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We study the tunneling conductance of a ballistic normal metal/ferromagnet/spin-triplet superconduc-
tor junction using the extended Blonder-Tinkham-Klapwijk formalism as a model for a c-axis-oriented
Au/SrRuO3/Sr2RuO4 junction. We compare chiral p-wave (CPW) and helical p-wave (HPW) pair potentials,
combined with ferromagnet magnetization directions parallel and perpendicular to the interface. For fixed θM ,
where θM is a direction of magnetization in the ferromagnet measured from the c axis, the tunneling conductances
of CPW and HPW clearly show different voltage dependencies. It is found that the cases where the d vector is
perpendicular to the magnetization direction (CPW with θM = π/2 and HPW with θM = 0) are identical. The
obtained results serve as a guide to determine the pairing symmetry of the spin-triplet superconductor Sr2RuO4.
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I. INTRODUCTION

Nowadays, Sr2RuO4 is known as an unconventional super-
conductor with transition temperature Tc ∼ 1.5 K [1]. The fact
that the Knight shift does not change across Tc is consistent
with spin-triplet pairing [2–6]. Various theoretical studies have
discussed the microscopic mechanism of spin-triplet pairings
in this material [7–21]. The existence of a zero-bias conduc-
tance peak in several tunneling experiments [22,23] indicates
the realization of unconventional superconductivity [24–26].
In particular, the broad zero-bias conductance peak observed
in tunneling spectroscopy suggests the realization of a surface
Andreev bound state (SABS) with linear dispersion [26–29].
This is in contrast to high-Tc cuprate superconductors, in which
a sharp zero-bias conductance peak is observed [24,25,30–35]
due to flat-band zero-energy states [24,36,37]. When spin-
triplet pairing is realized, we can expect exotic phenomena,
such as the so-called anomalous proximity effect in diffusive
normal metal/spin-triplet superconductor junctions [38–42].

The presence or absence of time-reversal symmetry (TRS)
in Sr2RuO4 is an important issue. Among two-dimensional
spin-triplet p-wave pairings, chiral and helical p-wave pairings
seem promising in the absence and presence of TRS, respec-
tively [43]. Broken TRS was observed in muon spin-relaxation
measurements (μSR) and Kerr-rotation experiments as a result
of a spontaneous internal magnetic field below Tc [44–46],
which supports chiral p-wave pairing. However, the internal
magnetic field has not been detected in scanning superconduct-
ing quantum interference device experiments [47,48], which
suggests realization of helical p-wave symmetry. Although
there are several possible explanations for the absence of
broken TRS in Sr2RuO4 [17,49–55], the pairing symmetry
remains a point of discussion. One of the main differences
between these two pairing symmetries is the direction of the d

vector.

A constructive way to distinguish between them is to study
the charge transport in ferromagnet/spin-triplet superconduc-
tor junctions [56–60]. Naively speaking, the direction of the
magnetization axis with respect to the d vector (parallel or
perpendicular) influences the charge transport. Recently, a
Au/SrRuO3/Sr2RuO4 junction oriented along the c axis has
been fabricated by means of epitaxial growth [61]. Since
SrRuO3 and Sr2RuO4 have similar a-axis lattice constants,
as well as similar atomic arrangements, a smooth interface
between them can be expected, which turns this system into
a nice playground for clarifying the direction of the d vector.
Because the SABS is absent in this direction, we can directly
compare the effect of the magnetization direction relative to
the d vector. To interpret the experimental results, a theoretical
model is required in which we calculate the tunneling conduc-
tance along the c axis based on a minimal model which takes
the quasi-two-dimensional nature of Sr2RuO4 into account.

In this paper, we investigate normal metal (N)/ferromagnet
(F)/spin-triplet superconductor (S) junctions with s-wave and
chiral and helical p-wave pairing symmetries by changing the
properties of the ferromagnet, e.g., thickness, magnetization
strength, and direction. The anisotropic Fermi surface of
Sr2RuO4 and realistic effective masses are also included since
the Fermi-momentum mismatch changes the transparency and
the resulting conductance. Finally, an external magnetic field
is taken into account through the Doppler shift.

