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Derivation of a Ginzburg-Landau free energy density of a p + i p superconductor
from spin-orbit coupling with mixed gradient terms
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A Ginzburg-Landau free energy for a superconducting chiral p-wave order parameter is derived from a two-
dimensional tight-binding lattice model with weak spin-orbit coupling included as a general symmetry-breaking
field. Superconductivity is accounted for by a BCS-type nearest-neighbor opposite-spin interaction where we
project the potential onto the p-wave irreducible representation of the square lattice symmetry group and assume
this to be the dominating order. The resulting free energy contains kinetic terms that mix components of the
order parameter as well as directional gradients—so-called mixed gradient terms—as a virtue of the symmetry
of the order parameter. Spin-orbit coupling and electron-hole anisotropy lead to additional contributions to the
coefficients of these terms, increasing the number of necessary phenomenological parameters by one compared
to previous work and leading to an increase in the coefficient measuring Fermi-surface anisotropy for Rashba
spin-orbit coupling in the continuum limit.
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I. INTRODUCTION

Spin-orbit coupling (SOC) couples the spin of the electron
to its momentum which splits spin-degenerate electronic bands
and is a recurring theme in many novel superconducting
systems. If SrTiO3 is slightly doped with Ca, there is a region
in the temperature-versus-carrier concentration phase diagram
where superconductivity and ferroelectricity coexist and where
the material has broken spatial inversion symmetry—a key
cause of SOC [1,2]. When SOC is a significant factor, the
associated symmetry of the superconductivity is often of
an unconventional character. In this context, unconventional
means superconductivity where the order parameter does not
have the usual spin-singlet s-wave pairing symmetry [3]. One
example is the one-atom layer of the Tl-Pb compound on a
Si(111) surface studied in Ref. [4]. This system exhibits two-
dimensional (2D) superconductivity at a critical temperature
of Tc ∼ 2.25 K followed by a Berezinskii-Kosterlitz-Thouless
transition and has Rashba SOC leading to a maximum splitting
of spin bands by ∼250 meV. In this case the superconductivity
is argued to be nonconventional because the average distance
between Cooper pairs is longer than the Ginzburg-Landau (GL)
coherence length.

Another example is the 2D electron liquid in the celebrated
LaAlO3/SrTiO3 interface (for a review see Ref. [5]). By
using a back gate to apply an electric potential across the
interface, which tunes the carrier density, Tc can be increased
to ∼300 mK [6]. In a certain region, tuning this gate voltage
affects the Rashba spin-orbit coupling dramatically—reaching
values of 10 meV. This region also seems to be correlated
to where superconductivity develops [7]. The unconventional
symmetry resulting from large Rashba SOC is evident from
the critical field parallel to the interface being much larger
than what would be expected from the Pauli limit [8].

Finally, it should be mentioned that it was initially the
discovery of superconductivity in the heavy fermion system

CePt3Si [9,10] that helped intensify research efforts into
noncentrosymmetric superconductors. This system exhibits an
increase in critical magnetic field compared to the Pauli limit
as well as suppression of superconductivity by nonmagnetic
impurities. Other lines of evidence for the unconventional
character of the order parameter include indications of line
nodes in the superconducting gap from penetration depth [11],
thermal conductivity measurements [12], among others. For a
more thorough overview of noncentrosymmetric systems, see
Ref. [13].

In this paper, the Ginzburg-Landau free energy density is
derived for a 2D square lattice with spin-orbit coupling where a
chiral px + ipy symmetry is assumed to describe the dominat-
ing pairing channel. This particular pairing state has attracted
much attention because of its topological properties, which
include the existence of topologically protected Majorana edge
states as well as Majorana bound states in the core regions
of half-integer vortices [14]. In the context of superfluidity,
p-wave pairing is realized as the A phase in 3He [15] and has
long been hypothesized to be the dominant superconducting
pairing symmetry in Sr2RuO4 [16–18].

The vortex structure of a phenomenological Ginzburg-
Landau theory for a 2D chiral p-wave pairing symmetry
[3,19] was studied using numerical simulations in Ref. [20].
A magnetic field breaks the degeneracy between the two com-
ponents of the order parameter so that one becomes dominant
whereas the other only exists close to topological defects, such
as vortices. The simulations found that the superconducting
vortices tend to arrange themselves in a square lattice of
single-quantized vortices when the magnetic field is very close
to the upper critical field, however for slightly lower field
strengths the phase diagram is dominated by a triangular lattice
consisting of double-quanta vortices, which are coreless. The
relative angular momentum between the dominant and the
subdominant components of the order parameter determines
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the kinds of vortices possible in the system and originates
in the structure of the mixed gradient terms in the GL free
energy. These terms also drive the subdominant component
[21]. An interesting question is therefore what physical pa-
rameters influence the phenomenological coefficients of these
types of terms. Mixed gradient terms have also been found
in a multicomponent GL theory for a s + is pairing state
derived through the Eilenberger equations for quasiclassical
propagators [22]. This state breaks time-reversal symmetry,
similar to the chiral p-wave state, and is found to exist in
a doped four-band model for iron pnictides [23]. In this GL
theory however, the terms could be eliminated by a simple
spin rotation in contrast to the p-wave case.

Expressions for Ginzburg-Landau theory coefficients for
general order parameters have previously been derived assum-
ing either pairing in the normal BCS spin basis and ignoring
spin-orbit coupling or by pairing in a single spin-orbit split
nondegenerate band [24]. Additionally, GL theory has been
derived for a superconductor with p-wave symmetry and a
coexistent ferromagnetic state [25]. The derivations in this
paper will largely follow the methods used in these two
references.

The difference between the current paper and Ref. [24] is
that spin-orbit coupling is considered a symmetry-breaking
field on the ordered state when deriving the GL theory. The
spin-orbit coupling strength is assumed to be small compared to
the Debye cutoff frequency. A similar system was considered in
Ref. [26] where the spin-orbit coupling strength was assumed
to be small relative to a Zeeman field. A pairing state with
p-wave symmetry in the diagonalized bands was discovered
as a result of a Kohn-Luttinger-type interaction coming from
the transformation of a repulsive U Hubbard model to the new
bands. In the present case, the interaction is assumed to give
rise to a chiral p + ip pairing symmetry in the nondiagonal
spin bands. This leads to a number of additional terms in the
generalized effective mass compared to the limit of zero spin-
orbit coupling.

The paper is organized as follows: In Sec. II the model
is introduced, first in terms of the single-particle properties
in Sec. II A, and then in Sec. II B the pairing interaction
is presented with a brief justification. A sketch of how the
Ginzburg-Landau free energy was derived is given in Sec. III
and its form reduced to the same as in Ref. [20]. The con-
tributions from spin-orbit coupling to the phenomenological
coefficients are finally discussed in Sec. IV. Details of the
calculations are relegated to the Appendices. Units are chosen
throughout the papers such that kB = h̄ = a = 1 for lattice
spacing a.

II. TIGHT-BINDING MODEL

A. Single-particle problem

The system is modeled as a two-dimensional square lattice,
which has symmetry group C4v where fermions can exist at
each lattice site. In the clean limit there is no disorder in the
system implying that the Fourier-transformed single-particle
Hamiltonian is diagonal in wave-vectors k. Including anti-
symmetric spin-orbit coupling [13] by spin-dependent hopping
between lattice sites, the single-particle Hamiltonian can be

written

Ĥ0 =
∑

s1s2 =↑↓
k

[ε(k) + γ (k) · σ ]s1s2c
†
ks1

cks2 , (1)

where σ consists of Pauli matrices, cks is the annihilation
operator for a fermion with wave-vector k and spin s, and
the sum over k runs over the first Brillouin zone. Hermiticity
of the Hamiltonian implies that ε(k) and γ (k) are real.
Time-reversal symmetry implies the restrictions ε(k) = ε(−k)
and γ (k) = −γ (−k). If parity symmetry is enforced, γ (k)
vanishes, and this vector is hence identified with the parity
breaking antisymmetric spin-orbit coupling. The Hamiltonian
in Eq. (1) becomes diagonal by a unitary transformation to the
helicity basis given by

ak = 1√
2

(
iγ̂ y−γ̂ x√

1−γ̂ z eiφ+ iγ̂ y−γ̂ x√
1+γ̂ z eiφ−

−√
1 − γ̂ zeiφ+

√
1 + γ̂ zeiφ−

)†

ck, (2)

where φ± are arbitrary phases and γ̂ i = γ i(k)/|γ (k)|, assum-
ing γ has some nonzero component on the xy plane in spin
space, or a similar transformation if γ ‖êz (cf. Appendix B). The
dispersion relations of the eigenvalues of the single-particle
Hamiltonian are given by

εh
k = ε(k) + h|γ (k)|, (3)

where h ∈ {±} enumerates the two different helicity bands
when written in exponentials and is used as ±1 when written
as a factor.

