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Recent experimental evidences point to rotation symmetry-breaking superconductivity in doped Bi2Se3, where
the relevant order parameter belongs to a two-component odd-parity representation Eu of the crystal point group.
The Eu channel admits two possible phases, the nematic phase, that well explains the reported rotation symmetry
breaking, and the chiral phase, that breaks time-reversal symmetry. In weakly anisotropic three-dimensional (3D)
systems the nematic phase is the stable one. We study the stability of the nematic phase versus the chiral phase as
a function of the anisotropy of the Fermi surface and the thickness of the sample and show that by increasing the
2D character of the Fermi surface or by reducing the number of layers in thin slabs the chiral phases is favored.
For the extreme 2D limit composed by a single layer of Bi2Se3 the chiral phase is always the stable one and the
system hosts two chiral Majorana modes flowing at the boundary of the system.
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I. INTRODUCTION

Chiral superconductivity is a topological quantum state
of matter in which an unconventional superconductor spon-
taneously breaks time-reversal symmetry and develops an
intrinsic angular momentum [1]. Its peculiar gap structure
realizes a triplet px + ipy state that is topologically nontrivial.
Key signatures in two-dimensional (2D) systems are chiral
Majorana edge modes and Majorana zero energy states in
vortex cores [2–7]. In three dimensions, chiral superconduc-
tivity (SC) is also possible, allowing the realization of a Weyl
superconductor with Majorana arcs on the surface [8–10]. A
possible candidate material for hosting this superconducting
state is SrPtAs [11,12]. Chiral superconductors have attracted
great interest for their unconventional character and their
potential use in the field of quantum computation [13,14].

Recently, strong experimental evidences of unconventional
superconductivity have been reported for a well-known mate-
rial, Bi2Se3, that in its pristine form is a topological insulator
(TI) [15,16]. Possibly odd-parity superconductivity was first
reported in Bi2Se3 intercalated with Cu [17–19], although
clear evidence for the characteristic surface Andreev states has
remained controversial [20–22]. The first studies motivated
the theoretical characterization of 3D, time-reversal invari-
ant (TRI) topological superconductivity in centrosymmetric
systems [23]. A much richer phenomenology has recently
emerged, showing a broken C3 symmetry in the superconduct-
ing state in samples intercalated with Cu, Nb, and Sr [24–27].
Several experiments reported uniaxial anisotropy response to
an in-plane magnetic field in the Knight shift [28], the upper
critical field [29,30], the magnetic torque [27], and the specific
heat [29]. Specific heat [19] and penetration depth [31,32]
have excluded the presence of line nodes on the Fermi surface.
All these observations support a pairing state of nematic type
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belonging to the two-component representation Eu of the
crystal point group [33,34].

Theoretical modeling has also addressed different aspects
of the Eu states from bulk properties [35–37] to surface
states [10], vortex states [38,39], the interplay between Eu

superconductivity and magnetism in promoting time-reversal
symmetry-breaking states [40,41], and the role of odd-parity
fluctuations as the mechanism at the basis of Eu superconduc-
tivity [42] and preemptive nematicity above Tc [43,44].

In this work we study superconductivity in Bi2Se3 in the
Eu odd-parity channel, focusing on the stability of the nematic
phase versus the chiral phase as a function of the anisotropy
of the system and the thickness of the sample. Bi2Se3 is a
layered material in which the unit cell is constituted by a
quintuple layer (QL) structure. It is therefore reasonable to
study the behavior of the system by varying the interlayer
coupling and the chemical potential. We show that an increase
of the two-dimensional character of the Fermi surface favors
the chiral phase. Chemical dopants intercalate between the unit
cells and modify their distance and relative coupling, together
with the charge density. Strong anisotropy can be achieved by
increasing the doping or by properly choosing the dopants so
to increase the interlayer spacing of the materials.