II. FORMULATION

A. Model and Hamiltonian

We consider a three-dimensional N/F/S junction, as shown
in Fig. 1. We assume the junction interfaces are perpendicular
to the z axis and located at z = 0 and z = L. The F has
a thickness L and a magnetization M(z). The N and S are
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FIG. 1. Schematic of the three-dimensional normal metal (N)/
ferromagnet (F)/superconductor (S) junction. We assume the structure
extends to infinity in all directions.

considered to be semi-infinite. Superconducting junctions are
described by the Bogoliubov–de Gennes (BdG) Hamiltonian

Ȟ(r) =
[

ĥ(r,H ) �̂(r)

−�̂∗(r) −ĥ∗(r,H )

]
, (1)

where the basis is taken to be �(r) =
[ψ↑(r) ψ↓(r) ψ

†
↑(r) ψ

†
↓(r)]T , where T is the transpose,

the symbol ·̂ (·̌) represents a 2×2 (4×4) matrix in the spin
(spin-Nambu) space, and H is an externally applied magnetic
field in the x direction. Since the system has translational
symmetry in the x and y directions, the momenta kx and ky are
well-defined quantum numbers. Therefore, the wave function
can be expressed in the Fourier components as

�(r) =
∑

k‖

�k‖ (z)
ei(kxx+kyy)√

LxLy

, (2)

�k‖(z) = [ψ↑,k‖ ψ↓,k‖ ψ
†
↑,−k‖ ψ

†
↓,−k‖]

T , (3)

where k‖ = (kx,ky,0). In Eq. (2), we assume periodic boundary
conditions in order to accommodate the infinite dimensions
in the x and y directions. The lateral dimensions Lx and Ly

are normalization factors and do not affect the conductance
spectrum. The Hamiltonian becomes

Ȟk‖ (z,H ) =
[

ĥk‖(z,H ) �̂k‖ (z)

−�̂∗
−k‖(z) −ĥ∗

−k‖ (z,H )

]
. (4)

The single-particle Hamiltonian ĥk‖ is given by

ĥk‖(z,H ) = ξk‖(z,H ) + M(z) · σ̂ + F̂k‖ (z), (5)

ξk‖(z,H ) = − h̄2

2mz

∂2

∂z2
− μ′ − �0

H

Hc

k‖
kF

sin ϕ, (6)

μ′ = μ − h̄2

2

[
k2
x

mx

+ k2
y

my

]
, (7)

where ξk‖ is the kinetic energy in the presence of an external
magnetic field in the x direction and μ is the chemical
potential, which we assume to be constant across the junction.
A full derivation of Eq. (6) is given in Appendix A. The
matrices σ̂j (j ∈ {x,y,z}) and σ̂0 are the Pauli matrices and the
identity matrix in spin space, σ̂ = σ̂xex + σ̂yey + σ̂zez, with
ej being the unit vectors in the j direction. We can modify
the shape of Fermi surfaces by tuning the effective masses

m = (mx,my,mz) in each region. In this paper, we parametrize
m as

m(z) =
⎧⎨
⎩

( mN,mN,mN ) for z � 0,

( mF ,mF ,mF ) for 0 < z < L,

( m‖,m‖,m⊥ ) for z � L.

(8)

The magnetization is described as [60]

M(z) = M0(sin θM ex + cos θM ez)�(z)�(L − z), (9)

where �(z) is the Heaviside step function. In this paper, we
ignore the reorientation of the d vector by the magnetization
in F [62–65] for simplicity. The effects of the interfaces are
described by F̂k‖ (z) as [66]

F̂k‖ (z) = δ(z)F̂1 + δ(z − L)F̂2, (10)

F̂1,k‖ = F1σ̂0, (11)

F̂2,k‖ = FSOez · (σ̂ × k), (12)

where F1 and FSO represent the strengths of the barrier
potential at z = 0 and the spin-orbit coupling (SOC) at z = L,
respectively. The SOC term reduces to

ez · (σ̂ × k) = σ̂xky − σ̂ykx (13)

= ik‖

[
0 e−iϕ

−e+iϕ 0

]
, (14)

where kx = k‖ cos ϕ and kx = k‖ sin ϕ, with k‖ = (k2
x + k2

y)1/2.
The pair potential is described by

�̂k‖(z) = �̂k‖(z)�(z − L). (15)

The momentum dependences of the pair potentials for s-wave
(SW), chiral p-wave (CPW), and helical p-wave (HPW)
superconductors are written as

�̂k‖(z) =

⎧⎪⎨
⎪⎩

�0iσ̂y for SW,

�0[k̄x + iχk̄y]σ̂x for CPW,

�0[k̄x σ̂0 + ik̄y σ̂z] for HPW,

(16)

where �0 is a constant which characterizes the amplitude of the
pair potential, χ is the so-called chirality (which can be ±1),
and k̄x = kx/ks‖, with ks‖ = √

2m‖μ′/h̄ being the Fermi wave
number in the kx-ky plane for S. The assumption that �0 is
constant implies that we do not take the inverse proximity effect
(from F into S) into account, which is a common assumption
[67].

