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In this paper we present a comprehensive study of the spontaneous currents in time-reversal symmetry breaking
(TRSB) multicomponent superconductors with cubic crystalline symmetry. We argue, not limiting to cubic lattices,
that spontaneous current on certain high-symmetry surfaces can exist only if the TRSB pairing simultaneously
breaks a certain pair of mirror symmetries. This is shown to have exact correspondence with the Gingzburg-Landau
(GL) theory and is verified by numerical Bogoliubov de-Gennes (BdG) calculations. In the course we extend
the BdG to include effects of gap anisotropy and surface disorder, both of which could lead to much suppressed
current. The GL theory has been known to describe well the spontaneous current. However, we highlight a special
case where it becomes less adequate and show that a refined effective theory for low temperatures is needed.
These results could shed light on the phenomenology of cubic superconductors such as U1−xThxBe13, the filled
skutterudites PrOs4Sb12, PrPt4Ge12, and related compounds.
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I. INTRODUCTION

In cubic and tetrahedral superconductors, the peculiar crys-
talline symmetry allows for superconducting order parameters
which belong to a plethora of multidimensional representations
not accessible in other systems [1,2]. Some of these states may
exhibit nontrivial topological properties and support exotic
excitations such as protected surface modes and Majorana
fermions [3,4].

In some cases, a time-reversal symmetry breaking (TRSB)
multicomponent pairing is stabilized deep in the supercon-
ducting state, such as in U1−xThxBe13 [5–8], as well as
the filled skutterudites PrOs4Sb12 [9–11], PrPt4Ge12 [12,13]
and related compounds [14,15]. However, consensuses are
still lacking regarding their exact pairing symmetries [16].
Notably, these superconductors may generate spontaneous
charge current at sample surfaces, domain walls separating
regimes of distinct TRSB pairings and around crystalline
defects, opening a unique perspective to peer into their exotic
Cooper pairing. An effort along this line has indeed been
made for PrOs4Sb12, which however did not find any definitive
evidence of spontaneous surface current [17]. The null result
resembles the situation [17–19] in the widely-studied putative
chiral p-wave superconductor Sr2RuO4 [20], which is also
expected to support finite surface current [21]. While there have
been a number of theoretical attempts to address this particular
puzzle in Sr2RuO4, both within [22–29] and outside [30,31]
the framework of chiral p-wave pairing, much less has been
done for PrOs4Sb12.

There are indeed TRSB superconductors which do not
support surface current at certain edges. One typical example is
the s + idx2−y2 -wave superconductor at surfaces parallel to the
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x and y axis (e.g., [100] surfaces) [32]. However, it is known to
exhibit finite spontaneous current around impurities and at the
[110] surface where it resembles an s + idxy pairing [32,33].
Furthermore, the s + is state, which has been proposed for
some iron-based superconductors, may generate current if
fractional fluxes are pinned at domain walls between regions of
s + is and s − is pairings [34,35] or when the lattice rotational
symmetry is further broken [36], whilst no current may arise
in an undistorted lattice [37].

The primary objective of this paper is to present a com-
prehensive study of the surface current in a multicomponent
TRSB superconductor with cubic symmetry. In particular,
given the rich variety of superconducting phases available
in these systems, it is tempting to ask whether any of their
TRSB pairings would be free of spontaneous currents. For
these purposes, we combine symmetry analyses, BdG calcu-
lations, and a Gingzburg-Landau theory. The focus will be on
the spontaneous currents on high-symmetry [100] and [110]
surfaces. Since each of these two surfaces is invariant under at
least one mirror reflection (orthogonal to the surface), and since
their associated [100] and [110] planes are themselves mirror
planes (see Fig. 1), we name them mirror-invariant surfaces
(MIS) for convenience. We will show that spontaneous current
can emerge on these surfaces only if the TRSB pairing simul-
taneously breaks the two corresponding mirror symmetries.
The argument is in fact of broad relevance to other systems
with the required crystalline mirror symmetries and is shown
to be consistent with BdG calculations and GL analyses. In
the course we also generalize the BdG calculations to include
the effects of gap structure anisotropy and surface disorder. It
is found that these two factors in general lead to a suppressed
surface current, as is in line with the previous studies of chiral
p-wave pairing [22,25,27,28]. More detailed investigation into
the effect of surface disorder can be found in [38,39].

The qualitative agreement between BdG and GL has been
well recognized [25,26,30]. However, in this study we identify

2469-9950/2018/98(1)/014511(8) 014511-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.98.014511&domain=pdf&date_stamp=2018-07-16
https://doi.org/10.1103/PhysRevB.98.014511


JIA-LONG ZHANG, WEN HUANG, AND DAO-XIN YAO PHYSICAL REVIEW B 98, 014511 (2018)

FIG. 1. Left: sketch of a mirror-invariant surface (MIS) defined
in the main text, the associated pair of mirror planes (yellow) used
to judge whether a particular component of the spontaneous surface
current (red arrow) can exist. One of the two mirror planes is parallel
to the surface (Mx), while the other is perpendicular to the direction
of the surface current component in question (My). The blue block
represents the superconductor under consideration, which is periodic
in both y and z directions. Right: top view of the left panel. Note
that the current on opposite surfaces flows in opposite directions,
as the pairing possesses inversion symmetry in the present study.
Spontaneous current along y (on the [100] surface) is prohibited if
the TRSB pairing preserves the reflection symmetry about either of
the two mirror planes, i.e., Mx and My in the left panel.

a special case where two phases described by almost equivalent
GL theories turn out to produce markedly different surface
currents in BdG calculations. As we shall see, this is due to the
insufficiency of the GL description deep in the superconducting
state, and an effective field theory more appropriate for low T

readily accounts for the discrepancy.
The paper is organized as follows. Section II presents

a symmetry analysis, where we show that the existence of
spontaneous current on a MIS is dictated by the property of
the superconducting pairing under two separate mirror reflec-
tions. Section III presents our tight-binding BdG calculations
on a cubic lattice. We also present here calculations which
take into account the effects of gap anisotropy and surface
disorder. Section IV provides a general phenomenological
GL description. Here we also highlight the case where GL
becomes less adequate and present an alternative effective
theory derived from a low-T expansion. Finally, the results
are briefly summarized in Sec. V.