Interestingly, a second root towards chiral superconductiv-
ity is provided by exfoliation. In particular, the chiral phase is
the natural phase of the Eu channel in the extreme 2D limit of
a single layer [33,34]. We show that by reducing the thickness
of the sample without increasing the anisotropy of the system
naturally drives the system towards the chiral phase. We find as
a rough estimate that a thin slabs with approximately 10 layers
marks the stability threshold between the nematic and the chiral
phase. Experimentally, exfoliation down to the single QL case
has been achieved [45,46], making this root a promising way
toward chiral quasi-2D superconductors.

The single-layer case acquires high relevance in the context
of 2D materials engineering, whereby properties of a material
can be fine-tuned by coupling with a proper substrate. By
placing a single layer of Bi2Se3 on top of a suitable substrate,
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the planar mirror inversion symmetry breaks explicitly, the
point group is reduced to C3v , and the system is expected to
show Rashba spin-orbit interaction. This possibility becomes
highly relevant in the light of recent theoretical develop-
ments concerning time-reversal symmetry breaking in 2D
noncentrosymmetric systems [47], according to which the
superconducting state can break time-reversal symmetry only
in the presence of a threefold rotation symmetry. As shown in
Ref. [47], if the superconducting order parameter belongs to the
Eu representation the chiral state must appear for sufficiently
large Rashba coupling. This implies that the SC order param-
eter only gradually changes as the surface Rashba coupling
is included, even if the Kramers degeneracy is lifted. These
considerations boost single layers of Bi2Se3 as an optimal
candidate for the observation of chiral superconductivity in
2D systems.

The realization of the chiral state promotes the system to
class D topological superconductors that in 2D are character-
ized by a Z topological invariant and are expected to show
chiral Majorana modes flowing at the boundary [48]. The
number of chiral Majorana modes is dictated by the Chern
number, that in the present case takes the value Cch = ±2 for
the px ∓ ipy solution. Starting from a tight-binding model that
well approximates the complicated band structure of Bi2Se3,
we show that the chiral phase in this material supports two
chiral Majorana modes that copropagate at the boundary of
the system and can find useful applications in interferometric
schemes [49]. The low-energy Hamiltonian of the system is
a massive Dirac Hamiltonian, so our results apply to generic
systems that share the same low-energy description, such as TI
thin films [50] and Rashba bilayer system [51].

The work is structured as follows: In Sec. II we review
the known analysis of the two-component superconducting
channel of the D3d crystal point group. In Sec. III we derive the
Ginzburg-Landau function that describes the condensation of
the two-component channel. In Sec. IV we study the stability
of the chiral phase and show that in the strong anisotropic case
it is the favored phase. In Sec. V we show that by reducing the
thickness of the sample a chiral phase is obtained for thin slabs.
In Sec. VI we study the surface states through a tight-binding
numerical simulation. Finally, in Sec. VII we conclude with a
summary of the results.

II. Eu SUPERCONDUCTIVITY

We consider doped Bi2Se3 in the k · p low-energy approx-
imation introduced in Ref. [23]. The point group of the crystal
is D3d and the system can be described by a simplified model
in which the unit cell is constituted by a bilayer structure
where spin s electrons occupy pz-like orbitals on the top (T)
and bottom (B) layers of the microscopic QL unit cell. The
low-energy Hamiltonian is described by a massive anisotropic
(vz �= v) Dirac model that reads

H 0
k = mσx + v(kxsy − kysx)σz + vzkzσy, (1)

where Pauli matrices σi and si describe the orbital and spin
degrees of freedom, respectively. The Hamiltonian is TRI,
where the time reversal operator is T = isyK with K complex
conjugation.

