

�
†
k−q/2τ

α�k+q/2, (A4)

where τ a(b) = (τ z ± 1)/2. The Matsubara Green’s function
matrix in the Nambu formalism is introduced as [74]

Ḡ(k, iεn) =
(

G(k, iεn) F (k, iεn)
F ∗(k, iεn) −G∗(k, iεn)

)
. (A5)

Here, the normal and anomalous Green’s functions are defined
as

G(k, iεn) =
∑
λ=±1

wλ
k

iεn − λEk

, (A6)

F (k, iεn) = −�k

2Ek

∑
λ=±1

λ

iεn − λEk

, (A7)

respectively, where w±
k = (1 ± ξk/Ek )/2 and εn = (2n +

1)π/β with integer n is a fermionic Matsubara frequency.
The density-density response function within the single bubble
diagram level reads

�αα′ (q, iωn)

= 1

Aβ

∑
k,iεn

Tr[Ḡ(k−, iεn)ταḠ(k+, iεn + iωn)τα′
],

(A8)

where k± = k ± q/2 and ωn = 2nπ/β is a bosonic Matsubara
frequency. After some straightforward algebra we find

�S(q, iωn) = 1

Aβ

∑
k,iεn

G(k−, iεn)G(k+, iεn + iωn)

= 1

A

∑
k,λ,λ′

wλ
k−wλ′

k+
nF(λEk− ) − nF(λ′Ek+ )

iωn + λEk− − λ′Ek+
,

(A9)

�D(q, iωn)

= 1

Aβ

∑
k,iεn

F ∗(k−, iεn)F (k+, iεn + iωn)

= − 1

A

∑
k,λ,λ′

(
λλ′�k−�k+

4Ek−Ek+

)
nF(λEk− ) − nF(λ′Ek+ )

iωn + λEk− − λ′Ek+
.

(A10)

In the static limit, after performing the summation over λ and
λ′, we arrive at Eqs. (23) and (24).
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