II. SYMMETRY ANALYSES

The most general form of the gap function of a multicompo-
nent superconducting state in a centrosymmetric system reads

�̂k =
∑

i

φihi(k) · iσy , even parity

�̂k =
∑

i

φi[ �di(k) · �σ ] · iσy . odd parity (1)

Here the φi’s stand for the order parameter components and
hi(k) and �di(k) the respective even- and odd-parity basis
functions belonging to certain irreducible point group repre-

TABLE I. Irreducible representations and corresponding basis
functions for even- and odd-parity states of a superconductor with
Oh symmetry [1,2].

Irrep Basis function

A1g k2
x + k2

y + k2
z

A2g (k2
x − k2

y)(k2
y − k2

z )(k2
z − k2

x)
Eg 2k2

z − k2
x − k2

y,k
2
x − k2

y

T1g kykz(k2
y − k2

z ),kzkx(k2
z − k2

x),kxky(k2
x − k2

y)
T2g kykz,kxkz,kxky

A1u kx x̂ + kyŷ + kzẑ

A2u kx(k2
z − k2

y)x̂ + ky(k2
x − k2

z )ŷ + kz(k2
y − k2

x)ẑ
Eu 2kzẑ − kxx̂ − kyŷ,kx x̂ − kyŷ

T1u kzŷ − ky ẑ,kx ẑ − kzx̂,ky x̂ − kxŷ

T2u kzŷ + ky ẑ,kx ẑ + kzx̂,ky x̂ + kxŷ

sentations. Usually, these basis functions form a single mul-
tidimensional representation, although mixed-representation
pairing is also possible, such as the s + d and s + id pairings. It
is worth pointing out that here we work in the band basis, where
only intraband Cooper pairing is present in the weak coupling
limit. This differs from the orbital-basis language adopted in
some studies (e.g., Refs. [40–43]), although we will not dwell
upon the distinctions. Also note that mixed-parity pairings are
not considered here but will be presented elsewhere. Listed in
Table I are the basis functions of the irreducible representations
of the cubic group Oh [1,2], which shall later become the
focus of the present study. Time-reversal symmetry is broken
if φ = {φi} �= φ∗.

Through a simple symmetry argument, much can be learned
about the existence of spontaneous currents on the MISs of
a TRSB superconductor (assume the underlying crystal pos-
sesses the two mirror symmetries depicted in Fig. 1). To set the
stage for our discussions, we analyze a particular component of
the current. The two relevant mirror operators can be denoted
M⊥ and M‖, with the former (latter) describing a reflection
perpendicular (parallel) to both the current and the surface in
question. We shall show that this surface current component
can arise only if the superconducting pairing simultaneously
breaks the above stated mirror symmetries, i.e.,

M−1
⊥ �̂kM∗

⊥ �= ±�̂k , (2)

and
M−1

‖ �̂kM∗
‖ �= ±�̂k . (3)

For concreteness, let’s consider the [100] surface as a MIS
and focus on the y component of the spontaneous current,
as sketched in Fig. 1. In this case the relevant mirror oper-
ators M⊥ and M‖ become My and Mx , whose associated
mirror planes are xz and yz, respectively. Formally, Mμ =
iσμ ⊗ Rμ, where σμ is the μ-component Pauli matrix and
Rμ denotes a reflection in spatial dimension perpendicular
to the μ direction. Note that, in the full Nambu spinor basis
(c†k,↑,c

†
k,↓,c−k,↑,c−k,↓), the mirror operator takes the form,

M̂μ =
(
Mμ 0

0 M∗
μ

)
. (4)

To understand the condition set by Eq. (2), assume
J tot

y = 〈�|Ĵy |�〉 , (5)
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where Ĵy ∝ −i∂y is the y-component current operator and |�〉
is the ground state wave function in the presence of an open
boundary at the [100] surface. Since the reflection reverses the
direction of the current in y, i.e., {M̂y,Ĵy} = 0, the mirror-
reflected state M̂y |�〉 must satisfy

J tot
y = −〈�|M̂−1

y ĴyM̂y |�〉 . (6)

If the superconducting pairing preserves the mirror symmetry,
i.e., (up to an unimportant overall phase θ ) M̂y |�〉 = eiθ |�〉
or M−1

y �̂kM∗
y = ±�̂k, combining Eqs. (5) and (6) it follows

that J tot
y must vanish. However, if J tot

y �= 0, the original and
the mirror-reflected states must be distinct TRSB states—a
statement equivalent to Eq. (2).

In like manner, the breaking of the reflection symmetry
about the mirror plane parallel to the surface, i.e., Eq. (3), is
also necessary for the existence of spontaneous current. This
is most easily seen in a setup with two opposite MIS’s on
the right panel of Fig. 1. In a state that carries finite J tot

y on
one MIS, the opposite MIS must see an opposite current due
to inversion symmetry. As a result, the current must reverse
sign under a reflection Mx about the center of the geometry.
This then suggests that the pairing must also break this mirror
symmetry, henceforth Eq. (3).

To summarize, in general theμth component surface current
on a MIS is prohibited if the pairing is unvaried under a
reflection about either the mirror plane parallel to the surface,
or about the mirror plane perpendicular to the μ axis (Fig. 1,
left panel). Equations (2) and (3), and their variants, therefore
constitute the complete symmetry criterion. We shall see an
exact correspondence of these constraints in Sec. IV.

These arguments are of general relevance and can im-
mediately be shown to apply to some simple cases such as
chiral p-wave (kx + iky)ẑ, s + idxy and s + idx2−y2 on square
lattices [21,32] and their generalizations to other 2D and 3D
lattice models with two mirror planes. Both Mx and My turn
the former two pairings into their time-reversal counterparts,
hence a finite Jy could in principle arise. However, the last one
is invariant under these operations, therefore Jy is forbidden.
Furthermore, since all of these pairings preserve Mz, no
current shall arise on the [001] surface.

