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Influence of exchange scattering on superfluid 3He states in nematic aerogel
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The superfluid state in bulk liquid 3He is realized in the form of A or B phases. Uniaxially anisotropic aerogel
(nafen) stabilizes the transition from the normal to the polar superfluid state which on further cooling transitions to
the axipolar orbital glass state [Dmitriev, Senin, Soldatov, and Yudin, Phys. Rev. Lett. 115, 165304 (2015)]. This
is the case in nafen aerogel preplated by several atomic layers of 4He. When pure liquid 3He fills the same nafen
aerogel a solid-like layer of 3He atoms coats the aerogel structure. The polar state is not formed anymore and a
phase transition occurs directly to the axipolar phase [Dmitriev, Soldatov, and Yudin, Phys. Rev. Lett. 120, 075301
(2018)]. The substitution of 4He by 3He atoms at the aerogel surface changes the potential and adds the exchange
scattering of quasiparticles on the aerogel strands. A calculation shows that both of these effects can decrease
the degree of anisotropy of scattering and suppress the polar phase formation. The derived anisotropy of the spin
diffusion coefficient in globally anisotropic aerogel is determined by the same parameter which controls the polar
state emergence, which allows one to check the effect of anisotropy change for different types of covering.

DOI: 10.1103/PhysRevB.98.014501

I. INTRODUCTION

The superfluid state of liquid 3He is formed by means
Cooper pairing with spin and orbital angular momentum equal
to 1. In isotropic space the phase transition depending on
pressure occurs in either the A or B superfluid phase [1].
Investigation of superfluid phases in high porosity aerogel
allows one to study the influence of impurities on superfluidity
with nontrivial pairing [2,3]. It has been found that similar
to bulk 3He two superfluid A-like and B-like phases exist
in 3He in aerogel [4]. However, both the superfluid fraction
and the temperature at which the superfluid is manifested
are suppressed from their bulk values [2]. The interesting
possibility is opened in globally anisotropic aerogel of lifting
the degeneracy between the different superfluid phases with p

pairing. It was shown [5] that in the case of easy-axis anisotropy
a new superfluid phase of 3He, the polar phase, is stabilized
below the transition temperature. It was also predicted [5]
that on further cooling a second-order transition into a polar-
distorted A phase should occur. Indeed, quite recently, the first
observation of the polar phase was reported [6]. This phase
appears in 3He confined in new type of “nematically ordered”
aerogel called “nafen” with a nearly parallel arrangement of
strands which play the role of ordered impurities. It was shown
that in nafen the transition to the superfluid state always occurs
to the polar phase and the region of its existence increases with
density of strands. In another type of nematically ordered but
less dense and much less anisotropic aerogel called “Obninsk
aerogel” [6] the superfluid state is always formed in the orbital
glassy A-like state.

To avoid a paramagnetic signal from surface solid 3He,
the nafen samples in the measurements [6] were preplated
by ∼2.5 4He monolayers. Then a new experiment series was
performed with the same samples filled by pure 3He [7]. In this
case the temperature of the superfluid transition is suppressed

more strongly and this effect increases with strand density
such that in the most dense nafen the superfluid transition
was not detected down to the lowest attained temperatures.
The superfluid transition occurs directly to the polar-distorted
A phase without the formation of an intermediate region of
polar state. The small addition of 3He in the surface 4He
layer, corresponding to 0.1 monolayer, also completely kills
superfluidity at 29.3 bar in the most dense nafen, and in the less
dense aerogel noticeably suppresses the critical temperature.
In this case also the transition occurs directly to the distorted
A state. Thus, the situation looks as if the 3He covering
suppresses anisotropy necessary for the existence of the polar
phase.

There was pointed out in Ref. [7]: “The observed phe-
nomena cannot be explained by a change of the scattering
specularity because they are observed also at high pressures
where the scattering should be diffusive regardless of the
presence or absence of solid 3He.” This statement is based
on previous studies (see Refs. 5–9 in the paper [7]) of the
degree of specularity of 3He quasiparticles scattering on
metallic surfaces with different coverings. The corresponding
information for liquid 3He filling nafen aerogel is absent. But,
generally speaking, the substitution of 4He by 3He atoms at
aerogel surface changes the potential and adds the exchange
scattering of quasiparticles on the aerogel strands.