B. Pairing interaction

To include p-wave superconductivity in the model, an
attractive BCS-type weak-coupling interaction is introduced
between electrons given by

V̂ = −1

2

∑
kk′q

∑
s1s2s

′
1s

′
2

Vkk′,s1s2s
′
1s

′
2

× c
†
(q/2)+ks1

c
†
(q/2)−ks2

c(q/2)−k′s ′
2
c(q/2)+k′s ′

1
(4)

for

Vkk′,s1s2s
′
1s

′
2
= Vb

db∑
m=1

d
(bm)
k,s1s2

(
d

(bm)
k′,s ′

1s
′
2

)∗
, (5)

where d
(bm)
k,s1s2

are coefficients for basis vectors for the db-
dimensional irreducible representation b. These basis vectors
are odd and linear in k, i.e., a p-wave-like momentum de-
pendence in the continuum limit. Since superconductivity is
introduced in the spin basis, it is assumed that the spin-orbit
coupling is sufficiently weak compared to the superconducting
energy scale for this pairing between opposite momentum
fermions to be valid, i.e., spin-orbit coupling is treated as a
symmetry-breaking field on the superconducting state [13].

The exact forms of the basis vectors are found in the process
of proving that such an interaction exists for the square lattice.
This is performed by finding the possible eigenvectors for a
general two-particle Hermitian operator V̂ that has eigenvec-
tors consisting of pairs of particles with opposite momentum.
The eigenspace of a Hermitian operator can be separated into
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irreducible spaces that are representations of the symmetry
group of the lattice. By expanding in the spin-momentum basis
of the two-particle Hilbert space, any such eigenvector |d〉 can
be written

|d〉 =
∑

k,s1s2

ds1s2 (k)|k,s1〉|−k,s2〉. (6)

The eigenvectors will also include a cutoff function fc(εk)
since the attractive interaction is assumed to only exist on the
Fermi surface. This cutoff function is implicit in the notation
for ds1s2 (k). If the coefficient ds1s2 (k) is odd in k, then because
of the fermionic particle exchange symmetry and because it
is periodic in reciprocal lattice vectors it can be expanded in
terms of lattice vectors R as

ds1s2 (k) = 1√
N

∑
R

[βR sin(R · k) · σ iσ y]s1s2 . (7)

These general vectors are then projected down on the space
consisting of basis vectors of a particular irreducible represen-
tation (irrep.) b of interest by the projection operators [27,28],

P
(b)
ll = db

|C4v|
∑
g∈C4v

D
(b)
ll (g)∗g:, (8)

where D
(b)
ll are matrices of the irrep., g: denotes transformation

of a vector by the group element g, and the index l runs
over the dimension db of the irrep. The group C4v contains
one two-dimensional irrep. E. Projecting down on this irrep.
and assuming the eigenspace of V̂ only is constructed from
nearest-neighbor sites yields a vector space constructed from
the orthonormal basis vectors given by the spin-momentum
coefficients,

d
(Ey )
s1s2 (k) = − ẑ√

N
sin ky · (σ iσ y)s1s2 (9a)

≡ d(Ey )(k) · (σ iσ y)s1s2 , (9b)

d (Ex )
s1s2

(k) = ẑ√
N

sin kx · (σ iσ y)s1s2 (9c)

≡ d(Ex )(k) · (σ iσ y)s1s2 . (9d)

These are p-wave basis vectors since they are linear in
k in the continuum limit. Note that the assumptions of a
single 2D square lattice implies that basis vectors that have
k dependencies with components in the êz direction are
neglected. When V̂ is expanded in its eigenvector basis, it
is therefore possible that it has a channel consisting of the
eigenvectors in Eq. (9) and it has been proved that Eq. (4) is a
possible interaction.

This p-wave channel interaction could originate as the
dominant channel of a simpler interaction. As an example,
consider the attractive nearest-neighbor interaction,

V̂ = −V

2

∑
〈i,j〉

∑
s=↑↓

c
†
i,sc

†
j,−scj,−sci,s , (10)

which could be considered an effective one-band model from
a reduction of a multiband system [29]. Finding basis vectors
in the eigenspace of nearest-neighbor interactions analogous

to the irrep. E,V̂ becomes diagonal in this basis and can be
written in the form of Eq. (4) but with coefficient,

Vkk′,s1s2s
′
1s

′
2
= V

[ ∑
a=A1,B1

ψ (a)
s1s2

(k)
[
ψ

(a)
s ′

1s
′
2
(k′)
]∗

+
∑

m=x,y

d (Em)
s1s2

(k)
[
d

(Em)
s ′

1s
′
2

(k′)
]∗]

, (11)

where a runs over the one-dimensional irreps. A1 and B1 which
has basis vectors given by

ψ (A1)
s1s2

(k) = 1√
2N

(cos kx + cos ky)(iσ y)s1s2 , (12)

ψ (B1)
s1s2

(k) = 1√
2N

(cos kx − cos ky)(iσ y)s1s2 , (13)

and give the extended s-wave channel and d-wave channel,
respectively. Note that these basis vectors are normalized on
the first Brillouin zone and even though they have the same
coupling constant V , the critical temperature Tc of the different
channels is affected by physical parameters in the single-
particle part of the Hamiltonian, such as doping level and
spin-orbit coupling strength and is thus in general different.
The channel with the highest critical temperature will then
completely dominate as the relevant order for temperatures
immediately below Tc. This temperature can be calculated by
solving the linearized gap equation by, e.g., the method used
in Ref. [26] but is considered outside the scope of this paper.

III. DERIVATION OF GINZBURG-LANDAU FREE ENERGY

The Ginzburg-Landau coefficients are calculated by de-
riving the free energy F of the system described in Sec. II.
This free energy is defined as F = − 1

β
ln Z, where Z is the

partition function and β is inverse temperature. The partition
function is defined as Z = Tr e−β(Ĥ−μN̂), where Ĥ = Ĥ0 + V̂

is the Hamiltonian of the system, μ is the chemical potential,
and N̂ is the number operator. Calculating the trace in the
path-integral formalism where the annihilation and creation
operators get replaced by Graßmann fields ξ and ξ ∗, the
Hubbard-Stratonovich transformation is preformed on the p-
wave subspace of the potential V̂ , whereas the other subspaces
are neglected. It is assumed that there exists some region in
the doping level and SOC strength parameter space where
the p-wave coupling is associated with the highest critical
temperature such that neglecting the other subspaces of the
interaction is justified. Given the potential in Eq. (11), the
p-wave subspace is two dimensional, and its contribution to
the partition function can thus be written in terms of a path
integral over the two complex fields η(x) and η(y) as

eSint =
∫
D[η,η∗] exp

{
−
∫ β

0
dτ
∑
qm

[
2|η(m)

q |2
V

+ (Jm∗
q η(m)

q + Jm
q η(m)∗

q

)]}
, (14)
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where Jm
q is defined as

Jm
q =

∑
ks1s2

[
d (Em)

s1s2
(k)
]∗

ξ(q/2)−k,s2ξ(q/2)+k,s1 , (15)

and

Sint = V

2

∫ β

0
dτ
∑
qm

Jm∗
q Jm

q . (16)

In these equations both the Graßmann fields ξ and the complex
fields η are dependent on imaginary time. The time dependence
in the complex fields η, which are the order parameters of
the system, is neglected since the goal is a time-independent
Ginzburg-Landau theory, whereas the time dependence in
the Graßmann fields are converted to sums over Matsubara
frequencies. The system is assumed to be close to the transition
temperature Tc so that the free energy can be expanded to
second order in the order parameters after integrating out the
fermionic degrees of freedom. The integration itself is pre-
formed by expressing the part of the exponent with quadratic
dependence on fermionic fields as an Hermitian form ξ †Ǧ−1ξ

using four-component Matsubara vectors ξ such that the result
depends on the determinant of Ǧ−1 by

Zferm =
∫
D[ξ,ξ ∗] exp

(
−1

2

∑
ξ †Ǧ−1ξ

)

=
√

det Ǧ−1 = exp

(
1

2
Tr ln Ǧ−1

)
. (17)

The expansion to second order in the order parameter is
preformed by splitting Ǧ−1 into a diagonal matrix Ǧ−1

0
independent of η and a matrix φ̌ for which each element
is proportional to the order parameter components η(a). The
logarithm in Eq. (17) is then expanded by

Tr ln Ǧ−1 = Tr ln Ǧ−1
0 + Tr Ǧ0φ̌ − 1

2 Tr Ǧ0φ̌Ǧ0φ̌. (18)

The first term is absorbed into the normalization of the path
integral over η, whereas the second term vanishes trivially
which leaves the contribution of the third term. The single-
particle problem in Eq. (1) and thus the spin-orbit coupling
are included in this integration over fermionic degrees of
freedom. The order parameter is assumed to be slowly varying
in real space, which justifies a gradient expansion. Given these
assumptions and approximations, the free energy density in
momentum space takes the form

fq = Aab(η(a)
q )∗η(b)

q + Kab,ij (η(a)
q )∗η(b)

q qiqj , (19)

where the Einstein summation convention has been used to
drop the summation over directions i,j = x,y and dimensions
of the subspace a,b = x,y. We denote Aab as the potential-
energy tensor whereas Kab,ij is the generalized effective mass
tensor [24]. It is worth noting that the same expression is
obtained regardless of what choice is made for the phases φ±
in Eq. (2), and whether γ has a component on the xy plane or
not.