Notably, in some special cases such as the non-p-wave
chiral states and some fine-tuned anisotropic chiral p-wave
states, the two mirror symmetries in question are broken, yet
the surface current may still vanish [27,30,31]. Nevertheless,
the vanishing in these cases are not protected. For example, the
chiral d-wave pairing on a trigonal lattice can support finite
surface current [30].

The symmetry criterion also permits some affirmative state-
ments about the spontaneous currents in TRSB cubic supercon-
ductors. We first list some representative TRSB states in these
systems. The two-dimensional representations Eg and Eu per-
mit states with φ = �0(1,±i), while a three-dimensional Tg or
Tu phase can take either φ = �0(1,±i,0) or φ = �0(1,w,w2)
with w = ±2iπ/3, as well as their equivalences. Additionally,
there are mixed-representation states.

According to Eqs. (2) and (3), on the [100] surface, the
TRSB states in the Tg and Tu representations can support
spontaneous surface current, while the Eg and Eu states cannot.
However, on the [110] surface the two latter states can be

expressed in a rotated frame, e.g., the TRSB Eg state becomes
2k2

z − k2
x − k2

y ± ikxky , which satisfies the criterion. Hence
the Eg and Eu states can generate finite in-plane current
on [110], although the z-component current still vanishes.
It is also easy to check that for any mixed-representation
TRSB state in the cubic group, there always exist MISs where
spontaneous currents may arise. All of these, including others
not enumerated here, can be verified in the numerical BdG
calculations to be introduced in Sec. III.

Note that since there exists no mirror plane parallel to the
[111] surface, the above argument does not directly apply to
this surface. However, the GL analyses in Sec. IV shall show
that this surface can support finite current.

Along similar lines, symmetry arguments also apply to the
spontaneous currents around crystalline defects. In essence,
spontaneous current may arise around the defects in a TRSB
superconductor provided that the pairing breaks some discrete
point group symmetries of the underlying lattice (rotation,
mirror reflection, etc.). We will not elaborate but would only
refer to the application in some previous case-by-case studies
[33,36].

III. BOGOLIUBOV DE-GENNES CALCULATIONS

We consider for simplicity a cubic lattice model with
only nearest neighbor hopping t whose dispersion takes the
form ξk = −2t(cos kx + cos ky + cos kz) − μ, where μ sets
the chemical potential. We numerically solve the BdG equa-
tions on a N × N × N lattice for different superconducting
pairings, with open boundaries in the x direction (x = 0 and
x = N ) and periodic boundaries in the other two. The gap
functions �̂k in (1) assume the lattice-generalized forms of
the basis functions given in Table I.

In actual calculations, Fourier transformations along y and
z are performed. The surface current is defined as

ĵμ(i) = − it

N2

∑
k‖

σ =↑ , ↓

[c†k‖,σ (i)ck‖,σ (i) − H.c.] sin kμ ,

(7)

where μ = y,z and k‖ = (ky,kz) denotes the momentum par-
allel to the surface. Note that current is formally expressed
in units of et/h̄, but we have set e/h̄ to unity. The total
μ-component surface current follows as

Ĵ tot
μ =

∑
i=1, N

2

ĵμ(i). (8)

In the following, we shall present the results for some rep-
resentative pairing states. It is worth pointing out a notable
feature emerging from the calculations, that the existence of
finite surface current goes hand in hand with that of surface
bound states. We will refrain from elaborating this aspect as it
goes beyond our focus.

A. Total surface current

We first study the surface current of various TRSB states
at ideal surfaces. As the main purpose of the present sub-
section is to verify the conclusions obtained in Sec. II,
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FIG. 2. Total surface current of various TRSB superconducting
states as a function of chemical potential in a tight-binding BdG
calculation. The x axis is the chemical potential measured w.r.t. the
band bottom μ0 = −6t . For the two-dimensional representations, we
have chosen φ = �0(1,i), and for the three-dimensional represen-
tations, we select only those states with φ = �0(1,w,w2), where
w = ±i2π/3 and �0 = 0.2t . All calculations were performed at
T = 0. The calculations with effective [110] surface are indicated.

we shall take here the simplest lattice generalization of the
pairing basis functions in Table I. For example, the gap
component kxx̂ is replaced by sin kxx̂, k2

x − k2
y by cos kx −

cos ky , etc. The calculations shown for the [110] surface
assume gap functions expressed in a rotated coordinate basis,
such as (2 cos kz − cos kx − cos ky,2 sin kx sin ky) for Eg and
(2 sin kzẑ − sin kxx̂ − sin kyŷ, sin kyx̂ + sin kxŷ) for Eu.

The main results for a selected few states in the multidi-
mensional representations are shown in Fig. 2, from where it
is straightforward to deduce the complete agreement with the
symmetry analyses in the previous section. Note that results are
not plotted for the scenarios where the current vanishes, such
as on the [100] and [001] surfaces of the Eg and Eu states.

B. Effects of gap anisotropy and surface disorder

As has been emphasized in previous studies [22,25,27,28],
superconducting gap anisotropy and surface disorder could
help explain the curious absence (or smallness) of the surface
current in the putative chiral p-wave Sr2RuO4. Here we
examine their effects on the surface current of a cubic TRSB
superconductor.

The gap anisotropy can be modeled by generaliz-
ing to higher order lattice harmonics. For example, the
Eu pairing with (2 sin 2kzẑ − sin 2kxx̂ − sin 2kyŷ, sin 2kyx̂ +
sin 2kxŷ) shall exhibit a stronger degree of gap anisotropy,
in particular away from low fillings, compared to the simple
gap function employed in the previous subsection. On the
other hand, surface disorder can be implemented by setting
the amplitude of the gap to be zero near the surface. Figure 3
shows the results of a set of representative calculations of
the Eu state with an effective [110] surface. As anticipated,
both gap anisotropy and surface disorder lead to substantially
suppressed spontaneous current. Similar effects can be shown
to hold for other TRSB pairings. It is therefore tempting to
attribute the null results [17] on PrOs4Sb12 to these two factors.