B. Wave functions

The wave function is obtained by solving the Hamiltonian at
an energy E in each region. Throughout this paper, we assume
E ∼ �0 
 μ. The wave function for z � 0 is given by

�k‖(z) = Ǩ+
N
�i + Ǩ−

N �r, (17)

where Ǩ±
N = e±iτ̌zkN z, with kN = √

2mNμ′/h̄ and τ̌z =
diag[σ̂0, − σ̂0] being the third Pauli matrix in Nambu space.
The vector �i represents the wave function amplitude of the
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incident particles, which is given by

�i =
{

[1 0 0 0]T for an up-spin electron,

[0 1 0 0]T for a down-spin electron.
(18)

The vector �r describes the wave function amplitude of the
reflected particles as

�r = [rp

↑ r
p

↓ rh
↑ rh

↓]T , (19)

where r
p
α and rh

α , with α ∈ {↑ , ↓}, are the normal and Andreev
reflection coefficients, respectively. The wave function for
0 < z < L is given by

�k‖(z) = ǍǨ+
F

�fP + ǍǨ−
F

�fN, (20)

where Ǩ±
F = diag[ e±ik+

F z,e±ik−
F z,e±ik+

F z,e±ik−
F z ], with k±

F =√
2mF (μ′ ∓ M0)/h̄. The matrix Ǎ = diag[Â,Â] characterizes

the spin structure of the F, where Â is given by [60]

Â =
[cos(θM/2) − sin(θM/2)

sin(θM/2) cos(θM/2)

]
. (21)

The vectors �fP (N) describe the wave function amplitudes of
particles propagating in the positive (negative) z direction.
They are defined as

�fP = [
f

p

↑,P f
p

↓,P f h
↑,P f h

↓,P

]T
, (22)

�fN = [
f

p

↑,N f
p

↓,N f h
↑,N f h

↓,N

]T
. (23)

The wave function for z � L is given by

�k‖(z) = ǓǨS�t, (24)

where ǨS = diag[e+ikSz, e+ikSz, e−ikSz, e−ikSz], with kS =√
2m⊥μ′/h̄. The vector �t describes the wave function ampli-

tudes of the transmitted particles as

�t = [tp↑ t
p

↓ th↑ th↓]T . (25)

The matrix Ǔ describes the amplitude of the wave function in
the superconductor as

Ǔ =
[
uk‖ σ̂0 vk‖ D̂k‖

vk‖ D̂
†
k‖ uk‖ σ̂0

]
, (26)

D̂k‖ = �̂k‖/�0, (27)

with

uk‖ = 1√
2

√
1 + �k‖

E
, (28)

vk‖ = 1√
2

√
1 − �k‖

E
, (29)

�k‖ =
√

E2 − |dk‖ |2, (30)

where dk‖ is obtained from the relation dk‖ σ̂0 = �̂k‖�̂
†
k‖ .

C. Differential conductance

All coefficients in Eqs. (17), (20), and (24) can be deter-
mined by four boundary conditions at z = 0 and z = L. The

first two boundary conditions are derived from continuity at
z = 0. They are given by [67]

lim
z↑0

�k‖ = lim
z↓0

�k‖ , (31)

lim
z↑0

[
∂�k‖

∂z
+ 2m(z)

h̄2 F̌1�k‖

]
= lim

z↓0

∂�k‖

∂z
, (32)

where F̌1 = diag[F̂1,k‖ ,−F̂ ∗
1,−k‖]. The other boundary condi-

tions are related to the interface at z = L as follows:

lim
z↑L

�k‖ = lim
z↓L

�k‖ , (33)

lim
z↑L

[
∂�k‖

∂z
+ 2m(z)

h̄2 F̌2�k‖

]
= lim

z↓L

∂�k‖

∂z
, (34)

where F̌2 = diag[F̂2,k‖ , − F̂ ∗
2,−k‖].

In the Supplemental Material [68], we derive the expression
for the current through the N/F/S junction and find that it is
the same as in the original Blonder-Tinkham-Klapwijk (BTK)
theory [67]. Hence, we can use the same differential tunneling
conductance resulting from a spin-α incident particle, which
is given by

σ (E) =
∑
k‖,α

′
σα(E,k‖), (35)

σα(E,k‖) = 1 + |rh
↑|2 + |rh

↓|2 − |rp

↑ |2 − |rp

↓ |2, (36)

where σα(E,k‖) is the angle-resolved differential conductance
for a spin-α incident particle with α ∈ {↑ , ↓} [69]. To model a
cylindrical Fermi surface in a quasi-two-dimensional material,
we introduce a cutoff in the summation with respect to k‖ as∑

k‖,α

′ · · · ≡
∑
k‖,α

· · · �(|k‖| − kc), (37)

where kc = kN sin θc and θc is the cutoff angle.