Note that Eq. (19) does not contain terms linear in q.
Such terms, Lifshitz invariants, are in general allowed by
symmetry when the crystal does not contain an inversion center
[13]. When the order parameter only has a single component,
these terms exist only in the presence of an external magnetic

field and give rise to a helical nonuniform superconducting
state. However for a multiple-component order parameter,
symmetry allows Lifshitz invariants also in the absence of
any external field [30,31]. In Eq. (E29) in Appendix E, we
give an expression for the partition function that holds for
a general odd-momentum order parameter, which do exhibit
terms linear in q. These terms can be shown to be proportional
to d(bm′ )(k)∗ × d(bm)(k) and thus disappear for unitary odd-
momentum pairing states, such as the pairing state given by
the basis vectors in Eq. (E29).

A. Form of the free energy density tensors

The potential-energy tensor derived in Eq. (19) is given by

Aab = 2δab

V
−
∑
khh′

dab{1 − hh′[1 − 2(γ̂ z)2]}χhh′
, (20)

where χhh′
is the Matsubara-frequency sum over Green’s

functions given by

χhh′ = 1

β

∑
n

1(
iωn − εh

k

)(− iωn − εh′
k

) , (21)

and

dab = [d(Ea )(k)]∗ · d(Eb)(k). (22)

In Eq. (21) the chemical potential has been absorbed into the
definition of εh

k . As in Eq. (3), h,h′ ∈ {±}’s enumerate the
helicity bands and are used as ±1 when written as factors. Since
the only k dependencies in this sum are in the Fermi energies,
it is invariant with respect to symmetry transformations. This
means that the momentum sum vanishes if a = b since the
summand then becomes odd with respect to each of the
components of k [cf. definition of d(Ea )(k) in Eq. (9)].

The generalized effective mass tensor in Eq. (19) can be
expressed as

Kab,ij = 1

8

∑
khh′

dab({hh′[1 − 2(γ̂ z)2] − 1}χhh′
ij

+2h′hχhh′
gij ), (23)

where

gij = ∂i γ̂ · ∂j γ̂ − 2 ∂i γ̂
z∂j γ̂

z

−(γ̂ · ∂i∂j γ̂ − 2γ̂ z∂i∂j γ̂
z), (24)

and

χhh′
ij = − 1

β

∑
n

{
∂

∂ε

1

iωn − εh
k

∂

∂ε

1

−iωn − εh′
k

vh
i vh′

j

−
(

∂2

∂ε2

1

iωn − εh
h

)
1

−iωn − εh′
k

vh
i vh

j

−
(

∂

∂ε

1

iωn − εh
k

)
1

−iωn − εh′
k

m−1
hij

}

+h ↔ h′. (25)
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The inverse effective mass of the h band is given by

m−1
hij = ∂2εh

k

∂ki∂kj
= m−1

ij + h ∂i∂j |γ |, (26)

whereas the h-band Fermi velocity is given by

vh
i = ∂

∂ki
εh

k = vi + h ∂i |γ |. (27)

B. Approximation of free energy density tensors in terms of
Fermi-surface averages

More useful expressions can be obtained for Aab and Kab,ij

by expressing the sums over momenta k as averages over
energy surfaces defined as

〈(·)〉ξ ≡ 1

N0(ξ )

∑
k

(·)δ[ε(k) − ξ ], (28)

where N0(ξ ) is the density of states at energy ξ . Including the
chemical potential in the definition of ε(k), the Fermi surface
is obtained at ξ = 0. Let h[k,ε(k)] be a generic summand
in one of the k sums with an explicit ε(k) dependence. The
momentum sum is exchanged for a Fermi-surface average by
inserting an energy integral over a δ function such that∑

k

h[k,ε(k) =
∫ εc

−εc

dξ N0(ξ )〈h(k,ξ )〉ξ

≈
〈∫ εc

−εc

dξ N0(ξ )h(k,ξ )

〉
0

. (29)

The integral is cut off at εc because of the assumption that the
interaction potential only allows pairing to happen within some
energy shell around the Fermi surface. The energy average is
assumed to be constant over this energy shell such that only the
value at ξ = 0 is considered. To simplify the resulting integrals,
it is assumed that the critical temperature is small compared to
the energy cutoff such that

ec ≡ εcβ

π
� 1. (30)

The spin-orbit coupling is additionally assumed to be small
compared to the pairing energy range such that εc � |γ | ∀k.
With these approximations Aab becomes

Aab = δab

[
2

V
− 8NF ln(2ece

C)〈dab〉0

− 16NF 〈dab[1 − 2(γ̂ z)2]f (ρk)〉0

]
, (31)

whereas Kab,ij becomes

Kab,ij = NF β27ζ (3)

(2π )2
〈dabvivj 〉0 + N ′

F

ln(2ece
C)

2
〈dabm−1

ij 〉0

+NF

{
− 2

β2

π2
〈dab(γ̂ z)2f3(ρk)vivj 〉0

+ β27ζ (3)

(2π )2
〈dab[1 + (γ̂ z)2]∂i |γ |∂j |γ |〉0

+β

π

〈
dab

[
ρk

2e2
c

[1 + (γ̂ z)2] − (γ̂ z)2f2(ρk)

]
∂i∂j |γ |

〉
0

+〈dabf (ρk)gij 〉0

}

+N ′
F

{
β

π

〈
dab

[
f2(ρk)(γ̂ z)2 + ρk

7ζ (3)

4
[1 + (γ̂ z)2]

]

× (vi∂j |γ | + ∂i |γ |vj )

〉
0

−〈dab(γ̂ z)2f (ρk)m−1
ij 〉0

}
. (32)

The energy range [−εc,εc] is assumed to be sufficiently
small such that N0(ξ ) ≈ NF + N ′

F ξ is a good approximation.
NF = N0(0) is the value of the density of states at the Fermi
level, whereas N ′

F = N ′
0(0) is a measure of the particle-hole

asymmetry (PHA). The f functions are all convergent sums
that vanish in the limit of no spin-orbit coupling defined as

f (ρ) = Re
∞∑

n=0

(
1

2n + 1 + iρ
− 1

2n + 1

)
, (33)

f2(ρ) = Im
∞∑

n=0

1

(2n + 1 + iρ)2
, (34)

f3(ρ) = Re
∞∑

n=0

(
1

(2n + 1 + iρ)3
− 1

(2n + 1)3

)
. (35)

The dimensionless spin-orbit coupling ρk = β|γ |/π. ζ (·) is
the Riemann-f function and C in eC is the Euler-Mascheroni
constant. In Eq. (32) the terms are grouped such that the first
is independent of both SOC and PHA, then comes a term only
dependent on PHA, the bracket proportional to NF consists of
terms caused by SOC whereas the bracket proportional to N ′

F

consists of terms dependent on both PHA and SOC.

C. The limit of zero spin-orbit coupling

In the limit of zero spin-orbit coupling, the unit vectors γ̂

become indeterminate, however the expressions for the free
energy tensors Aab and Kab,ij still have a well-defined limit
since all the unit-vector dependencies vanish. To see this,
first consider the limit of |γ | → 0 of χhh′

. In this limit, the
band-energies εh

k → ε such that, after preforming the sum over
Matsubara frequencies, Eq. (21) becomes

lim
|γ |→0

χhh′ = tanh βε

2

2ε
≡ S[ε(k)]. (36)

Since χhh′
becomes independent of h, γ̂ z vanishes under the

sum over h and h′ in Eq. (20) and leaves

lim
|γ |→0

Aab = 2δab

V
− 4

∑
k

dabS[ε(k)]

= δab

[
2

V
− 8I 〈dab〉0

]
, (37)

for the energy integral,

I =
∫ εc

−εc

dξ N0(ξ )S[ξ ] ≈ NF ln(2ece
C). (38)
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This corresponds to the Aab calculated in Ref. [24] if V → 2V

and 8dab = tr[�†
a�b].