I study this problem taking into account both the potential
and the exchange scattering of quasiparticles of liquid 3He on
3He atoms localized at the strands surface. In Sec. II I show
that 3He covering changes the intensity and the anisotropy
of scattering. In Sec. III, the presented derivation of spin
diffusion current shows that the anisotropy of the spin dif-
fusion coefficient in globally anisotropic aerogel is expressed
through the same parameter that determines the polar state
emergence. Thus, being measured, the anisotropy decrease of
spin diffusion in nafen filled by pure 3He can serve as a direct
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indication of suppression of the temperature interval of polar
state existence.

II. SUPERFLUID 3He IN UNIAXIALLY ANISOTROPIC
AEROGEL WITH MAGNETIC SCATTERING

The order parameter of superfluid phases of 3He is given [1]
by the complex 3 × 3 matrix Aαi , where α and i are the indices
enumerating the Cooper pair wave function projections on spin
and orbital axes respectively. All the phases with different
order parameters Aαi have the same critical temperature. The
degeneracy is lifted by the fourth-order terms with respect to
Aαi in the Landau expansion of the free energy density. The
most energetically profitable are the B phase with the order
parameter AB

αi = �Rαie
iϕ , where Rαi is a rotation matrix,

and (in the high pressure region) the A phase with the order
parameter

AA
αi = �Vα(mi + ini), (1)

where V is the unit spin vector and m and n are the orthogonal
unit vectors such that m × n = l is the unit vector directed
along the Cooper pair angular momentum.

The different pairing states of superfluid 3He in a random
medium with global uniaxial anisotropy can be compared by
making use the second-order terms in the Landau free energy
density. They consist of an isotropic part, common to all the
superfluid phases with p pairing, and the anisotropic part

F (2) = F
(2)
i + F (2)

a

= α0

(
T

Tc

− 1

)
AαiA

�
αi + ηijAαiA

�
αj , (2)

where Tc = Tc(P ) is the transition temperature in the super-
fluid state suppressed with respect of transition temperature in
the bulk liquid Tc0(P ). The medium uniaxial anisotropy with
anisotropy axis parallel to ẑ direction, coincident in our case
with the average direction of aerogel strands, is given by the
traceless tensor

ηij = η

⎛
⎜⎝

1 0 0

0 1 0

0 0 −2

⎞
⎟⎠. (3)

In the absence of global anisotropy (η = 0) all p-wave phases
have the same critical temperature. At positive η > 0 the polar
state with the order parameter of the form

Aαi = aVαzi, (4)

where Vα is the unit spin vector, has the lowest energy of
anisotropy [8],

Fa = −2η|a|2. (5)

Hence, it has the highest critical temperature Tc1 of transition
from the normal state. At some lower temperature Tc2 the polar
state passes to the more energetically profitable distorted A
state [9] with the order parameter

Aαi = Vα[aẑi + ib(x̂i cos ϕ + ŷi sin ϕ)] (6)

intermediate between the polar state at b = 0 and the A state at
a = b. This state has the Cooper pair angular momentum l̂ =
−x̂ sin ϕ(r) + ŷ cos ϕ(r) lying in the basal plane and locally

ordered [ϕ(r) = const] on scales L exceeding the coherence
length ξ0 but smaller than the dipole length ξd and randomly
distributed on scales larger than L. The pure polar state exists
in the temperature interval roughly determined by the energy
of anisotropy difference between of the polar and the distorted
A states [9],

Tc1 − Tc2 ≈ η

α0
Tc. (7)

Hence, at small η parameter the temperature interval of the
polar state existence is small and hardly observable.

The quasiparticle interaction with the nafen strands is
modeled by the interaction with the randomly distributed
impurities including the globally anisotropic potential and the
globally anisotropic exchange part,

Hint =
∑

i

∫
d3rψ†

α(r)[u(r − ri)δαβ + J (r − ri)σ αβS]ψβ(r),

(8)

where S is the spin of the impurity and σ are the 3He
quasiparticles’ spin matrices. The exchange scattering in an
isotropic aerogel has been considered by Sauls and Sharma
[10] and by Baramidze and Kharadze [11]. They have shown
that if the scattering amplitude on impurities includes an
exchange part then the critical temperature splitting of A1

and A2 transitions under an external field H decreases in
comparison with the impurity free case:

TA1 − TA2 = (γ0 − γimp)H.