III. RESULTS

The aim of this paper is to model the conductance of a
Au/SrRuO3/Sr2RuO4 junction. A realistic effective mass for
the ferromagnet SrRuO3 is mF = 7mN [70]. We approximate
the Sr2RuO4 γ band by modeling the Fermi surface as an ellip-
soid (m‖ = 1.3, m⊥ = 16) with its top and bottom cut off (θc =
π/10). The chirality is set to χ = 1. We will compare a N/F/S
junction without barriers to a N/F/S junction with a small tunnel
barrier F1 at the N/F interface. Because of epitaxial growth and
minimal lattice mismatch, a smooth F/S interface is expected,
and therefore, no barrier is introduced. The spin-orbit coupling
is set to zero. Effects of FSO are discussed in Appendix C.

A. Direction of the magnetization

We first show the differential conductances of a junction
with a spin-singlet s-wave superconductor in Fig. 2(a), where
results with and without the interface barrier are indicated by
solid and dashed lines, respectively. Throughout this paper,
the differential conductance is normalized by its value in the
normal state (i.e., �0 = 0), and the energy is normalized by
the maximum amplitude of the pair potential in the absence
of an external magnetic field �0. As shown in Fig. 2(a),
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FIG. 2. The dimensionless tunneling conductance using pair potentials (a) SW, (b) CPW, and (c) HPW without barriers (Z1 = 0, solid lines)
and including a small barrier at the first interface (Z1 = 0.8, dashed lines). The SW case is independent of the magnetization angle. For CPW
and HPW, the magnetization angle varies from θM = 0 (blue lines) to θM = π/2 (red lines). X = 0.6, kF L = 11.

the coherence peaks appear at an energy lower than the gap
amplitude (E ≈ 0.6�0), which is a result of the ferromagnet
with finite thickness L. Comparing the solid and dashed lines,
we see that the barrier potential at the N/F interface sharpens
the peaks around E ≈ 0.5�0 and the dips around E ≈ �0

in the differential conductance. In addition, the zero-energy
dip becomes more prominent with increasing barrier strength.
This is consistent with the well-known N/S junction [67]. In
spin-singlet superconductors the conductance does not depend
on the direction of the magnetization (i.e., θM ) because a singlet
Cooper pair does not have a finite total spin. It should be noted
that, throughout this paper, the pair potential is taken to be

non-self-consistent (i.e., �0 is constant). The sharp peaks in
the conductance would be broadened and lowered if we were
to include the self-consistency [71].

The differential conductances of the spin-triplet CPW and
HPW superconductors are shown in Figs. 2(b) and 2(c),
respectively. The blue and red lines represent the results for
θM = 0 and π/2, respectively. The cases with and without the
N/F interface barrier are indicated by the solid and dashed lines,
respectively. The results of the CPW with θM = 0 case are
similar to the SW case; there are two peaks around E ≈ 0.6�0

and a dip at zero energy. The position of the peaks is determined
by the F thickness L and the magnitude of the magnetization

FIG. 3. Dimensionless tunneling conductance using pair potentials (a) SW, (b) CPW with θM = 0, (c) HPW with θM = 0, which is identical
to CPW with θM = π/2, and (d) HPW with θM = π/2. Magnetization strengths vary from X = 0 (normal metal) to X = 0.99 (fully polarized).
Z1 = 0.8, kF L = 11.
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TABLE I. Matrix structure of the pair potential. The spin-
quantization axis is taken to be parallel to the magnetization vector M .
The first and second rows are for M ‖ z (i.e., θM = 0) and for M ‖ x
(i.e., θM = π/2), respectively. We can see that the 4×4 Hamiltonian
can be reduced to two 2×2 Hamiltonian matrices except for the case
of the helical p wave with θM = π/2. The angle φ satisfies the
relations kx = k‖ cos φ and ky = k‖ sin φ, with k‖ = |k‖| being the
momentum parallel to the interfaces. The momentum is normalized:
k̄x(y) = kx(y)/k‖. The factor χ is the chirality of a chiral p-wave
superconductor.

s-wave Chiral p-wave Helical p-wave

M ‖ z
[

1
−1

] [
eiχφ

eiχφ

] [
eiφ

e−iφ

]

M ‖ x
[

1
−1

] [
eiχφ

−eiχφ

] [
k̄x −ik̄y

−ik̄y k̄x

]

(X ≡ M/μ). In the CPW case, the Hamiltonian becomes
equivalent to that for the SW case, except for the amplitude
of the pair potential. Therefore, the corresponding results are
qualitatively the same.

In the present case, the experimentally observed zero-
bias conductance peak (ZBCP) [22,23] does not appear. The
Andreev bound states in CPW and HPW superconductors
are located in the b-c and c-a planes. The junction under
consideration is, however, along the c axis, implying that

these Andreev bound states cannot contribute to the differential
conductance [72].