In χhh′
ij , the limit reduces vh

i → vi and m−1
h ij → m−1

ij as well
as the previously mentioned limit of Fermi energies εh

k → ε

such that

lim
|γ |→0

χhh′
ij = vivj

1

ε

∂2

∂ε2
(εS[ε]) + m−1

ij

∂

∂ε
S[ε]

≡ 4S2[ε]vivj + 2S1[ε]m−1
ij . (39)

Sinceχhh′
ij is independent ofh andh′ in the zero spin-orbit limit,

the second line in Eq. (23) as well as the parentheses in the first
line vanish under the hh′ sum. Inserting the above expression
for lim|γ |→0 χhh′

ij into Kab,ij and converting to Fermi-surface
averages yields

lim
|γ |→0

Kab,ij = −
∑

k

dab(2S2[ε]vivj + S1[ε]m−1
ij )

= −2〈vivjd
ab〉0I2 − 〈m−1

ij dab
〉
0I1 (40)

for the integrals [24],

I1 =
∫ εc

−εc

dξ N0(ξ )S1[ξ ] ≈ −N ′
F

2
ln(2ece

C), (41)

I2 =
∫ εc

−εc

dξ N0(ξ )S2[ξ ] ≈ −NF

7β2ζ (3)

8π2
. (42)

This corresponds to the result for Kab,ij found in Ref. [24] if
8dab = tr[�†

a�b].

D. Reduction by symmetries

By considering the symmetry of the coefficients Kab,ij

and Aab, the form of the free energy density fq in Eq. (19)
can be further restricted. Assuming we have chosen a proper
pseudospin representation [13], the spin-orbit coupling vector
γ (k) has the property,

γ (k) = R̃gγ
(
R−1

g k
)

(43)

for proper and improper rotations g where Rg is the 3 × 3
rotation matrix and R̃g = −Rg for improper rotations. This
relationship leads to the conclusion that [γ̂ (k)z]2 and γ̂ (k)2 are
invariant under all C4v symmetries. This implies that Kaa,iī and
Kaā,ii are both odd with respect to each of the components of
k and thus vanish under the k sum. Here the notation ā means

ā =
{
y, if a = x,

x, if a = y.
(44)

Remember that a,b,i,j ∈ {x,y}. Using the symmetries
Kaā,ij = Kāa,ij and Kab,ij = Kab,ji , the free energy density
can be expressed as [3]

fq = −α
(∣∣η(x)

q

∣∣2 + ∣∣η(y)
q

∣∣2)
+ κ1

(∣∣qxη(x)
q

∣∣2 + ∣∣qyη(y)
q

∣∣2)
+ κ2

(∣∣qyη(x)
q

∣∣2 + ∣∣qxη(y)
q

∣∣2)
+κ3

[(
qxη(x)

q

)(
qyη(y)

q

)∗ + H.c.
]

+κ4
[(

qyη(x)
q

)(
qxη(y)

q

)∗ + H.c.
]

(45)

for coefficients α = −Axx, κ1 = Kxx,xx, κ2 = Kxx,yy , and
κ3 = κ4 = Kxy,xy . Rotating the coordinate system such that

(
qx

qy

)
=
(

cos θ − sin θ

sin θ cos θ

)(
q̃x

q̃y

)
, (46)

defining the chiral basis of the order parameters as(
η+
η−

)
= 1√

2

(
1 i

1 −i

)(
η(Ey )

η(Ex )

)
, (47)

as well as using dimensionless variables [19], the free energy
density can be further reduced to the form

fq = −(|η+
q̃ |2 + |η−

q̃ |2) + |q̃η+
q̃ |2 + |q̃η−

q̃ |2

+ Re{[ei2θ (ν + �) + e−i2θ (1 − �)][q̃xη+
q̃ (q̃xη−

q̃ )∗

− q̃yη+
q̃ (q̃yη−

q̃ )∗]}
+ Im{[e−i2θ (ν + �) − ei2θ (1 − �)][q̃xη−

q̃ (q̃yη+
q̃ )∗

+ q̃yη−
q̃ (q̃xη+

q̃ )∗]}. (48)

Here the dimensionless parameters are � = 2(κ2 − κ3)/(κ1 +
κ2) and ν = (κ1 − 3κ2)/(κ1 + κ2) [19]. In the above expres-
sion, the parameter � is new compared to the expression
in Ref. [19] and is necessary because of the additional con-
tributions to Kab,ij in Eq. (32) as will be discussed below.
Dimensionless variables were introduced by the substitution,(

η

q̃

)
→
(

η/
√

α√
2α

κ1+κ2
q̃

)
. (49)

Choosing θ = 0 and transforming to real space yields a free
energy density of the form

fGL = −(|η+|2 + |η−|2) + |Dη+|2 + |Dη−|2 + (ν + 1)

× Re{[Dxη
+(Dxη

−)∗ − Dyη
+(Dyη

−)∗]}
+ (ν − 1 + 2�) Im{[Dxη

−(Dyη
+)∗

+Dyη
−(Dxη

+)∗]}. (50)

Here Di stands for a dimensionless gradient in the i direction
in real space, and the space dependence of the order parameter
is implicit.

IV. SUMMARY

Mixed gradient terms in a Ginzburg-Landau free energy are
defined as terms of the form (Dxη

+)∗Dyη
− [21], i.e., terms

mixing different components and directional gradients. These
terms drive the subdominant component of a chiral p-wave
superconductor that exists in the core of topological defects,
such as vortices when a magnetic field breaks the degeneracy
between the superconducting components. The core structures
of vortices are also influenced by these terms in that the struc-
tures of the terms determine the relative phase of the two order
parameters and thus the different kinds of vortices possible
[20,21]. It is evident from the definition that the order parameter
needs multiple components for such terms to be present. The
number of components of the order parameter depends on
the number of dimensions of the irreducible representations
that the pairing interaction furnishes. If the symmetry group
contains a two-dimensional irreducible representation and the
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interaction contains this irrep. as a subspace of its eigenvalue
space, then the order parameter associated with this subspace
has two components. In the weak-coupling BCS framework
this discussion is based on, on-site Hubbard interaction on
a square 2D lattice in the clean limit only consists of the
one-dimensional s-wave representation. If spin-orbit coupling
is included as a symmetry-breaking field, then the gap function
is rotated in the new basis so that it gains a momentum
dependence determined by the SOC spin texture [13,32]. In
the case of Rashba spin-orbit coupling, the transformation is
such that the intracomponent elements of the gap function and
thus the pairing amplitude in the spin-orbit split bands and
gains a p-wave-like momentum dependence. Such systems
could thus be called effective p-wave superconductors [33],
however their topological properties are different from those
of true triplet p-wave superconductors and, importantly, the
order parameter does not gain additional components. For the
2D square lattice, this means that a pairing interaction that acts
at least as far as nearest-neighbor lattice sites is necessary for
a multicomponent order parameter to be present. This type
of interaction was also found to be sufficient to contain a
two-dimensional subspace given by the p-wave irreducible
representation basis vectors.

The two mixed gradient terms found in the Ginzburg-
Landau free energy fGL are determined by two phenomeno-
logical parameters � = 2(κ2 − κ3)/(κ1 + κ2) and ν = (κ1 −
3κ2)/(κ1 + κ2) where κ1 = Kxx,xx, κ2 = Kxx,yy , and κ3 =
Kxy,xy for the generalized effective mass tensor Kab,ij .

If both SOC and the particle-hole asymmetry are set to zero,
and we assume nearest-neighbor hopping, Kab,ij reduces to

Kab,ij = ζab

NF β27ζ (3)

(4π )2Nt2
〈vavbvivj 〉0, (51)

where ζab = (−1)δab−1. With this reduction, ν can be written
as

ν =
〈
v4

x

〉
0 − 3

〈
v2

xv
2
y

〉
0〈

v4
x

〉
0 + 〈v2

xv
2
y

〉
0

, (52)

as in Refs. [19,20] and is thus a measure of the Fermi-surface
anisotropy. The coefficient in front of the last mixed gradient
term becomes�0 and proportional to 〈v2

xv
2
y〉0

. It will therefore
exist as long as there is superconducting order, and the Fermi
velocity does not vanish. The coefficient in front of the first
mixed gradient term is, on the other hand, (ν + 1). From
Eq. (52) we see that for a completely anisotropic square Fermi-
surface ν = −1 such that this term vanishes. The remaining
term can in this case be rotated away by a rotation of the order
parameter components as in Refs. [22].