Superconductivity is described within the Bogoliubov–de
Gennes (BdG) formalism by introducing the Nambu spinor
�k = (ck,isyc†−k)T , with ck fermionic annihilation opera-
tors of the Hamiltonian H 0

k . The Hamiltonian reads Ĥ =
1
2

∫
dk�

†
kH (k)�k, with

Hk = (
H 0

k − μ
)
τz + �kτ+ + �

†
kτ−, (2)

and with �k generic momentum-dependent 4 × 4 gap matri-
ces. The Nambu construction imposes that Hk has a charge
conjugation symmetry C implemented as UCH (−k)∗U †

C =
−H (k), with UC = syτy . C imposes a restriction on the
pairing matrix, sy�

∗(−k)sy = �(k). If pairing is momentum
independent, there are only six possible matrices in the ir-
reducible representations of the D3d point group that satisfy
this constraint and they have been classified in Ref. [23].
Accordingly, they are given by the even-parity channel I and
σx belonging to the A1g representation, the odd-parity channel
σysz belonging to A1u representation, σz belonging to the
A2u representation, and (−σysy,σysx) belonging to the Eu

representation. In particular, the latter forms a two-component
representation that can describe nematic or chiral SC [33,34].

Focusing on the Eu odd-parity channel we associate to the
matrix operators the following order parameters:

ψ = (ψx,ψy) ∼ (−σysy,σysx) ∼ Eu.

In Ref. [23] it was shown that when only local pairing is
considered, the A1u is the leading instability in a wide range of
parameters in the phase diagram. On the other hand, the author
has shown that inclusion of momentum-dependent pairing
terms only affects the critical temperature of the nematic
channelEu [40], rising it with respect to the critical temperature
of the A1u channel. Recently, odd-parity fluctuations together
with repulsive Coulomb interactions have also emerged as
a possible mechanism that selects the Eu odd-parity two-
component channel as the leading SC channel [42]. We then
assume that the nematic channel condenses and focus on the
competition between the nematic and chiral phases.

III. GINZBURG-LANDAU THEORY

We start considering the Eu phase ψ and study the condi-
tions under which a chiral phase occurs. Symmetry dictates the
form of its free energy that reads

Fψ = a|ψ |2 + b1|ψ |4 + b2|ψxψ
∗
y − ψyψ

∗
x |2. (3)

The Eu representation admits two possible superconducting
states: a nematic state ψ ∝ (1,0) which is time-reversal invari-
ant and has point nodes on the equator of the Fermi surface and
a chiral state ψ ∝ (1,i) which breaks TR symmetry and has
C = ±2 Weyl nodes at the north and south pole of the Fermi
surface [34]. The sign of the coupling b2 determines whether
the Eu representation chooses the nematic (for b2 > 0) or the
chiral state (for b2 < 0). Microscopic calculations show that
for a 3D isotropic model b2 > 0, so that no TRB phase may
arise in the system [33,34]. We now specifically study the sign
of the coupling b2 versus Fermi surface anisotropy and sample
thickness.

Setting the chemical potential in the conduction band,
μ > m, we can reduce the dimensionality of the problem by
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projecting the Hamiltonian and the gap matrix down to the
conduction band, so that the gap matrix reads

�k = ψxdx · s̃ + ψydy · s̃, (4)

where dx = (0, − k̃z,k̃y) and dy = (k̃z,0, − k̃x), the mo-
mentum has been rescaled as k̃ = (vkx,vky,vzkz)/μ, and
s̃ is a momentum-dependent spin-1/2 like vector operator
parametrizing the twofold-degenerate subspace at every k
point associated to Kramers degeneracy [52]. Explicitly, defin-
ing |ψk,1〉 and |ψk,2〉 the two degenerate eigenstates in the
conduction band at momentum k, the vector s̃ is obtained
as s̃x = |ψ1,k〉〈ψ2,k| + H.c., s̃y = −i|ψ1,k〉〈ψ2,k| + H.c., and
s̃z = |ψ1,k〉〈ψ1,k| − |ψ2,k〉〈ψ2,k|.