Comparing the red line in Fig. 2(b) to the blue line in
Fig. 2(c), we find that the conductance spectra of CPW with
θM = π/2 and HPW with θM = 0 are identical. In both cases,
the d vector is perpendicular to the magnetization (d ⊥ M);
that is, the total spin of the Cooper pairs is parallel to the
magnetization.

By analytically rotating the spin quantization axis, we
reduce the matrix form of the pair potential matrix in the proper
spin axis in which the z direction is parallel to the magnetiza-
tion. By doing this, we demonstrate that the pair potentials in
the cases of CPW with θM = π/2 and HPW with θM = 0 are
qualitatively the same, except for the spin-dependent chirality.
A full derivation is given in Appendix C; the matrix structures
of the pair potential are summarized in Table I. Hence, as long
as there is no perturbation which mixes the spins or depends
on the chirality (e.g., spin-active interface, spin-orbit coupling,
or a perturbation which breaks translational symmetry in the x

and/or y direction such as walls and impurities), it is impossible
to distinguish between these two cases.

B. Amplitude of the magnetization

The effects of the amplitude of the magnetization are shown
in Fig. 3, where the pair potential and the direction of the
magnetization are set to SW with θM = 0 [Fig. 3(a)], CPW with
θM = 0 [Fig. 3(b)], CPW with θM = π/2 [Fig. 3(c)], and HPW

FIG. 4. The dimensionless tunneling conductance using pair potentials (a) SW, (b) CPW with θM = 0, (c) HPW with θM = 0, which is
identical to CPW with θM = π/2, and (d) HPW with θM = π/2 without a ferromagnet (kF L = 0) and for varying thicknesses kF L of the
ferromagnet. Z1 = 0.8, X = 0.6.
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FIG. 5. Effects of an external magnetic field on the dimensionless tunneling conductance in the absence of the barrier potential. The pair
potential is assumed to be (a) SW, (b) CPW with θM = 0, (c) HPW with θM = 0, and (d) HPW with θM = π/2. The results for the CPW with
θM = π/2 are identical to the results in (c). The parameters are set to Z1 = 0, X = 0.6, and kF L = 11.

with θM = π/2 [Fig. 3(d)]. We note that the result for the CPW
with θM = π/2 and that for the HPW with θM = 0 are identical
to each other. The barrier strength and the thickness of the
ferromagnet are set to Z1 = 0.8 and kF L = 11, respectively.

In the SW case in the absence of magnetization (X = 0),
we obtain the BTK-like U-shaped spectrum [67], as shown in
Fig. 3(a). Since the system is regarded as a N/N/S junction
when X = 0, this result is well understood within the BTK
theory. When the ferromagnet is fully spin polarized (X ≈ 1),
the conductance becomes zero in the energy range |E| < �0.
Since there is no propagating channel in the S, a quasiparticle
with energy |E| < �0 must be either normally or Andreev
reflected at the F/S interface. In spin-singlet superconductors,
Andreev reflection is always accompanied by a spin flip (e.g.,
an up-spin particle is reflected as a down-spin hole). On the
other hand, there is only one band in a fully polarized ferro-
magnet, which implies that Andreev reflection is prohibited.
As a result, the conductance in the energy range |E| < �0 is
always zero. For moderate spin polarizations, the conductance
spectra have complex structures that are sensitive to the
amplitude of M.

The conductance spectrum in the CPW with θM = 0 case
[Fig. 3(b)] is qualitatively the same as the SW spectrum
because Cooper pairs consist of quasiparticles with opposite
spins. However, the CPW conductance changes more gradually
as a function of magnetization because the amplitude of the
pair potential changes depending on kz. In the cases where

d ⊥ M [Fig. 3(c)], the conductance spectra do not depend on
M qualitatively because the total spin of the Cooper pairs
aligns with the magnetization. This implies that the presence
of the ferromagnet does not affect the superconductivity,
and therefore, the conductance spectra are insensitive to the
magnetization. Contrary to Figs. 3(a) and 3(b), the conductance
in the HPW with θM = π/2 case [Fig. 3(d)] remains finite even
if X ≈ 1. In HPW superconductors, the d vector lies in the xy

plain in spin space. Therefore, the k‖-dependent part of the
Andreev reflection is suppressed by the magnetization in the x

direction.

C. Thickness of the ferromagnet

In Fig. 4, the conductance spectra are plotted for several
thicknesses of the ferromagnetic layer L. In the SW junction
[Fig. 4(a)], the conductance shows the BTK-like U-shaped
spectrum [67], as seen in Fig. 3(a) with X = 0. The distance
between the two peaks decreases with increasing thickness.
Simultaneously, the structures at E = �0 change from peaks
to dips. When kF L = 15, the two peaks merge into a ZBCP.
We note that this peak is different from the well-known ZBCP
in d-wave superconductors, which stems from the interference
between incident and reflected quasiparticles at the interface.
On the other hand, the peak at the zero energy in Fig. 3(a) is
formed by an accidental constructive Fabry-Pérot interference
in the ferromagnet [73]. Hence, this peak is not robustly
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FIG. 6. Effects of an external magnetic field on the dimensionless tunneling conductance in the presence of the barrier potential Z1 = 0.8
in the same manner as in Fig. 5.

resistant to impurities and is therefore not related to the
topology in the superconductor.