With the simplification ofKab,ij in Eq. (51), the parameter�
becomes � = −(ν − 1) and the form of fGL reduces to that of
Ref. [19] except for a minus sign. This discrepancy originates
with the choice made for the basis of the p-wave subspace.
To get equality, you would simply choose both eigenvectors
positive in Eq. (9), which would yield an irreducible represen-
tation equivalent to E. Then Kab,ij would reduce in the same
way except missing the factor ζab such that � = 0 and fGL

would reduce to the same form.

If the particle-hole asymmetry given by N ′
F is present,

Kab,ij gains a contribution from the Fermi-surface average
〈vavbm

−1
ij 〉0. For nearest-neighbor hopping, m−1

ij is diagonal
such that κ3 is not affected by it, however because of its
contribution to κ1 and κ2 the terms get rescaled. In the
continuum limit this leads to increasing coefficients for the
mixed gradient terms compared to the normal kinetic terms in
the free energy.

In the continuum limit ν is expected to vanish by Eq. (52)
since the Fermi surface becomes isotropic. However, including
Rashba spin-orbit coupling with a SOC vector of the form
γ = α(ky êx − kx êy) leads to

ν ≈ 1

2

(
α

kF t

)2

, (53)

where t > 0 is the nearest-neighbor hopping amplitude and kF

is the Fermi wave-vector magnitude because of the contribution
to the κ coefficients from the term NF 〈dabgij 〉0 in Kab,ij . From
this result we conclude that ν is no longer only a measure
of Fermi-surface anisotropy, but also a measure of spin-orbit
coupling strength. The coefficient in front of the last mixed
gradient term in Eq. (50) now becomes 1/(1 − ν), whereas
the other mixed gradient term coefficient is 1 + ν for the
choice θ = 0. This shows that, in the continuum limit, the
mixed gradient terms become more prominent compared to
the normal gradient terms as the Rashba spin-orbit coupling
strength increases.
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APPENDIX A: SYMMETRIES OF THE SINGLE-PARTICLE
PROBLEM

Combining the two different spin options for the annihila-
tion operators in Eq. (1) in a vector ĉk, then under time-reversal
θ̂ , the operators transform as [34]

θ̂ ĉkθ̂
−1 = iσ y ĉ−k, (A1a)

θ̂ ĉ†kθ̂
−1 = ĉ†−k(−iσ y). (A1b)

Since θ̂ contains a conjugation operator, the time-reversal
of the single-particle Hamiltonian in Eq. (1) becomes

θ̂ Ĥ0θ̂
−1 =

∑
k

θ̂ ĉ†kθ̂
−1[ε(k)∗ + γ (k)∗ · σ ∗]θ̂ ĉkθ̂

−1

=
∑

k

ĉ†−k[ε(k)∗ + γ (k)∗ · (−iσ y)σ ∗(iσ y)]ĉ−k

=
∑

k

ĉ†k[ε(−k)∗ − γ (−k)∗ · σ ]ĉk. (A2)

If the Hamiltonian should be time-reversal invariant, then
the coefficients must have the symmetries ε(k) = ε(−k)∗ and
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TABLE I. Character table for the group C4v . The first row gives
the conjugation classes, whereas the first column denotes the different
irreducible representations. Note that E is the only two-dimensional
irreducible representation.

C4v e C2
4 2C4 2σv 2σd

A1 1 1 1 1 1
A2 1 1 1 −1 −1
B1 1 1 −1 1 −1
B2 1 1 −1 −1 1
E 2 −2 0 0 0

γ (k) = −γ (−k)∗. Since the Pauli matrices are self-adjoint,
taking the adjoint of Ĥ0 yields

Ĥ
†
0 =

∑
k

ĉ†k[ε(k)∗ + γ (k)∗ · σ ]ĉk. (A3)

If the Hamiltonian should be Hermitian, then the coefficients
must satisfy ε(k) = ε(k)∗ and γ (k) = γ (k)∗. Time-reversal
invariance together with Hermiticity thus implies that the
coefficients are real, that ε(k) is even in k, and that γ (k) is
odd in k, which were the symmetries mentioned in Sec. II A.

APPENDIX B: DIAGONALIZATION OF THE
SINGLE-PARTICLE PROBLEM

It is easily verified through substitution that the basis defined
in Eq. (2) diagonalizes the Hamiltonian in Eq. (1) as long
as |γ̂ z| = 1, regardless of whether Ĥ0 is Hermitian or time-
reversal invariant. This means that the same diagonalization
is used when γ represents spin-orbit coupling (time-reversal
invariant but not parity invariant), and when it represents an
external magnetic field (parity invariant but not time-reversal
invariant). The matrix determining the basis in Eq. (2) is found
by solving the characteristic equation of the corresponding
linear-algebra problem and finding the normal eigenvectors
that correspond to each eigenvalue.

In the case that γ (k)‖êz the basis transformation instead
reads

ak = 1

2

(
(1 + γ̂ z)eiφ+ (1 − γ̂ z)eiφ−

(1 − γ̂ z)eiφ+ (1 + γ̂ z)eiφ−

)†
ck. (B1)

This results in the same expression for the eigenvalues εh
k =

ε(k) + h|γ (k)| as is obtained from the basis transformation in
Eq. (1).

APPENDIX C: BASIS VECTOR FOR THE IRREDUCIBLE
REPRESENTATION E OF C4v

The group of symmetry transformations of the two-
dimensional square lattice is denoted C4v in the Schönflies
notation or 4mm in the abbreviated Hermann-Mauguin no-
tation [27]. In Ref. [27] the character table of C4v is as
shown in Table I. For the one-dimensional irreps. the matrix
elements of the representation are the characters themselves.
For the two-dimensional irrep. E, the matrix elements of the

representation are given by

D(E)(e) =
(

1 0
0 1

)
,

D(E)
(
C2

4

) =
(−1 0

0 −1

)
,

D(E)(C4) =
(

0 −1
1 0

)
,

D(E)
(
C−1

4

) =
(

0 1
−1 0

)
,

D(E)(σx) =
(−1 0

0 1

)
,

D(E)(σy) =
(

1 0
0 −1

)
,

D(E)(σd1 ) =
(

0 −1
−1 0

)
,

D(E)(σd2 ) =
(

0 1
1 0

)
. (C1)

This can be verified by calculating the traces of the matrices
χ (E)(g) and showing that they satisfy the condition,∑

g∈C4v

|χ (E)(g)|2 = |C4v|, (C2)

which imply that this is an irreducible representation as well
as showing that the matrices satisfy the group multiplication
relations for group elements in C4v .

Since the goal is to find a basis for this representation E

consisting of eigenvectors of the Hermitian operator V̂ , these
basis vectors can be written in the form of Eq. (6), repeated
here for convenience,

|d〉 =
∑

k,s1s2

ds1s2 (k)|k,s1〉|−k,s2〉. (C3)

This eigenvector space is projected down on the irreducible
subspace of the irreducible representation by the projection
operator in Eq. (8). This operator includes the symbol g: which
means that the state should be transformed by the group-
element g. For spin-momentum eigenstates, the transformation
law is given by [34]

g:|k′,s ′〉 =
∑

s

|gk′,s〉Dgss ′ (C4)

for the matrix,

Dgss ′ = δss ′ cos(φ/2) − iû · σ ss ′ sin(φ/2), (C5)

where the rotation given by the angle and normal vector
(φ,û) is given by the proper rotation associated with g. The
transformation of vectors in the product space of two spin-
momentum eigenstates is thus given by

g:|k′
1,s

′
1〉|k′

2,s
′
2〉 =

∑
s1s2

|gk′
1,s1〉|gk′

2,s2〉Dgs1s
′
1
Dgs2s

′
2
. (C6)

Writing this as an active transformation where the transforma-
tion acts on the coefficients of the eigenvectors in Eq. (C3)
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results in

g:ds1s2 (k) =
∑
s ′

1s
′
2

Dgs2s
′
2
Dgs1s

′
1
ds ′

1s
′
2
(g−1k). (C7)

Coefficients that are odd in k can be written as

ds1s2 (k) = d(k) · (σ iσ y)s1s2 , (C8)

because of fermionic particle exchange asymmetry. The trans-
formation rule in Eq. (C7) is then simplified to

g:d(k) = R(û,φ)d(g−1k), (C9)

whereR is the conventional 3 × 3 rotation matrix, which shows
that d transforms as a vector. Since the k dependency of d(k)
must be such that it is invariant with respect to translations by
reciprocal lattice vectors it can be expanded as a Fourier series
in the fundamental lattice vectors R such that

d(k) = 1√
N

∑
R

βR sin R · k. (C10)

Applying the projection operators in Eq. (8) onto d(k) using
the transformation law in Eq. (C9) and the matrix elements of
the representation given in Eq. (C2), the x̂ and ŷ components
of β vanish leaving

P
(E)
ll d(k) = ẑ

2
√

N

∑
R

βz
R[sin(R · k) + (−1)l sin(ẑ · R × k)].