FIG. 3. Effect of gap anisotropy and surface disorder on the
magnitude of the spontaneous current of the Eu (1,i) states at the
[110] surface. The simple and anisotropic Eu pairing gap functions
are both described in the text. Surface disorder is simulated by setting
the pairing to be zero in the surface regime between the sites i = 1
and 10. The calculations were carried out using the same parameters
as in Fig. 2, except that the temperature here is T = 0.1�0. Note
with the anisotropic pairing the total current changes sign at around
μ − μ0 = 3.4t .

Nevertheless, a sharp and disorder-free surface should still see
finite spontaneous current, except in rare cases with fine-tuned
pairing functions.

IV. GINZBURG-LANDAU THEORY

A. General theory

Multiple GL analyses of the surface current problem,
mostly in the contexts of chiral and s + id superconductors
in two spatial dimensions, have been done in previous studies
[22,25,26,29,30]. Overall, the GL theory and the semiclassical
BdG approaches have thus far reached excellent qualitative
agreement. On this basis, in what follows we shall first briefly
discuss the consistency between GL and the results in the
preceding sections. After that we proceed to an interesting
special case where the predictive power of GL becomes less
affirmative and where a refined low-T effective theory becomes
necessary. We again concentrate on high-symmetry planes,
taken to be the yz plane to make contact with the preceding
discussions.

The generic form of the GL free energy, up to the quartic
order, reads

f = f0 + f∇ , (9)

with the uniform free energy density,

f0 = αi |φi |2 + βi |φi |4 + βij |φi |2|φj |2
+β ′

ij (φ∗
i φj + φ∗

j φi)
2 + ... , (10)

in which we have dropped terms such as |φi |2φ∗
i φj disallowed

by symmetry, and the gradient energies,

f∇ = k
jν

iμ (∂μφi)
∗(∂νφj ) , (11)

where i = 1,...,N are the indices of the N order parameter
components and μ = x,y,z stand for the spatial coordinates.
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For multidimensional representations αi ≡ α ∝ T − Tc. Note
that summation over the indices is left implicit for clarity. We
shall continue to use this convention unless otherwise specified.

The k coefficients bear special significance in the follow-
ing discussions. In the weak-coupling limit, for even-parity
pairings, they are given by [27,30]

k
jν

iμ = k
jμ

iν

= T

V

∑
wn,k

hi(k)hj (k)

× ∂2

∂qμ
∂qν

[
g

(
wn,k + q

2

)
ḡ

(
wn,k − q

2

)]
q→0

∝ 〈vμ,kvν,khi(k)hj (k)〉 , (12)

and analogously for odd-parity states,

k
jν

iμ = k
jμ

iν ∝ 〈vμ,kvν,k[ �di(k) · �dj (k)]〉 , (13)

whereg(wn,k) = (iwn − ξk)−1 and ḡ(wn,k) = (iwn + ξ−k)−1

with the Matsubara frequency wn = (2n + 1)πT, T and V

denote, respectively, the temperature and volume of the system,
vμ,k = ∂kξk the electron velocity, and 〈...〉 stands for an average
over the Fermi surface (same below). It is easy to verify that
kiν
iμ = 0 for μ �= ν. For other surfaces, analogous expressions

can be obtained using properly rotated frames, as mentioned
in Sec. II.

Similar to what has been discussed extensively in previous
studies, the current density is related to the spatial modulations
of the out-of-phase order parameter components as follows
[22,26,27,29,30],

jy =
∑
i,j

k
jy

ix · Im[(∂xφ
∗
i )φj − φ∗

i ∂xφj ] , (i �= j )

jz =
∑
i,j

k
jz

ix · Im[(∂xφ
∗
i )φj − φ∗

i ∂xφj ] , (i �= j ). (14)

Since different components generically exhibit distinct spa-
tial modulations near the boundary, the existence of sur-
face current is overwhelmingly dictated by the coefficients
k

jy(z)
ix . It is now straightforward to crosscheck the conclusions

in the previous sections. For example, if both hi(k) and
hj (k) [or �di(k) and �dj (k)] are invariant or if they both change
sign under mirror reflections either Mx or My , then k

jy

ix and
its corresponding contribution in (14) must vanish [44]. In
other words, the current is prohibited if the complex pairing
respects the mirror symmetry about either Mx or My . Finally,
higher order terms in the free energy, such as ∂3

xφi∂yφ
∗
j , may

be considered [45]. However, these contributions can also be
shown to be dictated by the same mirror symmetries. In this
respect, the GL theory reaches an excellent agreement with
Secs. II and III.

As an important remark, the applicability of GL goes
beyond the restrictive cases with two crystalline mirror planes.
For example, the Eg and Eu states can be shown to have finite
k

jy(z)
ix for an effective [111] surface, suggesting finite current

on this surface. Generalizing GL to other non-high-symmetry
surfaces, k

jy(z)
ix and their variants in general do not vanish. It

is therefore tempting to conjecture that spontaneous surface

current should generically appear on non-high-symmetry and
irregular surfaces of a TRSB superconductor, although we
cannot give rigorous proof. Further, the theory has also been
applied to study the spontaneous current around point defects
[33,36].

B. T1u vs T2u: Partial failure of the GL theory

Despite the overall satisfactory description by the GL
theory, there are some interesting rare cases where it slips.
In the present study, GL predicts that the T1u and T2u phases
with φ ∼ (1,w,w2) [and similarly (1,i,0)] should carry the
same surface current (up to a sign difference) at the [100]
surface. To see this explicitly, first note that the two Tu phases
are characterized by exactly the same β coefficients in (10).
Quoting Ref. [46],

βi ∝ 〈| �di(k)|4〉 , (15)

βij ∝ 〈| �di(k)|2| �dj (k)|2〉 × 2 , (16)