Similar behavior is seen in the spectrum of the CPW with
θM = 0 case [Fig. 4(b)]. In HPW superconductors [Fig. 4(d)],
the distance between the two peaks first reduces for 0 � kF L �
11, whereas it increases for 11 � kF L � 15. However, the
constructive interference as seen in CPW superconductors
never occurs at zero energy. This is a significant difference
between CPW and HPW superconductors.

When the d vector is perpendicular to the magnetization
(i.e., d ⊥ M), the results are insensitive to the ferromagnet
thickness, as shown in Fig. 4(c). This can also be interpreted in
terms of the relation between the direction of M and the total
spin of Cooper pairs in the superconductor.

D. External magnetic field

The magnetic field dependence of the conductance in the
absence (presence) of a barrier at the N/F interface is shown
in Fig. 5 (Fig. 6), where the other parameters are set to the
same values used in Fig. 3. The pair potential is assumed to be
SW [Figs. 5(a) and 6(a)], CPW with θM = 0 [Figs. 5(b) and
6(b)], CPW with θM = π/2 [Figs. 5(c) and 6(c)], and HPW
with θM = π/2 [Figs. 5(d) and 6(d)], where the results for the
HPW with θM = 0 are identical to the results in Figs. 5(c) and
6(c). We show only the results for an external field H � 0.6Hc

since the effects of the nucleation of vortices are not taken into
account.

In general, the Doppler shift causes peaks to split into two
smaller peaks, which shift with k‖, as follows from Eq. (A7).
Since pairing symmetries have different k‖ dependences, the
evolution of the peak shape is different in each case. Both SW
and CPW with θM = 0 [Figs. 5(a) and 5(b)] show a three-dip
structure that gradually transitions into a broad ZBCP. For the
CPW with θM = π/2 and HPW with θM = 0 cases [Fig. 5(c)],
the coherence peaks are smeared out by the magnetic field,
although the central dip remains. In the HPW with θM = π/2
case [Fig. 5(d)], the two peaks are split into four smaller peaks
[H/Hc = 0.4 in Fig. 5(d)]. The outer peaks shift to away from
zero energy, while the inner ones merge and form a small
ZBCP.

Including a barrier in the SW, both the CPW and HPW
with θM = 0 cases [Figs. 6(a)–6(c)] do not change behavior
qualitatively, but the overall structure is more pronounced.
In the HPW with θM = π/2 case [Fig. 6(d)], however, the
spectrum changes from a plateau to a three-peak structure.
The CPW with θM = 0 and HPW with θM = π/2 cases can
be distinguished by looking at the relative peak height of the
ZBCP.

IV. SUMMARY

We have investigated the conductance of a N/F/S junction
with various pair potentials as a function of ferromagnetic
properties (thickness, magnetization strength, and direction).
The SW and CPW with θM = 0 cases are similar, although
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the latter shows a more rounded conductance due to the angle
dependence of the pair potential. We found that the cases where
the d vector is perpendicular to the magnetization direction
(CPW with θM = π/2 and HPW with θM = 0) are identical. In
these cases, the opposite-spin parts of the Hamiltonian are de-
coupled, and therefore, they are insensitive to the ferromagnet
thickness and magnetization strength. The cases where the d

vector is parallel to the magnetization direction are very differ-
ent due to a more complex structure. The main difference is that
CPW with θM = 0 converges to a zero-energy peak for kF L =
15, while HPW with θM = π/2 shows a dip. In the presence
of an external magnetic field, the evolution of the conductance
spectra depends on the pairing symmetry. In particular, the
CPW with θM = 0 case gives an accidental ZBCP. The central
dip in the CPW with θM = π/2 and HPW with θM = 0
cases remains. In the HPW with θM = π/2 case, the structure
depends on the barrier strength: a plateau or three peaks.