(C11)

This expression implies immediately that the simplest potential
that contains a nonvanishing representation E is a nearest-
neighbor potential where R ∈ {(0, ± 1),(±1,0)}. Inserting
these possible lattice vectors R in the sum

∑
R in Eq. (C11),

vectors in the projected space can be written

P
(E)
ll d(k) = ẑ

2
√

N

{(
βz

(1,0) − βz
(−1,0)

)
[sin kx + (−1)l sin ky]

+ (βz
(0,1) − βz

(0,−1)

)
[sin ky − (−1)l sin kx]}.

(C12)

Such vectors can clearly all be written using the basis vectors
made up of

d±(k) = ẑ(sin kx ± sin ky). (C13)

Although this is a basis for the irreducible vector space
associated with the irreducible representation E, it does not
transform as the matrices given in Eq. (C2). Recall that a basis
{bi} for a representation D transforms according to

g:bi =
∑

j

bjDji(g). (C14)

Instead {d±} transforms like an equivalent representation to
the matrices in Eq. (C2). This is simply solved by rotating the
basis into new basis vectors,

d(Ey )(k) = −ẑ sin ky, (C15a)

d(Ex )(k) = +ẑ sin kx, (C15b)

which when properly normalized gives the basis set in
Eq. (9).

APPENDIX D: SPECTRAL DECOMPOSITION OF
NEAREST-NEIGHBOR INTERACTION

To find the representations the potential in Eq. (10) consists
of, first it is Fourier transformed into

V̂ = −
∑
qkk′s

Ṽ (k − k′)

×c
†
(q/2)+k,sc

†
(q/2)−k,−sc(q/2)−k′,−sc(q/2)+k′,s (D1)

for

Ṽ (k − k′) = V

2N

∑
δ

eδ·(k−k′), (D2)

where δ sums over nearest-neighbor lattice vectors. The spec-
tral decomposition of V̂ is found by expressing V̂ in terms
of its eigenvectors. Since V̂ is a two-body operator, it is
completely determined by the matrix elements 〈αβ|V̂ |α′β ′〉
where |αβ〉 are states in the two-particle Hilbert space. For
BCS-type potentials this two-particle Hilbert space consists of
states where the particles have opposite momentum and any
eigenvector can thus be expanded as in Eq. (6). This means
that in terms of spin-momentum eigenstates, the potential can
be written as

V̂ = 1

2

∑
qkk′

∑
s1s2s3s4

Vk,k′;s1s2s3s4

× c
†
(q/2)+k,s1

c
†
(q/2)−k,s2

c(q/2)−k′,s4
c(q/2)+k′,s3

(D3)

for the matrix elements,

Vk,k′;s1s2s3s4
= 〈k,s1|〈−k,s2|V̂ |k′,s3〉| − k′,s4〉
= −2Ṽ (k − k′)δs1s3δs2s4σ

x
s1s2

. (D4)

The space associated with a single eigenvalue can in general
be written as a sum of irreducible spaces where each irreducible
space consists of basis vectors forming a basis for an irre-
ducible representation of the symmetry group [27]. If the space
consists of several irreducible representations, these are said to
have accidental symmetry since the fact that vectors belonging
to two different irreducible spaces have the same eigenvalue
is not necessary by symmetry and thus, in a sense, accidental.
Writing the basis vectors for an irreducible representation � as
|�,m�〉 where m� enumerates the dimensions of the irrep.,
this implies that {|�,m�〉} is a complete orthonormal basis
set. Inserting this complete set on either side of the potential
operator, in the space of two-particle states the potential can
be represented by

V̂ =
∑

�

V�

d�∑
m=1

|�,m�〉〈�,m�| (D5)

for the eigenvectors,

V� = 〈�,m�|V̂ |�,m�〉. (D6)

Note that it does not matter which of the d� different basis
vectors one inserts for m� since all will give the same eigen-
value as long as they are basis vectors in the same irreducible
space. These eigenvalues can then be evaluated by inserting a
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complete set of spin-momentum eigenstates as

V� =
∑
kk′

∑
s1s2s3s4

Vk,k′;s1s2s3s4

× (d (�,m� )
k,s1s2

)∗
d

(�,m� )
k′,s3s4

. (D7)

Inserting the irreducible representation basis vectors in
Eqs. (13), (12), and (9) yield the eigenvalues,

VA1 = VB1 = VEx
= VEy

= −V. (D8)

Conversely, Eq. (D5) may be inserted into Eq. (D4) such that
the spin-momentum eigenstate matrix elements can be written
as

Vk,k′;s1s2s3s4
=
∑

�

V�

d�∑
m�=1

d
(�,m� )
k,s1s2

(
d

(�,m� )
k′,s3s4

)∗
. (D9)

If all the eigenvectors given by irreducible representations have
been accounted for, this must reproduce Eq. (D1). Inserting
the singlet irreducible irreducible representations with even
functions ψ (a)(k) as well as the triplet irreducible basis vectors
with odd vector functions d(Ei )(k) from Eqs. (13), (12), and (9)
yield

V̂ = −V
∑
qkk′s

( ∑
a=A1,B1

ψ (a)(k)ψ (a)(k′)∗

+
∑
i=x,y

d (Ei )
z (k)d (Ei )

z (k′)∗

⎞
⎠

× c
†
(q/2)+k,sc

†
(q/2)−k,−sc(q/2)−k′,−sc(q/2)+k′,s

= −V

N

∑
qkk′s

Ṽ (k − k′)

× c
†
(q/2)+k,sc

†
(q/2)−k,−sc(q/2)−k′,−sc(q/2)+k′,s , (D10)

which indeed is the initial potential presented in Eq. (D1).
This shows that Eq. (11) is the diagonalized form of Eq. (10)
and the nearest-neighbor interaction thus consists of the irre-
ducible representations A1, B1, and E which correspond to the
extended s-wave, d-wave, and p-wave channels, respectively.

APPENDIX E: INTEGRATION OVER FERMIONS

The single-particle problem Hamiltonian Ĥ0 defined in
Eq. (1) and interaction potential V̂ defined in Eq. (4) for b equal
to the two-dimensional irreducible representation E of C4v

with eigenvectors given in Eq. (9) defines the relevant system.
The finite temperature partition function for this system can
then be written as a path integral over Graßmann fields ξ and
ξ ∗ as

Z =
∫
D[ξ ∗ξ ] e−S, (E1)

for the action,

S =
∫ β

0
dτ

{∑
kss ′

ξ ∗
k,s{δss ′ [∂τ + ε(k)] + γ · σ ss ′ }ξk,s ′

− V

2

∑
qm

Jm∗
q Jm

q

}
, (E2)

where Jm
q ’s are defined in Eq. (15). By Hubbard-Stratonovich

transforming the interaction potential exponential at the ex-
pense of introducing new auxiliary complex fields η(m)

q and
η(m)∗

q as in Eq. (14), the partition function can be factorized
into a path integral over the auxiliary fields and a path integral
over the quadratic fermionic Graßmann fields by

Z =
∫
D[η∗η] exp

[
−
∫ β

0
dτ
∑
qm

2
∣∣η(m)

q

∣∣2
V

]
ZF , (E3)

such that

ZF =
∫
D[ξ ∗ξ ] e−SF . (E4)

Because of the Hubbard-Stratonovich transformation, the
fermionic action SF now consists of only quadratic combi-
nation of Graßmann fields where one part of it comes from
the single-particle problem on the first line of Eq. (E2) and
the other is proportional with the new complex fields η. To
simplify the calculation, the Graßmann fields are transformed
through Eq. (2) to the helicity basis in which the single-particle
Hamiltonian is diagonal. Denoting the unitary matrix in the
transformation in Eq. (2), U (k)sh such that