β ′
ij ∝ 〈[ �di(k) · �dj (k)]2 − | �di(k) × �dj (k)|2〉 , (17)

which can be shown to be the same for both T1u and T2u.
Their difference originates only from the gradient terms. The
following relations hold,

k1x
1x = k

2y

2y = k3z
3z ∝ 〈

k2
x

(
k2
y + k2

z

)〉
, (18)

k
1y

1y = k1z
1z = k2x

2x = k2z
2z = k3x

3x = k
3y

3y ∝ 〈
k2
y

(
k2
y + k2

z

)〉
, (19)

k
2y

1x = k2x
1y = k3z

2y = k
2y

3z = k1x
3z = k3z

1x ∝ ±〈
k2
xk

2
y

〉
, (20)

k
jν

iμ = 0 , all others, (21)

where in (20) “+” and “−” are taken for the T1u and T2u, respec-
tively. Up to this order, the cross-gradient terms associated with
(20) are the only terms that distinguish the T1u and T2u phases.
At the ideal [100] surface as in the BdG calculations, the spatial
modulation of the order parameter components is governed by
the joint action of f0 and the gradient energies associated with
(18) and (19). The cross-gradient terms associated with (20)
have no impact in this matter due to the translational invariance
parallel to the surface. It then follows that the two phases
must observe the same spatially varying order parameters.
Accordingly, the surface current of the two phases, for example
the y component jy = 2k

2y

1x · Im[(∂xφ
∗
1 )φ2 − φ∗

1∂xφ2], must
differ only by a sign.

This is in agreement with BdG for the two-component Tu

states φ = �0(1,i,0), as in Fig. 4. However, for the three-
component (1,w,w2) states, the edge currents of the T1u

and T2u representations are markedly different (Fig. 4). This
quantitative discrepancy can be attributed to the deficiency of
the GL theory at low T . Being a perturbative expansion in
powers of the order parameters, the GL free energy is only
exactly valid in the limit |φi | → 0 near Tc and is thus oblivious
to the distinct gap structure and quasiparticle dispersion [47] in
T1u and T2u as shown in Fig. 5 (although GL does adequately
capture the symmetry of the order parameters). They can be
accounted for in an effective field theory appropriate for low
T , which can be obtained via an expansion in powers of the
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FIG. 4. BdG results: y component of the total [100]-surface cur-
rent of (1,w,w2) and (1,i,0) states in the T1u and T2u representations.
The gap functions and parameters used here are the same as in Fig. 2.

small deviations from the low-T order parameters,

φi → φi,0 + ϕi (22)

where the φi,0’s and ϕi’s represent the mean-field bulk order
parameter components and their fluctuations, respectively. It
suffices to consider the uniform free energy density,

F0 = ai |ϕi |2 + āi[(ϕi)
2 + (ϕ∗

i )2] + bi |ϕi |4 + bij |ϕi |2|ϕj |2
+ b′

ij (ϕ∗
i ϕj + ϕ∗

j ϕi)
2 + b̄ij [(ϕiϕj )2 + (ϕ∗

i ϕ
∗
j )2]

+ b̄′
ij [(ϕi)

2|ϕj |2 + (ϕ∗
i )2|ϕj |2] + ... ,(i �= j ). (23)

Notice that since the expansion is performed with re-
spect to a particular symmetry-broken state (φ1,0,φ2,0,φ3,0) =
�0(1,w,w2) in the bulk, the U (1) symmetry is not preserved
for the fields ϕi . Hence terms like those associated with ā, b̄,

FIG. 5. Contours of the gap structure of the (1,w,w2) states in the
(a),(b) T1u and (c),(d) T2u representations. The calculations assume
gap functions given by the simple bases as in Table I and a spherical
Fermi surface. Two gaps appear for each of the nonunitary states.

FIG. 6. Coefficients bi and bij of the free energy (23) at low
fillings of the lattice models (near the continuum limit) as in the
BdG calculations. The x axis is the chemical potential measured w.r.t.
the band bottom. Calculation is performed at a somewhat elevated
temperature T = �0/5 with �0 = 0.4t for better convergence.

and b̄′ are in general allowed. The dichotomy between the two
Tu phases is readily seen by noting their disparate coefficients
in (23), as demonstrated in Fig. 6. This naturally implies the
different behavior of the ϕi fields, henceforth different surface
current in the T1u and T2u phases.

V. DISCUSSIONS AND SUMMARY

In this paper we have given a consistent description of the
spontaneous surface currents on the MISs of multicomponent
TRSB superconductors with cubic symmetry. We showed that
the surface current can arise only when the TRSB pairing
simultaneously breaks the symmetry about a pair of mirror
planes, one perpendicular and the other parallel to the surface,
as summarized in Eqs. (2) and (3). The conclusion also applies
to other TRSB superconductors possessing relevant crystalline
mirror symmetries. Based on the analyses, we also conjecture
that the surface current is generally nonvanishing around crys-
talline defects, on non-mirror-invariant, non-high-symmetry,
or irregular surfaces in generic models of multicomponent
TRSB pairing with inversion symmetry. Further, we did not
explore the spontaneous currents at the domain walls between
regions of different TRSB pairings. Since such topological
defects have been shown to induce finite spontaneous flux
even in the simplest case of s + is superconductors [34], it is
reasonable to expect spontaneous current at the domain walls
of the more complicate TRSB phases discussed here.

Throughout the work we mainly focused on the cubic Oh

group. This is appropriate for U1−xThxBe13. PrOs4Sb12 and
PrPt4Ge12 are characterized by the group Th, which is a sub-
group of Oh. Hence the number of possible multicomponent
pairings in these two compounds is reduced. Nonetheless, the
same analyses carry through.

Note that we did not dwell upon the debate about the exact
nature of the multicomponent pairing in these compounds [16].
This goes beyond the scope of the present study. Irrespective
of this, our study suggests that gap anisotropy combined with
possible surface disorder may hold the key to explain the null
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results on the surface current in the scanning SQUID measure-
ments of PrOs4Sb12 [17]. Noteworthily, here we have ignored
the possible multiband character of the system, under which
circumstance the spontaneous current may also be drastically
influenced by interband interferences at the surface [48].

Finally, while the qualitative power of the GL theory is
unquestionable, we identified a special case where two TRSB
states, predicted by GL to carry the same surface current,
instead yield substantially different outcome in low-T BdG
calculations. This calls for caution when using GL to infer some
low-T properties. We showed that the quantitative discrepancy
originates from the oblivion of the quasiparticle gap structure
deep in the superconducting state and that a low-T expansion
is needed for more accurate descriptions.