We can now integrate away the fermionic degrees of free-
dom and obtain a nonlinear functional for the order parameters

S =
∫ β

0
dτ

1

V
Tr[�̂†�̂] − 1

β
Tr ln

( − G−1
0 + �

)
, (5)

with −G−1
0 = ∂τ + (H0 − μ)τz, � = τ+�̂ + τ−�̂†, β = 1/T

the inverse temperature, and the trace is over all the degrees
of freedom, Tr ≡ T

∑
ω

∫
dk. As usual, the microscopic GL

theory is obtained by expanding the nonlinear action in powers
of the fields,

Tr ln
( − G−1

0 +�
)=Tr ln

(−G−1
0

) −
∞∑

n=1

1

n
Tr(G0�)n. (6)

The fourth-order coefficient are determined by the
fourth-order averages 〈�k�

∗
k�k�

∗
k〉, where 〈. . .〉 =

T
∑

ωn

∫
dk

(2π)3G2
+G2

−Tr[. . .], G± = (iωn ∓ ξk)−1, ξk =
εk − μ, and εk =

√
μ2k̃2 + m2 is the dispersion of the

conduction band. Explicitly, the fourth-order terms are given
by

b1 = 3〈(dx · dy)2〉 + 〈(dx × dy)2〉, (7)

b2 = −〈(dx · dy)2〉 + 〈(dx × dy)2〉. (8)

Clearly, parallel vectors di favor a chiral phase and orthogonal
vectors favor a nematic phase.

IV. CHIRAL PHASE FOR STRONG ANISOTROPY

We now study the parameter b2 as a function of the
anisotropy of the Fermi surface. By performing the averages
one can approximate

b2 = κ

∫
d3k̃

[
k̃2
z

(
k̃2 + k̃2

z

) − k̃4/8
]
δ(ξk̃/μ), (9)

where κ = 7ζ (3)NF /[8(πTc)2], NF = ∫
d3kδ(ξk)/(2π )3 the

density of states at the Fermi level, and k̃2 = k̃2
x + k̃2

y . For an
isotropic Fermi surface the coefficient b2 is positive and the
nematic phase is favored. By inspection of Eq. (9) it becomes
clear how a strong anisotropy of the Fermi surface can drive
the system into the b2 < 0 regime.

The Hamiltonian Eq. (1) is linear in momentum and char-
acteristic surface states of the TI arise when sign(mvz) < 0
for states confined in z > 0 [53]. Nevertheless, quadratic

μ

ChiralChiral

b 2
/b

1
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−0.25
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vz/ v
0 0.2 0.4 0.6 0.8 1

FIG. 1. Variation of the coefficient ratio b2/b1 as a function of
the anisotropy of the system parametrized by vz/v and the chemical
potential μ, keeping the parameter αz fixed. For sufficiently small
vz/v the coefficient b2 becomes negative (b1 > 0) and the chiral phase
becomes possible.

corrections in the mass term can be also considered and appear
in more refined band structure calculations [15],

m(k) = m − αk2 − αzk
2
z , (10)

where k2 = k2
x + k2

y . For m,α,αz > 0 the mass term changes
sign on a particular surface in momentum space. This property
yields a nontrivial topology of the insulator. For simplicity, we
neglect a spin- and orbital-independent term that adds to the
Hamiltonian as a diagonal k-dependent contribution and does
not change the topological properties of the system, a part from
breaking the particle-hole symmetry of the Dirac Hamiltonian
describing the topological insulator.

The momentum dependence of the mass term introduces a
second scale αz along the kz direction that, together with the
velocity vz, makes the Fermi surface intrinsically anisotropic.
If αz is neglected, the unique scale vz can be reabsorbed into a
redefinition of the momentum and it eventually factorizes in the
expression of b1 and b2 in a way that their value become fixed
and positive. It is then reasonable to study the parameter b2 as
we increase the anisotropy of the Fermi surface by considering
finite αz.

The values of vz and αz can be controlled by chemical dop-
ing, in that dopants intercalate between the QLs and modify the
interlayer distance az and hopping tz. The latter can be assumed
to be exponentially dependent on az itself, tz = t0

z exp(−az/R),
with R a microscopic length scale characteristic of the pz

orbital of Se, and t0
z the amplitude of the hopping integral.