ξks =
∑

h

U (k)shζkh, (E5)

the fermionic action SF can be written

SF =
∫ β

0
dτ

{∑
kh

ζ ∗
kh(∂τ + εh

k )ζkh

+
∑
k1k2

h1h2m

[
η

(m)
k1+k2

d̃
(Em)
k1k2;h1h2

ζ ∗
k1h1

ζ ∗
k2h2

+ η
(m)∗
k1+k2

(d̃ (Em)
k1k2;h1h2

)∗ζk2h2ζk1h1

]}
, (E6)

where in the last equality we have inserted the helicity basis
and defined the helicity transformed irrep. basis vectors,

d̃
(Em)
k1k2;h1h2

=
∑
s1s2

d (Em)
s1s2

(
k1 − k2

2

)
U (k2)∗s2h2

U (k1)∗s1h1
. (E7)

The imaginary-time dependence of the ζ fields is expanded
in a series of Matsubara frequencies through the unitary
transformation,

ζkh(τ ) = 1√
β

∑
n

e−iτωnζkhn, (E8)

for ωn = (2n + 1)π/β. This expansion results in a remaining
time dependence in the auxiliary complex fields η(τ ) which is
itself transformed into a bosonic Matsubara-frequency depen-
dence through the identification,

1

β

∫ β

0
dτ η

(m)
k1+k2

(τ )eiτ (ωn1 +ωn2 ) = η
(m)
k1+k2,n1+n2+1. (E9)

In the single-particle Hamiltonian, this transformation ex-
changes the ∂τ for −iωn2 . The fermionic action is now written
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as a bilinear form

SF = 1

2

∑
k1k2
n1n2

ζ T
k1n1

Ǎk1k2,n1n2ζ k2n2
, (E10)

through the 4 × 4 matrix Ǎ by collecting the fermionic fields
in four-component vectors,

ζ T
kn = (ζk+n,ζk−n,ζ

∗
k+n,ζ

∗
k−n). (E11)

Since each vector contains all the different Graßmann fields
(both fields ζ and ζ ∗), the integral becomes the Pfaffian of the
antisymmetric component of Ǎ [35]. Reusing the notation Ǎ

for this antisymmetric component, the fact that the Pfaffian of
an antisymmetric matrix can be expressed as the square root
of the determinant of this matrix [36], is used to write

ZF = Pf(Ǎ) = ±
√

det(Ǎ) = exp
(

1
2 Tr ln Ǎ

)
. (E12)

The limit of zero spin-orbit coupling is used to argue that
+ should be used in front of the square root. The fact that
exchanging two rows of a matrix leaves the determinant
invariant is then used to write SF as the familiar sesquilinear
form

SF = 1

2

∑
k1k2
n1n2

ζ
†
k1n1

(Ǧ−1)k1k2,n1n2ζ k2n2
, (E13)

where the inverse Gor’kov Green’s-function Ǧ−1 is expressed
as

Ǧ−1 = Ǧ−1
0 + φ̌. (E14)

The two terms represent the inverse mean-field Green’s func-
tion,

(Ǧ−1
0 )k1k2,n1n2 = δk1k2δn1n2

×
(−iωn1 + ε+

k1
0

0 −iωn1 + ε−
k1

)
⊗ σ z,

(E15)

and the order-parameter-dependent 4 × 4 matrix,

(φ̌)k1k2,n1n2 = 2
∑
m

∑
n

δn,n1+n2+1

×
(

0 η
(m)
k1+k2,n

D
(m)
k1k2

η
(m) ∗
k1+k2,n

D
(m) †
k2k1

0

)
,

(E16)

where the 2 × 2 matrix D
(m)
k1k2

consists of the transformed irrep.
basis vectors, (

D
(m)
k1k2

)
h1h2

= d̃
(Em)
k1k2;h1h2

. (E17)

The result in Eq. (E12) is then expanded to second order in the
order parameter through Eq. (18). The first term is independent
of η and is thus absorbed in the normalization constant of the η

path integral. The second term vanishes when taking the trace,
leaving the third term such that

ZF = exp

(
−1

4
Tr Ǧ0φ̌Ǧ0φ̌

)
. (E18)

Since Ǧ−1
0 is a completely diagonal matrix, its inverse is trivial

to find. By simple matrix multiplication and summing over the
momentum and Matsubara-frequency indices for the trace, it
is found that

Tr Ǧ0φ̌Ǧ0φ̌ = 8
∑

mm′kk′
hh′n1n2

η
(m)
k+k′,n1

η
(m′)∗
k+k′,n1

d̃
(Em)
kk′;hh′ d̃

(Em′ )∗
kk′;hh′(

iωn2 − iνn1 + εh
k

)(
iωn2 − εh′

k′
) . (E19)

Since the goal is a time-independent Ginzburg-Landau theory, the order parameter is assumed to be time independent such that
η

(m)
k,n = δn0η

(m)
k . Inserting this assumption back into Eq. (E19) which is inserted into ZF in Eq. (E18) and then inserting this back

into the expression for Z in Eq. (E3) yields the expression,

Z =
∫
D[η∗η] exp

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
∑
qm

β
2
∣∣η(Em)

q

∣∣2
V

− 2
∑

mm′kk′
hh′n

η
(Em)
k+k′η

(Em′ )∗
k+k′

d̃
(Em)
kk′;hh′ d̃

(Em′ )∗
kk′;hh′(

iωn + εh
k

)(
iωn − εh′

k′
)
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (E20)

After shifting the momentum indices in the second term by

k → q/2 + k,

k′ → q/2 − k, (E21)

inserting the expression for d̃
(Em)
k1k2;hh′ from Eq. (E7) as well as the elements of the transformation matrices U (k)sh from Eq. (2), Z

can be rewritten in terms of the gap function [24],

�s1s2 (k,q) =
∑
m

η(m)
q d (Em)

s1s2
(k), (E22)

the spin-orbit-dependent matrix,

u(k)hss ′ = (σ 0 + hγ̂ · σ )ss ′ , (E23)
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and Green’s functions,

Gh(k,iωn) = (iωn − εh
k

)−1
, (E24)

as

Z =
∫
D[η∗η] exp

{
−
∑
qm

β
2
∣∣η(Em)

q

∣∣2
V

+ 1

2

∑
kqs1s2
s ′

1s
′
2

�s1s2 (k,q)�s ′
1s

′
2 (k,q)∗

∑
nhh′

Gh
(q

2
+ k, − iωn

)
u
(q

2
+ k
)h

s ′
1s1

×Gh′(q
2

− k,iωn

)
u
(q

2
− k
)h′

s ′
2s2

}
. (E25)

For further development, the center-of-mass momentum q of the Cooper pairs is assumed to be small compared to the fundamental
lattice constant so that the momentum dependencies in Eq. (E25) can be expanded to second order by

u
(q

2
± k
)h

≈ σ 0 + hσ ·
(

±γ̂ + qi

2
∂i γ̂ ± qiqj

8
∂i∂j γ̂

)
, (E26)

and

∑
n

Gh
(q

2
+ k, − iωn

)
Gh′(q

2
− k,iωn

)
= β

(
χh′h + qi

2
χh′h

i + qiqj

8
χh′h

ij

)
, (E27)

where the Einstein-summation convention notation has been used for repeated indices and ∂i = ∂/∂ki . χhh′
and χhh′

ij are defined
as in Eqs. (21) and (25), whereas

χh′h
i = lim

q→0

∂

∂qi

1

β

∑
n

Gh(q + k, − iωn)Gh′
(q − k,iωn). (E28)

Inserting these expansions, the resulting expression for Z becomes

Z =
∫
D[η∗η] exp

{
− β

∑
qm

2
∣∣η(m)

q

∣∣2
V

− β

2

∑
kq mm′

hh′

η(m)
q η(m′)∗

q

(
tr
[
d

(Em′ )†
k

(
hh′γ̂ · σd

(Em)
k γ̂ · σ T − d

(Em)
k

)]
χh′h

− qi

2
tr
[
d

(Em′ )†
k σd

(Em)
k

] · [γ̂ (h − h′)χh′h
i + ∂i γ̂ (h + h′)χh′h]+ qiqj

8

{
tr
[
d

(Em′ ) †
k

(
hh′γ̂ · σd

(Em)
k γ̂ · σ T − d

(Em)
k

)]
χh′h

ij

+ 2hh′χh′h tr
[
d

(Em′ )†
k

(
γ̂ · σd

(Em)
k ∂i∂j γ̂ · σ T − ∂i γ̂ · σd

(Em)
k ∂j γ̂ · σ T

)]})}
, (E29)

where tr[·] is a trace over the spin indices and d
(Em)
k is the matrix in spin space whose matrix elements are given by d (Em)

s1s2
(k). The

specific form of d (Em)
s1s2

(k) given in Eq. (9) leads to considerable simplifications of Eq. (E29) since the corresponding spin-vectors
d(Em)(k) are parallel and only retain the ẑ component. Inserting this fact, the partition function reduces to