ACKNOWLEDGMENTS

We would like to thank Egor Babaev, Shaokai Jian,
Shuai Yin, and in particular Tomáš Bzdušek and Hong Yao
for various helpful discussions. J.-L.Z. and D.-X.Y. are
supported by Grant No. NKRDPC-2017YFA0206203, No.
NSFC-11574404, No. NSFG-2015A030313176, the National
Supercomputer Center in Guangzhou, and the Leading Talent
Program of Guangdong Special Projects. J.-L.Z. is grateful
for the hospitality of the Institute for Advanced Study at
Tsinghua University and the Kavli Institute for Theoretical
Sciences at the University of Chinese Academy of Sciences.
W.H. acknowledges financial support from the C. N. Yang
Junior Fellowship at Tsinghua University.

[1] M. Sigrist and K. Ueda, Rev. Mod. Phys. 63, 239 (1991).
[2] S. Mukherjee and D. F. Agterberg, Phys. Rev. B 74, 174505

(2006).
[3] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
[4] X. L. Qi and S. C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[5] J. L. Smith, Z. Fisk, J. O. Willis, B. Batlogg, and H. R. Ott, J.

Appl. Phys. 55, 1996 (1984).
[6] H. R. Ott, H. Rudigier, Z. Fisk, and J. L. Smith, Phys. Rev. B

31, 1651 (1985).
[7] H. R. Ott, H. Rudigier, E. Felder, Z. Fisk, and J. L. Smith, Phys.

Rev. B 33, 126 (1986).
[8] R. H. Heffner, D. W. Cooke, Z. Fisk, R. L. Hutson, M. E.

Schillaci, J. L. Smith, J. O. Willis, D. E. MacLaughlin, C.
Boekema, R. L. Lichti, A. B. Denison, and J. Oostens, Phys.
Rev. Lett. 57, 1255 (1986).

[9] E. D. Bauer, N. A. Frederick, P.-C. Ho, V. S. Zapf, and M. B.
Maple, Phys. Rev. B 65, 100506(R) (2002).

[10] Y. Aoki, A. Tsuchiya, T. Kanayama, S. R. Saha, H. Sugawara,
H. Sato, W. Higemoto, A. Koda, K. Ohishi, K. Nishiyama, and
R. Kadono, Phys. Rev. Lett. 91, 067003 (2003).

[11] E. M. Levenson-Falk, E. R. Schemm, M. B. Maple, and A.
Kapitulnik, Phys. Rev. Lett. 120, 187004 (2018).

[12] R. Gumeniuk, W. Schnelle, H. Rosner, M. Nicklas, A. Leithe-
Jasper, and Yu. Grin, Phys. Rev. Lett. 100, 017002 (2008).

[13] A. Maisuradze, W. Schnelle, R. Khasanov, R. Gumeniuk, M.
Nicklas, H. Rosner, A. Leithe-Jasper, Yu. Grin, A. Amato, and
P. Thalmeier, Phys. Rev. B 82, 024524 (2010).

[14] L. Shu, W. Higemoto, Y. Aoki, A. D. Hillier, K. Ohishi, K.
Ishida, R. Kadono, A. Koda, O. O. Bernal, D. E. MacLaughlin,
Y. Tunashima, Y. Yonezawa, S. Sanada, D. Kikuchi, H. Sato,
H. Sugawara, T. U. Ito, and M. B. Maple, Phys. Rev. B 83,
100504(R) (2011).

[15] J. Zhang, D. E. MacLaughlin, A. D. Hillier, Z. F. Ding, K. Huang,
M. B. Maple, and L. Shu, Phys. Rev. B 91, 104523 (2015).

[16] C. Pfleiderer, Rev. Mod. Phys. 81, 1551 (2009).
[17] C. W. Hicks, J. R. Kirtley, T. M. Lippman, N. C. Koshnick, M. E.

Huber, Y. Maeno, W. M. Yuhasz, M. B. Maple, and K. A. Moler,
Phys. Rev. B 81, 214501 (2010).

[18] J. R. Kirtley, C. Kallin, C. W. Hicks, E.-A. Kim, Y. Liu, K. A.
Moler, Y. Maeno, and K. D. Nelson, Phys. Rev. B 76, 014526
(2007).

[19] P. J. Curran, S. J. Bending, W. M. Desoky, A. S. Gibbs, S. L.
Lee, and A. P. Mackenzie, Phys. Rev. B 89, 144504 (2014).

[20] Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita,
J. G. Bednorz, and F. Lichtenberg, Nature (London) 372, 532
(1994).

[21] M. Matsumoto and M. Sigrist, J. Phys. Soc. Jpn. 68, 994 (1999).
[22] P. E. C. Ashby and C. Kallin, Phys. Rev. B 79, 224509 (2009).
[23] J. A. Sauls, Phys. Rev. B 84, 214509 (2011).
[24] Y. Imai, K. Wakabayashi, and M. Sigrist, Phys. Rev. B 85,

174532 (2012); 88, 144503 (2013).
[25] S. Lederer, W. Huang, E. Taylor, S. Raghu, and C. Kallin, Phys.

Rev. B 90, 134521 (2014).
[26] A. Bouhon and M. Sigrist, Phys. Rev. B 90, 220511(R) (2014).
[27] W. Huang, S. Lederer, E. Taylor, and C. Kallin, Phys. Rev. B 91,

094507 (2015).
[28] T. Scaffidi and S. H. Simon, Phys. Rev. Lett. 115, 087003 (2015).
[29] S. B. Etter, A. Bouhon, and M. Sigrist, Phys. Rev. B 97, 064510

(2018).
[30] W. Huang, E. Taylor, and C. Kallin, Phys. Rev. B 90, 224519

(2014).
[31] Y. Tada, W. Nie, and M. Oshikawa, Phys. Rev. Lett. 114, 195301

(2015).
[32] A. Furusaki, M. Matsumoto, and M. Sigrist, Phys. Rev. B 64,

054514 (2001).
[33] W. C. Lee, S. C. Zhang, and C. Wu, Phys. Rev. Lett. 102, 217002

(2009).
[34] J. Garaud and E. Babaev, Phys. Rev. Lett. 112, 017003 (2014).
[35] J. Garaud, M. Silaev, and E. Babaev, Phys. Rev. Lett. 116, 097002

(2016).
[36] S. Maiti, M. Sigrist, and A. V. Chubukov, Phys. Rev. B 91,

161102(R) (2015).
[37] Z. Lotfi Mahyari, A. Cannell, C. Gomez, S. Tezok, A. Zelati, E.