The effect arises due to an interference between scalar and
exchange scattering such that

γimp ∝ uJ

is proportional to the product of the corresponding amplitudes.
In NMR experiments [6,7] the field is small and this effect
is negligible, but one needs to consider an influence of the
globally anisotropic scattering on critical temperature.

To find the critical temperature of superfluid transition in
globally anisotropic aerogel one must calculate the second-
order terms in the Landau free energy density:

F (2) = 1

3

{
1

g
δij δμν − T

∑
ω

∫
d3p

(2π )3
p̂i�

μν

j (p,ω,)G(p,ω)

×G(−p,−ω)

}
A�

μiAνj , (9)

where g is the constant of p-wave triplet pairing. Here,

G(p,ω) = 1

iω − ξp − �p(ω)
(10)

is the normal state quasiparticle Green function and �
μν

j (p,ω)
is the vertex part. ξp = εp − μ is the quasiparticle’s energy
counted from the chemical potential, and ω = πT (2n + 1) is
the fermion Matsubara frequency. The Planck constant h̄ was
everywhere put equal to 1. The self-energy part is given by the
equation

�p(ω) =
∫

d3p′

(2π )3
U 2

p−p′G(p′,ω). (11)
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Here, according to Abrikosov and Gor’kov [12], the “impurity
line” U 2

p−p′ arises after averaging over impurity positions and
also over the orientation of the spins of all impurity atoms,
〈SiSk〉 = 1

3S(S + 1)δik , where in our particular case S = 1/2.
Then taking into account σ i

αγ σ i
γ α = 3

4 we obtain

U 2
p = ni

[
u2

p + 〈
Siσ

i
αγ Skσ

k
γα

〉
J 2

p

]
= ni

[
u2

p + 1
4S(S + 1)J 2

p

]
, (12)

where ni is impurity concentration and u(p) and J (p) are the
Fourier transforms of the amplitudes of potential and exchange
scattering from Eq. (8). According to assumption about global
anisotropy they depend on the momentum direction such that

niu
2
p = 1

2πN0τp

{
1 − δp

[
p̂2

z − 1

2

(
p̂2

x + p̂2
y

)]}
, (13)

niJ
2
p = 1

2πN0τex

{
1 − δex

[
p̂2

z − 1

2

(
p̂2

x + p̂2
y

)]}
, (14)

where N0 is the density of states per one spin projection, p̂i are
the projections of momentum unit vector p

|p| on the i = (x,y,z)
coordinate axis, τp and τex are the isotropic parts of mean free
time of potential and exchange scattering, and δp and δex are
the corresponding degrees of anisotropy. The anisotropic part
of U 2

p is taken with the sign opposite to that in [5] and chosen
such that

∫
d�
4π

U 2
p is independent of the anisotropic part of

scattering.
So, the self-energy obtained from Eqs. (11)–(14) is

�p(ω) = − i

2τ

{
1 − δ

[
p̂2

z − 1

2

(
p̂2

x + p̂2
y

)]}
sign ω. (15)

Along with the isotropic term it includes a term describing
the global uniaxial anisotropy. Each of these terms consists of
two independent parts: the potential part and the exchange one
determined in the following way:

1

τ
= 1

τp

+ 1

τex

,
δ

τ
= δp

τp

+ δex

τex

. (16)

The vertex part must be found from the integral equation

�
μν

j (p,ω) = p̂j δμν + n

∫
d3p′

(2π )3

[
u2

p−p′ + 1

3
S(S + 1)(g†)μαβ

× σ i
λασ i

ρβgν
λρJ

2
p−p′

]

×�
μν

j (p′,ω)G(p′,ω)G(−p′,−ω). (17)

It is known [12] that for the case of singlet superconductivity
the exchange part of scattering in this equation is given by

1
3S(S + 1)gt

αβσ i
λασ i

ρβgλρJ
2
q = − 1

4S(S + 1)J 2
q , (18)

where the matrix ĝ = ( 0 1
−1 0), and the superscript t indicates

transposition. As result, there are two different “scattering
times” originating from the self-energy and the vertex [12].
The corresponding combination for the triplet pairing is