It then follows that an increase in the doping is expected to
lower both vz and αz.

In Fig. 1 we plot the dependence of b2/b1 as a function
of vz/v, keeping αz constant and taking for reference the pa-
rameters of the well-known model of Ref. [15], m = 0.28 eV,
α = 56.6 eV Å

2
, αz = 10.0 eV Å

2
, and v = 4.1 eV Å. The

coefficient αz drops from the ratio. The shadowed regions
indicate the region around vz = 2.2 eV Å that is realized in the
undoped material. We clearly see that by decreasing vz/v we
can obtain negative b2 values. The strong topological character
of the material allows a wide range of variation of vz through
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doping, without changing the topological nature of the system,
so that a chiral phase can be obtained by properly choosing the
dopants and their amount.

V. CHIRAL PHASE IN THIN SLABS

In the 2D limit the Fermi surface is a line at kz = 0, the
coefficient b2 Eq. (9) is explicitly negative, and the chiral phase
is stable. The case vz → 0 and αz → 0 is clearly realized when
the system approaches the limit of quasi decoupled layers or
the quasi-2D limit, characterized by an open Fermi surface
[54]. We now study the stability of the nematic versus the
chiral phase for reduced thickness of the sample by varying
the number of unit cell layers.

We consider a simplified tight-binding model along the lines
of Ref. [53]. We approximate the QL structure as a bilayer
system (BL) composed by its top most (T) and bottom most
(B) Se layers, described by triangular lattices on top of each
other. The entire structure is described by the tight-binding
Hamiltonian

HTI = H0 + HR + Hz. (11)

The first term H0 describes spin-independent hopping within
the same layer and nearest-neighbor tunneling between the two
layers,

H0 = t0
∑

〈i,j〉,σ s

c
†
i,σ,scj,σ,s + t1

∑
i

c
†
i,T ,sci,B,s + H.c.

+ t2
∑

〈i,j〉,s
(c†i,T ,scj,B,s + c

†
i,B,scj,T ,s), (12)

with σ = T ,B labeling the two layers. Atoms in the two layers
experience local opposite electric fields along the ±ẑ direction
that give rise to Rashba SOI of opposite sign on the two layers
in the form

HR = iλ
∑

〈ij〉σ,ss ′
pσc

†
i,σ,scj,σ,s ′sss ′ · ẑ × aij , (13)

with pT,B = ±1 and aij a unit vector connecting site i and site
j . Finally, along the z direction the structure is repeated as a
series of tightly bound BL planes weakly coupled by van der
Waals forces. Within the effective bilayer model the dynamics
along the vertical direction can be described by an interlayer
hopping term

Hz = tz
∑

j

c
†
j,T ,scj−1,B,s + H.c., (14)

with tz intercell hopping amplitude.
The Hamiltonian HTI describes a 3D TI, whose small

momentum expansion well approximates the Hamiltonian
Eq. (1) with in-plane velocity v = 3λa, out-of-plane velocity
vz = tzaz, and a mass term that depends on the momentum,
m(k) = 6t2 + t1 + tz − 3t2a

2k2/2 − tza
2
z /2, from which we

extract m = 6t2 + t1 + tz, α = 3t2a
2/2, and αz = tza

2
z /2 ap-

pearing in Eq. (10). In order to study the stability of the chiral
phase for the massive Dirac model Eq. (1) we choose values
of the tight-binding parameters t0, t1, t2, λ, and tz in a way
that the band structure is well described by a Dirac equation
at small momentum. With the choice specified in Fig. 2 we
obtain a mass m = −0.2 eV and velocities v = 7.5 eV Å and

μ/m = 1.25
μ/m = 1.5
μ/m = 1.75
μ/m = 2

Nematic

ChiralChiral

b 2
/(
κ×

10
-3
)

−2.5

0

2.5

5

7.5

10

12.5

N
0 5 10 15 20

FIG. 2. Variation of the coefficient b2 as a function of the number
of layers N for different chemical potential. The parameter used in
the tight-binding model are t0 = 0, t1 = −4.1 eV, t2 = 0.75 eV, tz =
−0.6 eV, λ = 0.5 eV, a = 5.0 Å, and az = 9.1 Å.

vz = −5.46 eV Å. These values are on order of those provided
in Ref. [15] and the resulting model well describes the com-
plicate band structure of Bi2Se3 at low energy.