V. L. de Mello, J.-Q. Yan, D. G. Mandrus, and J. E. Sonier, Phys.
Rev. B 89, 020502(R) (2014).

[38] S.-I. Suzuki and Y. Asano, Phys. Rev. B 94, 155302 (2016).
[39] X. Wang, Z. Wang, and C. Kallin, arXiv:1805.09432.
[40] J. Goryo, M. H. Fischer, and M. Sigrist, Phys. Rev. B 86,

100507(R) (2012).
[41] T. Bzdušek and M. Sigrist, Phys. Rev. B 96, 155105 (2017).
[42] Y. Yanase, Phys. Rev. B 94, 174502 (2016).
[43] Z. Wang, J. Berlinsky, G. Zwicknagl, and C. Kallin, Phys. Rev.

B 96, 174511 (2017).
[44] The expressions for k

jν

iμ in (12) and (13) also involve an
integration over the z-component fermi momentum kf z for
3D models. It can be checked, separately for the even- and

014511-7

https://doi.org/10.1103/RevModPhys.63.239
https://doi.org/10.1103/RevModPhys.63.239
https://doi.org/10.1103/RevModPhys.63.239
https://doi.org/10.1103/RevModPhys.63.239
https://doi.org/10.1103/PhysRevB.74.174505
https://doi.org/10.1103/PhysRevB.74.174505
https://doi.org/10.1103/PhysRevB.74.174505
https://doi.org/10.1103/PhysRevB.74.174505
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1063/1.333544
https://doi.org/10.1063/1.333544
https://doi.org/10.1063/1.333544
https://doi.org/10.1063/1.333544
https://doi.org/10.1103/PhysRevB.31.1651
https://doi.org/10.1103/PhysRevB.31.1651
https://doi.org/10.1103/PhysRevB.31.1651
https://doi.org/10.1103/PhysRevB.31.1651
https://doi.org/10.1103/PhysRevB.33.126
https://doi.org/10.1103/PhysRevB.33.126
https://doi.org/10.1103/PhysRevB.33.126
https://doi.org/10.1103/PhysRevB.33.126
https://doi.org/10.1103/PhysRevLett.57.1255
https://doi.org/10.1103/PhysRevLett.57.1255
https://doi.org/10.1103/PhysRevLett.57.1255
https://doi.org/10.1103/PhysRevLett.57.1255
https://doi.org/10.1103/PhysRevB.65.100506
https://doi.org/10.1103/PhysRevB.65.100506
https://doi.org/10.1103/PhysRevB.65.100506
https://doi.org/10.1103/PhysRevB.65.100506
https://doi.org/10.1103/PhysRevLett.91.067003
https://doi.org/10.1103/PhysRevLett.91.067003
https://doi.org/10.1103/PhysRevLett.91.067003
https://doi.org/10.1103/PhysRevLett.91.067003
https://doi.org/10.1103/PhysRevLett.120.187004
https://doi.org/10.1103/PhysRevLett.120.187004
https://doi.org/10.1103/PhysRevLett.120.187004
https://doi.org/10.1103/PhysRevLett.120.187004
https://doi.org/10.1103/PhysRevLett.100.017002
https://doi.org/10.1103/PhysRevLett.100.017002
https://doi.org/10.1103/PhysRevLett.100.017002
https://doi.org/10.1103/PhysRevLett.100.017002
https://doi.org/10.1103/PhysRevB.82.024524
https://doi.org/10.1103/PhysRevB.82.024524
https://doi.org/10.1103/PhysRevB.82.024524
https://doi.org/10.1103/PhysRevB.82.024524
https://doi.org/10.1103/PhysRevB.83.100504
https://doi.org/10.1103/PhysRevB.83.100504
https://doi.org/10.1103/PhysRevB.83.100504
https://doi.org/10.1103/PhysRevB.83.100504
https://doi.org/10.1103/PhysRevB.91.104523
https://doi.org/10.1103/PhysRevB.91.104523
https://doi.org/10.1103/PhysRevB.91.104523
https://doi.org/10.1103/PhysRevB.91.104523
https://doi.org/10.1103/RevModPhys.81.1551
https://doi.org/10.1103/RevModPhys.81.1551
https://doi.org/10.1103/RevModPhys.81.1551
https://doi.org/10.1103/RevModPhys.81.1551
https://doi.org/10.1103/PhysRevB.81.214501
https://doi.org/10.1103/PhysRevB.81.214501
https://doi.org/10.1103/PhysRevB.81.214501
https://doi.org/10.1103/PhysRevB.81.214501
https://doi.org/10.1103/PhysRevB.76.014526
https://doi.org/10.1103/PhysRevB.76.014526
https://doi.org/10.1103/PhysRevB.76.014526
https://doi.org/10.1103/PhysRevB.76.014526
https://doi.org/10.1103/PhysRevB.89.144504
https://doi.org/10.1103/PhysRevB.89.144504
https://doi.org/10.1103/PhysRevB.89.144504
https://doi.org/10.1103/PhysRevB.89.144504
https://doi.org/10.1038/372532a0
https://doi.org/10.1038/372532a0
https://doi.org/10.1038/372532a0
https://doi.org/10.1038/372532a0
https://doi.org/10.1143/JPSJ.68.994
https://doi.org/10.1143/JPSJ.68.994
https://doi.org/10.1143/JPSJ.68.994
https://doi.org/10.1143/JPSJ.68.994
https://doi.org/10.1103/PhysRevB.79.224509
https://doi.org/10.1103/PhysRevB.79.224509
https://doi.org/10.1103/PhysRevB.79.224509
https://doi.org/10.1103/PhysRevB.79.224509
https://doi.org/10.1103/PhysRevB.84.214509
https://doi.org/10.1103/PhysRevB.84.214509
https://doi.org/10.1103/PhysRevB.84.214509
https://doi.org/10.1103/PhysRevB.84.214509
https://doi.org/10.1103/PhysRevB.85.174532
https://doi.org/10.1103/PhysRevB.85.174532
https://doi.org/10.1103/PhysRevB.85.174532