1
3S(S + 1)(g†)μαβσ i

λασ i
ρβgν

λρJ
2
q = 1

4S(S + 1)J 2
q δμν, (19)

where gν
λρ = (−σ z

λρ,iδλρ,σ
x
λρ), such that the scattering times

originating from the self-energy and the vertex are equal to

each other. Thus, Eq. (17) is

�
μν

j (p,ω) = p̂j δμν +
∫

d3p′

(2π )3
U 2

p−p′�
μν

j (p′,ω)G(p′,ω)

×G(−p′,−ω), (20)

and its solution has the form

�
μν

j (ω,p) = {
p̂j + �ω

[
p̂zẑj − 1

2 (p̂x x̂j + p̂y ŷj )
]}

δμν,

(21)

where for δ � 1

�ω = δ

3τ
∣∣ω + 1

2τ
signω

∣∣ + O(δ2). (22)

Substitution of the vertex �
μν

j (ω,p) and the Green function
G(p,ω) into Eq. (9) yields

F2 = αA�
μiAμi − 2η

[
A�

μzAμiz − 1
2 (A�

μxAμx + A�
μyAμy)

]
,

(23)

where

α = N0

3

[
ln

T

Tc0
+ ψ

(
1

2
+ 1

4πT τ

)
− ψ

(
1

2

)

−1

5

δ

4πT τ
ψ (1)

(
1

2
+ 1

4πT τ

)]
, (24)

η = 8N0

45

δ

4πT τ
ψ (1)

(
1

2
+ 1

4πT τ

)
. (25)

Here, ψ(z) and ψ (1)(z) are the digamma function and its first
derivative.

At δ > 0 the critical temperature of the phase transition to
the superfluid state is maximal for the polar phase, Eq. (4), and
is determined by the equation

α − 2η = 0. (26)

In the limit of weak scattering 4πT τc 	 1 the transition to the
polar state occurs at

Tc1 = Tco − π

8τ
+ 11π

60τ
δ. (27)

It is worthwhile to recall that at small degrees of anisotropy the
temperature interval of the polar state existence is small and
hardly observable.

According to Eq. (16) the degree of global anisotropy
δ is determined by two independent terms originating from
the potential and the exchange scattering. The latter can in
principle suppress the anisotropy. However, the quasiparticle
self-energy and the vertex part due to exchange scattering have
the same structure as for pure potential scattering. Hence, the
anisotropy suppression can also originate from the potential
scattering, which is different for the covering of aerogel stands
by a solid 3He layer.

The change in anisotropy of scattering for different types
of covering must also reveal itself in the changes of spin
diffusion anisotropy. In the next section I derive the normal
liquid 3He spin diffusion current flowing through media filled
by randomly distributed impurities with globally anisotropic
potential and exchange scattering.
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III. SPIN CURRENT

The spin current in neutral Fermi liquid is calculated [13,14]
as the response to the gradient of angle of rotation of the spin
space ωi = ∇iθ ,

ji = − δH

δωi

, (28)

where

H = 1

2m

∫
d3r

(
Dαλ

i ψλ

)†
D

αμ

i ψμ + Hint, (29)

D
αβ

i = −iδαβ∇i + 1

2
σ αβωi , (30)

and Hint includes the Fermi liquid interaction and the interac-
tion with impurities, Eq. (8).

At low temperatures the collisions between the Fermi liquid
quasiparticles induce negligibly small correction to the spin
diffusion due to the scattering on aerogel strands. On the other
hand, we are mainly interested in the spin current anisotropy
in the anisotropic media and will ignore the temperature
dependence of exchange amplitude of scattering due to the
Kondo effect [15]. In this case one can work with the field
theory technique for T = 0. The response of the gauge field
ωi is calculated in complete analogy with response to the
usual vector potential Ai in the calculation of electric current
in an isotropic metal with randomly distributed impurities,
performed in [16]. The spin current at finite wave vector k
and external frequency ω is

ji(k,ω)= i

4m
T r

∫ +∞

−∞

dε

2π

∫
d3p

(2π )3
piσ αβ(σ βαωj )�j − 1

4
nωi ,

(31)

where n is the number of liquid 3He atoms in the unit volume,
function �j is determined by the equation

�j (p,p − k) = G(p,ε)G(p − k,ε − ω)

×
[
pj +

∫
d3p′

(2π )3
U 2(p − p′)�j (p′,p′ − k)

]
,

(32)

p = (p,ε), k = (k,ω),

G(p,ε) = 1

ε − ξp − �p(ε)
, (33)