The coefficient b2 is calculated with the Fourier transformed
Hamiltonian HTI(k‖,nz) = HTI(k‖,πnz/Naz), where N is the
number of layers, and by collecting the relevant terms in the
fourth-order expansion projected onto the conduction band

F4 = κ

NF

∑
nz,k

δ
(
ξk,nz

)
Tr

[(
Pk,nz

�†Pk,nz
�

)2]
, (15)

wherePk,nz
= ∑

i=1,2 |ψk,i〉〈ψk,i | is the projection operator of
the conduction band subspace and � = −ψxσysy + ψyσysx .
We keep the tight-binding parameters fixed and only vary the
number of layers N . In Fig. 2 we clearly see that the chiral
phase is stable for sufficiently thin slabs of material. In
particular, we see that the coefficient b2 experiences quantum
oscillations due to the coupling between the 2D layers. As a
function of the chemical potential, small negative values of b2

are obtained already for thick slabs and low doping, whereas
larger negative b2 values require higher doping and thinner
slabs.

The coefficient b2 follows the dispersion along the z

direction. By reducing the number of layers the energy of the
subbands grows and b2 grows accordingly. As the energy of
a given subband grows above the Fermi level the coefficient
b2 suddenly drops to the successive subband until a single
band remains populated below the Fermi level. At that point b2

becomes negative, as it cannot grow any longer. This explains
why for low doping a structure composed by several unit cell
develops the chiral phase, whereas for high doping one has to
go down to the single layer case to encounter only one band
below the Fermi level. The results of Fig. 2 are quite robust
to variations of the tight-binding parameters characterizing the
Hamiltonian, as long as the low-energy model is well captured
by a massive Dirac Hamiltonian. The threshold N at which
the transition to the chiral state takes place depends on the
actual values of the tight-binding parameters. The quantum
oscillations follow the band structure profile and they appear
as long as the systems displays quantization of the subbands.
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VI. CHIRAL MAJORANA MODES

The results presented in the previous sections show that a
feasible way of obtaining a chiral phase is through exfoliation
and that the extreme case of a single layer is the best candidate
for chiral superconductivity. The chiral solution is given by
ψ = ψ0(1,i) so that the resulting gap on the Fermi surface
reads

� ∝ ψ0(ky − ikx)s̃z, (16)

where s̃z is the third Pauli matrix in the Kramers basis at
momentum k. Starting from the k · p Hamiltonian Eq. (1)
at kz = 0 we can write the Kramer basis by employing
the manifestly covariant Bloch basis (MCBB) introduced in
Refs. [34,52], where the band eigenstates are chosen to be
fully spin polarized along the z direction at the origin of point
group symmetry operations,

|ψk,1〉 =

⎛
⎜⎝

√
εk + m√
εk + m

ikx − ky

−ikx + ky

⎞
⎟⎠, |ψk,2〉 =

⎛
⎜⎝

−ikx − ky

ikx + ky√
εk + m√
εk + m

⎞
⎟⎠, (17)

in the basis (ck,T ,↑,ck,B,↑,ck,T ,↓,ck,B,↓)T , up to a normalization
factor 1/(2

√
ε2
k + mεk). The action of time-reversal T =

isyK , parity P = σx , and mirror about x, Mx = isx , are easily
computed, resulting in the following transformation properties:
T |ψk,1〉 = −|ψ−k,2〉, T |ψk,2〉 = |ψ−k,1〉, P|ψk,i〉 = |ψ−k,i〉,
and Mx |ψk,1〉 = i|ψMxk,2〉, Mx |ψk,2〉 = i|ψMxk,1〉. It is then
clear that |ψk,1〉 and |ψk,2〉 form a Kramers doublet and repre-
sent a preferential basis that transform like a spin-1/2 object
[52]. It is easily seen that the gap matrix � = �0(−σysy +
iσysx) results in Eq. (16) when projected on the basis spanned
by |ψk,1〉 and |ψk,2〉. At this point, the description in terms
of the four-band original massive Dirac Hamiltonian can be
substituted by a simpler description of the conduction band in
the MCBB [52].