For future research, it would be interesting to take higher
applied magnetic fields into account by including Abrikosov
vortices. To obtain a more accurate representation of Sr2RuO4,
tunneling spectroscopy can be simulated using a multiband
model [74,75].
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APPENDIX A: DOPPLER SHIFT

In the presence of a magnetic field H = ∇ × A the canon-
ical momentum operator p is replaced by the kinetic momen-
tum operator π = p − eA(�r)/c. As a result, the quasiparticle
kinetic energy ξk becomes

ξk = 1

2m
π · π − μ = − h̄2

2m

(
∇ − i

|e|
h̄c

A
)2

− μ, (A1)

where μ is the chemical potential. In the weak-coupling limit
(�0 
 μ), this can be approximated by

ξk ≈ − h̄2∇2

2m
− i

h̄|e|
mc

∇ · A − μ. (A2)

In our case, an external magnetic field H is applied in the x

direction. Hence, the magnetic field and vector potentials for
z � 0 are approximately [76]

H(z) = He−z/λL ex, (A3)

A(z) = −HλLe−z/λL ey, (A4)

where λL is the London penetration depth. The spatial depen-
dence of A is characterized by λL, whereas the Cooper pair
wave function is characterized by the coherence length ξ0. In
the type-II limit (λL/ξ0 � 1), the spatial dependence of A
does not change the differential conductance. Therefore, we
introduce the constant vector potential [77]

A(z) ≈ −HλLey. (A5)

This linear response is valid only in the absence of vortices, i.e.,
for small magnetic fields (H � 0.6Hc). Assuming plane waves
in the x and y directions, the wave function can be written as
ψ(x,y,z) = ψ(z)eikxxeikyy , such that Eq. (A2) becomes

ξk = − h̄2

2m

∂2

∂z2
+ h̄2k2

‖
2m

− h̄|e|
mc

HλLky − μ, (A6)

where k2
‖ = k2

x + k2
y . Defining μ′ ≡ μ − h̄2k2

‖/2m and sub-
stituting Hc = φ0/πξ0λL, φ0 = πh̄c/|e|, ξ0 = h̄vF /�0, ky =
k‖ sin ϕ, and vF = h̄kF /m, Eq. (A6) can be written as

ξk = − h̄2

2m

∂2

∂z2
− μ′ − �0

H

Hc

k‖
kF

sin ϕ, (A7)

where Hc is the thermodynamical critical field.

APPENDIX B: NUMERICAL METHOD

Substituting wave functions (17) and (20) into boundary
condition (31) gives

�i + �r = Ǎ( �fp + �fn). (B1)

We do the same with boundary condition (32) and divide by
ik0 for normalization, where we define k0 as the momentum in
the normal metal, i.e., k0 = √

2mNμ/h̄. The second boundary
condition becomes(

kN

k0
τ̌0 − 2iŽ1

)
�i −

(
kN

k0
τ̌z + 2iŽ1

)
�r = ǍQ̌( �fp − �fn), (B2)

where Q̌ = diag[k+
F , k−

F , k+
F , k−

F ]/k0 and Ž1 is the dimension-
less barrier strength of the first interface, given by

Ž1 = m(z)F̌1

h̄2k0
. (B3)

We substitute wave functions (20) and (24) into the third
boundary condition, Eq. (33), to obtain

ǍǨL+
F

�fp + ǍǨL−
F

�fn = ǓǨL
S
�t, (B4)

where we used ǨL±
F = Ǩ±

F |
z=L

and ǨL±
S = Ǩ±

S |
z=L

for
brevity. Similarly, from Eq. (34), we get

ǍQ̌
(
ǨL+

F
�fp − ǨL−

F
�fn

) − 2iŽSOǍ
(
ǨL+

F
�fp + ǨL−

F
�fn

)
= kS

k0
Ǔ τ̌zǨ

L
S
�t, (B5)

where ŽSO is the dimensionless spin-orbit coupling strength at
the second interface, defined as

ŽSO = m(z)F̌SO

h̄2k0
. (B6)

Equations (B1), (B2), (B4), and (B5) form a system of 16
equations with 16 unknowns. Substituting Eqs. (B4) and (B5)
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into one another, we can write M̌1 �fp = M̌2 �fn, with

M̌1 = ǍQ̌ǨL+
F − 2iŽSOǍǨL+

F − kS

k0
Ǔ τ̌zǓ

−1ǍǨL+
F ,

M̌2 = ǍQ̌ǨL−
F + 2iŽSOǍǨL−

F + kS

k0
Ǔ τ̌zǓ

−1ǍǨL−
F .

Combining this with Eq. (B2), we can express �fp and �fn in
terms of �i and �r as

�fn = M̌−1
3 (�i + �r), (B7)

�fp = M̌−1
1 M̌2M̌

−1
3 (�i + �r), (B8)

where M̌3 = Ǎ(M̌−1
1 M̌2 + τ̌0). Substituting Eqs. (B7) and (B8)

into Eq. (B1), we find that

�r = M̌−1
4 M̌5�i, (B9)

with

M̌4 = kN

k0
τ̌z + 2iŽ1 − ǍQ̌

(
M̌−1

1 M̌2 − �σ0
)
M̌−1

3 ,

M̌5 = kN

k0
τ̌0 − 2iŽ1 + ǍQ̌

(
M̌−1

1 M̌2 − �σ0
)
M̌−1

3 .