Z =
∫
D[η∗η] exp

{
− β

∑
qm

2
∣∣η(m)

q

∣∣2
V

− β

2

∑
kqmm′

hh′

η(m)
q η(m′)∗

q tr
[
d

(Em)
k d

(Em′ )†
k

]

×
[
{hh′[1 − 2(γ̂ z)2] − 1}χhh′ + qiqj

8

({hh′[1 − 2(γ̂ z)2] − 1}χhh′
ij − 2h′hχhh′

gij

)
]}

. (E30)

Since the spin trace in Eq. (E30) can be written

tr
[
d

(Em′ )†
k d

(Em)
k

] = 2(d(Em′ ))∗ · d(Em), (E31)

the free energy tensors Aab and Kab,ij can now be identified from Eq. (E30) since their relation to the partition function is given
by

Z =
∫
D[η∗η] exp

{
−β
∑

q

[
Aab

(
η(a)

q

)∗
η(b)

q + Kab,ij

(
η(a)

q

)∗
η(b)

q qiqj
]}

. (E32)
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APPENDIX F: ENERGY INTEGRALS IN FERMI-SURFACE AVERAGES

The details of how to obtain the explicit expression for Kab,ij and Aab in Eqs. (31) and (32) from Eqs. (20) and (23) were in a
large part left out. In this Appendix, one of the integrals is worked out in detail, and the others needed to obtain these expressions
will be listed.

To see clearly what part of the generalized mass tensor Kab,ij is dependent on spin-orbit coupling and which is not, the
summation over h′ in Eq. (23) is performed to yield the expression,

Kab,ij = 1

4

∑
kh

dab
{
χhh

ij + (γ̂ z)2
(
χhh

ij − χ
h,−h
ij

)+ (χhh − χh,−h)gij

}
. (F1)

Inserting χhh′
ij from Eq. (25) into this expression and performing the approximation outlined in Eq. (29) for converting to

Fermi-surface averages yields the expression,

Kab,ij = 1

2

∑
h

〈
dab
{[

Ih
2 vh

i vh
j − Ih

1 m−1
hij

]+ (γ̂ z)2
[(

Ih
2 + Ih

4

)
vh

i vh
j − Ih

3 v−h
i vh

j − (Ih
1 − Ih

5

)
m−1

hij

]− 1

2

[
Ih − Ih

0

]
gij

}〉
0. (F2)

Here the I ’s represent energy integrals across the energy shell around the Fermi energy of varying combinations of Green’s
functions as well as the density of states N0(ε). As an example, consider the integral,

Ih
5 =

∫ εc

−εc

dξ
N0(ξ )

β

∑
n

1

iωn − ξ − h|γ |
∂

∂ξ

1

−iωn − ξ + h|γ | . (F3)

First the approximation N0(ξ ) ≈ NF + N ′
F ξ is used to split the integral in two: Ih

5 = Ih
5,1 + Ih

5,2 such that Ih
5,1 is the part that is

proportional to NF , whereas Ih
5,2 is proportional to N ′

F . The integrand of Ih
5,1 is then split using partial fractions such that

Ih
5,1 = NF

β

∑
n

1

2(iωn − h|γ |)
∫ εc

−εc

dξ

[
1

(−iωn − ξ + h|γ |)2
− 1

ξ 2 + (ωn + ih|γ |)2

]

= NF

β

∑
n

1

2(iωn − h|γ |)
[
− 2εc

ε2
c + (ωn + ih|γ |)2

− 2

ωn + ih|γ | tan−1

(
εc

ωn + ih|γ |
)]

= NF

π

∑
n

1

i(ωn + ih|γ |)
[
− ec

e2
c + (2n + 1 + ihρ)2

− 1

2n + 1 + ihρ
tan−1

(
ec

2n + 1 + ihρ

)]

≈ −NF β

iπ2

∑
n

1

(2n + 1 + ihρ)2
tan−1

(
ec

2n + 1 + ihρ

)

≈ −βNF h

π
Im

∞∑
n=0

1

(2n + 1 + iρ)2

= −βNF h

π
f2(ρ). (F4)

On the third line the dimensionless variables ec = βεc/π and ρ = β|γ |/π were introduced. It was assumed that the critical
temperature was low compared to the Debye frequency such that ec � 1 and the first term on the third line could be ignored since
it goes as ∼1/ec whereas the arctan goes like ∼π/2. On the last line, the sum over n was separated into the sum over positive and
negative n, resulting in the imaginary component of the first sum by shifting the summation index. For n ∈ [0,nc], ec/(2n + 1) � 1
such that tan−1 is approximately π/2. nc depends on ec and since ec � 1 then nc � 1 as well such that adding the terms in the
sum for n > nc does not change the limiting behavior.

Similarly, the integrand of Ih
5,2 is split using partial fractions, albeit in a slightly different way which produces

Ih
5,2 = −N ′

F

2β

∑
n

∫ εc

−εc

dξ

[
1

(−iωn − ξ + h|γ |)2
+ 1

ξ 2 + (ωn + ih|γ |)2

]

= −N ′
F

π

∑
n

[
1

2n + 1 + ihρ
tan−1

(
ec

2n + 1 + ihρ

)
− ec

(2n + 1 + ihρ)2 + e2
c

]

≈ −2N ′
F

π
Re

∞∑
n=0

⎡
⎣ tan−1

(
ec

2n+1+iρ

)
2n + 1 + iρ

− tan−1
(

ec

2n+1

)
2n + 1

+ tan−1
(

ec

2n+1

)
2n + 1

⎤
⎦

≈ −N ′
F f (ρ) − N ′

F

2
ln(2ece

C). (F5)
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Inserting these results back into Eq. (F3) then yields

Ih
5 ≈ −NF βh

π
f2(ρ) − N ′

F f (ρ) − N ′
F

2
ln(2ece

C). (F6)

The remaining integrals are calculated in a similar manner. In the cases where ρ/ec remains in the expression after integrating,
this is expanded to first order in O(ρ/ec), e.g., in Ih

0 . Terms proportional to e−ec are also neglected, such as in Ih
2 . With these

approximations the integrals become

Ih =
∫ εc

−εc

dξ
N0(ξ )

β

∑
n

1

ω2
n + (ξ + h|γ |)2

≈ NF ln(2ece
C) + hN ′

F |γ |[1 − ln(2ece
C)], (F7a)

Ih
0 =

∫ εc

−εc

dξ
N0(ξ )

β

∑
n

1

ξ 2 + (ωn + ih|γ |)2
≈ NF ln(2ece

C) + 2NF f (ρ), (F7b)

Ih
1 =

∫ εc

−εc

dξ
N0(ξ )

β

∑
n

1

iωn − ξ − h|γ |
∂

∂ξ

1

−iωn − ξ − h|γ |

≈ −NF h|γ |
2ε2

c

− N ′
F ln(2ece

C)

2
, (F7c)

Ih
2 =

∫ εc

−εc

dξ
N0(ξ )

β

∑
n

(
∂

∂ξ

1

iωn − ξ − h|γ |
∂

∂ξ

1

−iωn − ξ − h|γ | − 1

iωn − ξ − h|γ |
∂2

∂ξ 2

1

−iωn − ξ − h|γ |
)

≈ 7ζ (3)β2

4π2
(NF − h|γ |N ′

F ), (F7d)

Ih
3 =

∫ εc

−εc

dξ
N0(ξ )

β

∑
n

∂

∂ξ

1

iωn − ξ − h|γ |
∂

∂ξ

1

−iωn − ξ + h|γ |

≈ NF β2

π2

[
f3(ρ) + 7ζ (3)

8

]
, (F7e)

Ih
4 =

∫ εc

−εc

dξ
N0(ξ )

β

∑
n

1

iωn − ξ − h|γ |
∂2

∂ξ 2

1

−iωn − ξ + h|γ |

≈ −NF β2

π2

(
f3(ρ) + 7ζ (3)

8

)
+ N ′

F βh

π
f2(ρ), (F7f)

Ih
5 =

∫ εc

−εc

dξ
N0(ξ )

β

∑
n

1

iωn − ξ − h|γ |
∂

∂ξ

1

−iωn − ξ + h|γ |

≈ −NF βh

π
f2(ρ) − N ′

F ln(2ece
C)

2
− N ′

F f (ρ). (F7g)

The expression for Kab,ij in Eq. (32) is then obtained by inserting these integrals into Eq. (F2) and summing over h. The
integrals Ih and Ih

0 are used to obtain the expression for Aab in Eq. (31).
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