https://doi.org/10.1103/PhysRevB.85.174532
https://doi.org/10.1103/PhysRevB.88.144503
https://doi.org/10.1103/PhysRevB.88.144503
https://doi.org/10.1103/PhysRevB.88.144503
https://doi.org/10.1103/PhysRevB.90.134521
https://doi.org/10.1103/PhysRevB.90.134521
https://doi.org/10.1103/PhysRevB.90.134521
https://doi.org/10.1103/PhysRevB.90.134521
https://doi.org/10.1103/PhysRevB.90.220511
https://doi.org/10.1103/PhysRevB.90.220511
https://doi.org/10.1103/PhysRevB.90.220511
https://doi.org/10.1103/PhysRevB.90.220511
https://doi.org/10.1103/PhysRevB.91.094507
https://doi.org/10.1103/PhysRevB.91.094507
https://doi.org/10.1103/PhysRevB.91.094507
https://doi.org/10.1103/PhysRevB.91.094507
https://doi.org/10.1103/PhysRevLett.115.087003
https://doi.org/10.1103/PhysRevLett.115.087003
https://doi.org/10.1103/PhysRevLett.115.087003
https://doi.org/10.1103/PhysRevLett.115.087003
https://doi.org/10.1103/PhysRevB.97.064510
https://doi.org/10.1103/PhysRevB.97.064510
https://doi.org/10.1103/PhysRevB.97.064510
https://doi.org/10.1103/PhysRevB.97.064510
https://doi.org/10.1103/PhysRevB.90.224519
https://doi.org/10.1103/PhysRevB.90.224519
https://doi.org/10.1103/PhysRevB.90.224519
https://doi.org/10.1103/PhysRevB.90.224519
https://doi.org/10.1103/PhysRevLett.114.195301
https://doi.org/10.1103/PhysRevLett.114.195301
https://doi.org/10.1103/PhysRevLett.114.195301
https://doi.org/10.1103/PhysRevLett.114.195301
https://doi.org/10.1103/PhysRevB.64.054514
https://doi.org/10.1103/PhysRevB.64.054514
https://doi.org/10.1103/PhysRevB.64.054514
https://doi.org/10.1103/PhysRevB.64.054514
https://doi.org/10.1103/PhysRevLett.102.217002
https://doi.org/10.1103/PhysRevLett.102.217002
https://doi.org/10.1103/PhysRevLett.102.217002
https://doi.org/10.1103/PhysRevLett.102.217002
https://doi.org/10.1103/PhysRevLett.112.017003
https://doi.org/10.1103/PhysRevLett.112.017003
https://doi.org/10.1103/PhysRevLett.112.017003
https://doi.org/10.1103/PhysRevLett.112.017003
https://doi.org/10.1103/PhysRevLett.116.097002
https://doi.org/10.1103/PhysRevLett.116.097002
https://doi.org/10.1103/PhysRevLett.116.097002
https://doi.org/10.1103/PhysRevLett.116.097002
https://doi.org/10.1103/PhysRevB.91.161102
https://doi.org/10.1103/PhysRevB.91.161102
https://doi.org/10.1103/PhysRevB.91.161102
https://doi.org/10.1103/PhysRevB.91.161102
https://doi.org/10.1103/PhysRevB.89.020502
https://doi.org/10.1103/PhysRevB.89.020502
https://doi.org/10.1103/PhysRevB.89.020502
https://doi.org/10.1103/PhysRevB.89.020502
https://doi.org/10.1103/PhysRevB.94.155302
https://doi.org/10.1103/PhysRevB.94.155302
https://doi.org/10.1103/PhysRevB.94.155302
https://doi.org/10.1103/PhysRevB.94.155302
http://arxiv.org/abs/arXiv:1805.09432
https://doi.org/10.1103/PhysRevB.86.100507
https://doi.org/10.1103/PhysRevB.86.100507
https://doi.org/10.1103/PhysRevB.86.100507
https://doi.org/10.1103/PhysRevB.86.100507
https://doi.org/10.1103/PhysRevB.96.155105
https://doi.org/10.1103/PhysRevB.96.155105
https://doi.org/10.1103/PhysRevB.96.155105
https://doi.org/10.1103/PhysRevB.96.155105
https://doi.org/10.1103/PhysRevB.94.174502
https://doi.org/10.1103/PhysRevB.94.174502
https://doi.org/10.1103/PhysRevB.94.174502
https://doi.org/10.1103/PhysRevB.94.174502
https://doi.org/10.1103/PhysRevB.96.174511
https://doi.org/10.1103/PhysRevB.96.174511
https://doi.org/10.1103/PhysRevB.96.174511
https://doi.org/10.1103/PhysRevB.96.174511


JIA-LONG ZHANG, WEN HUANG, AND DAO-XIN YAO PHYSICAL REVIEW B 98, 014511 (2018)

odd-parity pairings, that for the cases where the TRSB pairing
simultaneously breaks the two mirror symmetries in question,
the integrant is not odd in kf z and hence does not vanish under
kf z integration.

[45] Only terms with first-order gradient ∂yφi need to be considered
for analyzing the current along y. This can be understood as
follows. Through a standard minimal coupling to a U (1) gauge
field in the free energy, ∂μ → ∂μ − iaμ, the y current can be

expressed as jy ∝ ( ∂f

∂ay
)

a→0
. Hence higher order y gradients or

higher powers of ∂yφi must have vanishing contribution due to
the translation invariance in the y direction.
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[47] The (1,i,0) states of the two Tu phases exhibit the same gap

structure.
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96, 224504 (2017).
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