Using the �r coefficients, the conductance can be determined
by Eq. (36).

APPENDIX C: ROTATION OF THE SPIN
QUANTIZATION AXIS

To discuss the spin of Cooper pairs, it is convenient to rotate
the spin quantization axis such that the new z axis is parallel
to the magnetization M. In our case, M is in the xz plane in
spin space. Therefore, the rotation should be around the y axis
in spin space, which is carried out by the unitary operator

Û (θM ) = exp[i(θM/2)σ̂y] (C1)

= σ̂0 cos (θM/2) + iσ̂y sin (θM/2), (C2)

with which we can rotate spin space by an angle θM . The
unitary matrix in Eq. (C2) satisfies Û ∗ = Û , and therefore, the
unitary matrix in Nambu space is given by Ǔ = diag[Û ,Û ∗] =
diag[Û ,Û ]. The BdG equation changes accordingly and be-
comes

Ȟ� = E� → Ȟ ′�̃ = E�̃, (C3)

with

�̃ = Ǔ�, Ȟ ′ = ǓȞ Ǔ †, (C4)

� = [ψ↑ ψ↓ ψ
†
↑ ψ

†
↓]T . (C5)

Only the magnetization term depends on spin in the single-
particle Hamiltonian ĥ(z). In the new spin basis, the magneti-
zation terms for particles and holes are given by, respectively,

Û (M · σ̂ )Û † = Mσ̂z, (C6)

Û (−M · σ̂ ∗)Û † = −Mσ̂z. (C7)

The pair potential in the new spin space is

[
�̂k‖

−�̂
∗
−k‖

]
→

[
Û�̂k‖Û

†

−[
Û�̂−k‖Û

†]∗

]
,

(C8)

where we used the relation Û ∗ = Û . The superconducting pair
potential �̂k‖ is transformed to

Û�̂k‖Û
†

=
⎧⎨
⎩

�0iσ̂y for SW,

�0(k̄x + iχk̄y)[cos θMσ̂x + sin θMσ̂z] for CPW,
�0(k̄x σ̂0 + ik̄y[cos θMσ̂z − sin θMσ̂x]) for HPW.

(C9)

If we substitute θM = 0,π/2, these expressions reduce to the
pair potentials in Table I in the main text.

We focus on CPW with θM = π/2 and HPW with θM = 0.
In both cases, the magnetization M is perpendicular to the d

vector. In other words, M and the total spin of the Cooper pairs
are collinear. Therefore, the magnetization does not destroy the
Cooper pairs. The 4×4 Hamiltonian matrix can be reduced to
two 2×2 matrices:

H= 1

2

∑
k‖

∫
�̃†(z)ȞB(z)�̃(z) dz

= 1

2

∑
k‖

∫ ∑
α=±1

�̃†
α

[
ξ + αM �α,k‖

−�∗
α,−k‖ −(ξ + αM)

]
�̃α dz.

(C10)

We have introduced a new basis which depends on the spin
sector α: �̃α(z) = [ ψ̃α(z) ψ̃†

α(z)]. Equation (C10) implies that
the system can be decomposed into the spin-up (α = 1) and
spin-down (α = −1) subsystems, where we have redefined the
up and down spins for the new spin quantization axis. The

FIG. 7. The dimensionless tunneling conductance for CPW with
θM = π/2 and HPW with θM = 0, including spin-orbit coupling
ZSO = 1. Z1 = 0.8, X = 0.6, kF L = 11.
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α-dependent pair potential is given by

�α,k‖ =
{

α�0e
iφ for CPW with θM = π/2,

�0e
iαφ for HPW with θM = 0,

(C11)

where we fix χ = 1. In the CPW with θM = π/2 case, the
chiralities for the up- and down-spin sectors are the same,
while the signs of the α-dependent pair potential are opposite.
In the HPW with θM = 0 case, the chiralities are opposite,
while the signs of the α-dependent pair potential are equal.

Therefore, as long as there is no perturbation which mixes
the spins or depends on the chirality (e.g., spin-active in-
terface, spin-orbit coupling, and perturbations which break
translational symmetry in the x and/or y direction such as
walls and impurities), it is impossible to distinguish these two
cases.

This is demonstrated in Fig. 7, where we introduced spin-
orbit coupling at the F/S interface by setting ZSO = 1. In the
absence spin-orbit coupling, these two graphs overlap, as seen
in Figs. 3(c), 4(c), 5(c), and 6(c). However, in Fig. 7, we can
see that they are, indeed, slightly different.
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