The BdG Hamiltonian Eq. (2) with the gap Eq. (16)
projected onto the conduction band reads

HBdG =
[

ξk �(kx − iky)s̃z

�(kx + iky)s̃z −ξk

]
. (18)

The system breaks TRI and belongs to class D topological
superconductors in 2D. A finite Chern number Cch = ±2 is
easily calculated from Eq. (18), with the sign ± depending
of whether the (1,i) or (1, − i) solution is realized. Corre-
spondingly, two copropagating chiral Majorana modes are
expected to localize at the edge of the system. This can be
seen directly from inspection of Eq. (18). We see that both the
spin-up and spin-down components are affected by a chiral
px + ipy pairing, with gap of opposite sign for the two spin
projections, due to the triplet nature of the pairing. Spinless
chiral superconductivity in 2D opens a topologically nontrivial
gap on the Fermi surface that gives rise to a single chiral
Majorana mode at the boundary of the system, flowing with a
velocity vM = ∓|�|/kF , for the px ± ipy cases, respectively.
We then expect two chiral Majorana modes, each for spin
component, that copropagate at the boundary of the system
with vM = −|�|/kF , with � the mean-field value of the order
parameter ψ0 in Eq. (16).

ε/
t 1

−0.2

−0.1

0

0.1

0.2

ka/ π
−0.4 −0.2 0 0.2 0.4

FIG. 3. Bands structure of a TI single layer with chiral supercon-
ductivity on a ribbon geometry. The parameters used are t0 = −0.1,
t1 = −5t2, t2 = 1.0, λ = 0.5, � = 0.1, and μ = 0.2. Two Majorana
edge states copropagate on each side of the ribbon (blue on one side,
red on the other side).

In order to check the predictions of the low-energy effective
model Eq. (18), we calculate the bands of the tight-binding
model on a ribbon geometry. The mean-field Hamiltonian is
HMF = HTI + HSC, with HSC the Hamiltonian term describing
superconductivity at mean-field level in the chiral phase,

HSC =
∑

i;σs,σ ′s ′
c
†
i,σ sc

†
i,σ ′s ′�̂σs;σ ′s ′ + H.c., (19)

with �̂ = �σy(sx + isy)isy . The band structure on a ribbon
geometry is shown in Fig. 3, where clear copropagating chiral
Majorana modes appear, blue on one side and red on the other
side of the ribbon.

VII. CONCLUSION

In this work we studied the stability of the chiral phase ver-
sus the nematic phase in Bi2Se3 as a function of the anisotropy
of the system and the thickness of the sample. We showed
that by increasing the two-dimensional character of the Fermi
surface the chiral phase is expected to become stable. This can
be experimentally achieved by properly choosing the doping
element and their amount that by intercalation modify the
interlayer distance and enhance the two-dimensional character
of the system. A second root towards the realization of a chiral
phase is achieved by exfoliation. We found that by reducing
the number of layers constituting a thin slab of material the
chiral phase can be stabilized already in few layer thick slabs
and, for the low doping case, exfoliation down to N < 10
layer is expected to show the chiral phase. In particular, the
single-layer case is shown to always favor the chiral phase. The
resulting states is a chiral topological superconductor that hosts
two copropagating chiral Majorana modes at its boundary. Our
findings promote single layer of Bi2Se3 as an ideal material for
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the manifestation of chiral superconductivity, opening the route
to topological quantum computations with Majorana modes.
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