U 2(p) is determined by Eq. (12), and �p(ε) is given by Eq. (15).
The vertex correction does not introduce changes in the spin
structure of Eq. (31) due to the identity σ i

αλσ
p

λμσ
p
ρασ

j
μρ =

σ i
αβσ

j

βα .
At k = 0, ω = 0 the first term in the current expression (31)

cancels out the second “diamagnetic” term. We are interested
in calculating the current at k = 0, ω �= 0. In this case,

ji = i

4m
T r

∫ ω

0

dε

2π

∫
d3p

(2π )3
piσ αβ(σ βαωj )�j (k = 0),

(34)

and the solution of Eq. (32) in a linear approximation with
respect to δ and at ωτ � 1 is

�j (k = 0) = G(p,ε)G(p,ε − ω)

× {
pj + 2

3δ
[
p̂zẑj − 1

2 (p̂x x̂j + p̂y ŷj )
]}

. (35)

Substituting this into Eq. (34), we obtain

ji = 1
6

{
δij + 16

15δ
[
ẑi ẑj − 1

2 (x̂i x̂j + ŷi ŷj )
]}

iωτN0v
2
F ωj .

(36)

Here vF is the Fermi velocity. Making use of the Larmor
theorem

γ H = ∂θ

∂t
= −iωθ , (37)

where γ = 2μ is the gyromagnetic ratio and μ is the magnetic
moment of 3He atoms, one can rewrite the expression for
current as

ji = − 1
3

{
δij + 16

15δ
[
ẑi ẑj − 1

2 (x̂i x̂j + ŷi ŷj )
]}

τN0v
2
F μ∇j H.

(38)

To rewrite the spin current as the magnetic diffusion current
one should multiply both sides of this equation by 2μ to obtain

jMi = − 1
3

{
δij + 16

15δ
[
ẑi ẑj − 1

2 (x̂i x̂j + ŷi ŷj )
]}

τv2
F ∇j M,

(39)

where the Fermi-liquid magnetization is M = 2μ2N0H. Thus,
the spin diffusion currents along the direction of nafen strands
and in the direction perpendicular to them are

jMz = − 1
3

{
1 + 16

15δ
}
τv7F

2∇zM, (40)

jMx = − 1
3

{
1 − 8

15δ
}
τv2

F ∇xM, (41)

respectively. One can demonstrate that a similar calculation
taking into account the Fermi liquid renormalization adds in
these formulas the pre-factor (1 + Fa

0 )(1 + Fa
1 /3).

Thus, the anisotropy of the spin diffusion coefficient is
expressed through the same parameter of anisotropy δ that
determines the temperature interval of the polar state existence.

IV. CONCLUSION

It was shown that the degree of global anisotropy responsi-
ble for polar state stability is determined by two mechanisms,
originating from the potential and the exchange scattering. The
suppression of anisotropy narrows the temperature interval of
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the polar state existence, making it hardly observable. The
anisotropy decrease can be controlled by the measurements
of spin diffusion because the difference in the spin diffusion
coefficients in directions parallel and perpendicular to nafen
strands is found to be proportional to the same parameter that
determines the polar state emergence.

The authors of the paper [7] have pointed out the dominate
role of the exchange scattering in anisotropy suppression
(see the citation of Ref. [7] in the Introduction). However,
according to the presented results, the exchange interaction
yields the quasiparticle self-energy and the vertex part of the
same structure as for pure potential scattering. Hence, although
the exchange mechanism works only in the case of coating of
aerogel strands by a solid 3He layer, it is possible that the
main role in the anisotropy decrease is played by the change
of potential scattering with aerogel strands covered by 3He
instead of 4He. The problem of choosing between the two

mechanisms of anisotropy suppression will be addressed in
future investigations.

Being mainly interested in the role of anisotropy of
exchange scattering, I neglect throughout this paper the pos-
sible temperature dependence of the amplitude of exchange
scattering due to the Kondo effect. The logarithmic increase of
positive ion mobility starting at T = 50 mK up to the superfluid
transition temperature (see the paper [15] and references
therein) means that the exchange scattering has a ferromagnetic
character, in agreement with the notion that 3He is an almost
ferromagnetic Fermi liquid. Thus, the Kondo effect weakens
the magnitude of the pair breaking by magnetic scattering.
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