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Discovery of a new type of magnetic order on pyrochlore spinels
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Frustration in a spin system can give rise to unique ordered states and as a consequence several physical
phenomena are expected, such as multiferroics, high temperature superconductors, and anomalous Hall effect.
Here we report the “new magnetic orders” induced by anisotropic spin exchanges on pyrochlore spinels as the
interplay of spin-orbit coupling and geometrical frustration. Due to complicated superexchange paths of B-site
spinels, we claim that anisotropic interaction between next-nearest neighbors play an important role. Based on
the systematic studies of the spin model, we argue that several classical spin states can be explored in spinel
systems; local XY state, all-in all-out state, Palmer-Chalker state, and coplanar spiral state. In addition, we reveal
new types of magnetic phases with finite ordering wave vectors, labeled as octagonal (prism) state and (distorted)
cubic states. When the octagonal prism state is stabilized, nonzero scalar spin chirality induces alternating net
current in addition to finite orbital current and orbital magnetization even in Mott insulators. Finally, we also
discuss the relevance of distorted cubic state to the magnetic order of spinel compound GeCo2O4.
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Magnetic frustration originates from competing interac-
tions between different spin exchanges. Despite the simple
spin interactions such as Heisenberg or Ising type, lattice
geometries can give rise to frustration, often termed as geo-
metrical frustration [1,2]. Apart from geometrical frustration,
anisotropic spin exchanges can also give rise to frustration due
to competing interactions [3–6]. In general, such anisotropic
spin exchanges are expected for a spin-orbit coupled system
described by the total angular momentum J . When anisotropic
spin exchanges meet geometrical frustration, exotic magnetism
emerges in Mott insulators.

Magnetic properties of the B-site spinel compounds
(AB2X4) own such interplay forming a corner shared tetrahe-
dra, pyrochlore lattice structure [7–9]. Focusing on pyrochlore
lattice structure, one can derive the most generic spin model
on symmetry grounds and indeed such a generic spin model
for nearest-neighbor interactions has been studied. Especially
for rare-earth pyrochlore magnets (A2B2O7), A site rare-earth
ions also form a pyrochlore lattice and their partially filled
4f electrons can give rise to non-negligible anisotropic spin
exchanges between nearest neighbors [10–13]. However, the
situation in B-site spinels with 3d-5d magnetic ions is quite
different from the case of rare-earth pyrochlores. In spinels, the
superexchange paths induce anisotropic exchanges between
next-nearest neighbor to play an important role, thus the spin
model for B-site spinel compounds is significantly distinct
from ones studied before and one could expect new types of
magnetic orderings.

In this paper we study the frustrated spin model on a py-
rochlore lattice and find new magnetic phases and their unique
properties. Focusing on spin-orbit coupled B-site spinels, we
write down the spin exchange Hamiltonian derived from the
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Hubbard model with a pseudospin jeff = 1/2 Kramers doublet.
Considering superexchange paths for neighbors between B-site
magnetic ions, we claim that next-nearest neighbor anisotropic
exchanges generally dominate in determining the magnetic
ground states. Within a classical spin approach, we employ
the Luttinger-Tisza method [14] and iterative minimization
method [15] (with system size up to 12 × 12 × 12) to investi-
gate the magnetic phase diagram. Our key result is the discov-
ery of new magnetic orderings described with finite ordering
wave vectors Q; octagonal (prism) state and (distorted) cubic
states. We also argue their interesting consequences like orbital
currents and relevance to spinel compounds GeCo2O4. Another
main issue is that such a spin model of B-site spinels can also
lead to many interesting magnetic phases with Q = 0 ordering;
local XY, all-in all-out, and Palmer-Chalker states [16–18].
We note that these Q = 0 phases originate from anisotropic
spin exchanges between next-nearest neighbors, even in the
absence of nearest-neighbor interactions or long range dipolar
interactions.

I. MODEL

When the B site of spinel is occupied by transition metal
ions with partially filled 3d-5d orbitals, cubic crystal symmetry
splits d orbitals into t2g and eg and spin-orbit coupling further
splits t2g orbitals into jeff = 3/2 quadruplet and jeff = 1/2
doublet described by isospin configuration. Within pseudospin
jeff = 1/2 doublet, one writes down the simple Hubbard model

H =
∑
ij,αβ

c
†
iα(tijI + idij · σ )αβcjβ + U

∑
i

ni↑nj↓, (1)

where the first term represents electron hopping within
pseudospin-1/2 manifold between sites i and j (which in-
cludes both spin independent and dependent hoppings), and
the second term represents electron interaction. For B-site
spinels with jeff = 1/2 doublet, the nearest-neighbor (NN)
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FIG. 1. Pyrochlore lattice structure and connectivity between
nearest-neighbor sites (NN) and next-nearest-neighbor sites (NNN).
To see the connectivity between NNNs, a super tetrahedron is shown
which consists of four tetrahedra. Each face of the super tetrahedron
forms a hexagon connected by NNs (marked as solid lines with orange
color). In every hexagon, two triangles (solid lines with blue color)
exhibit the connectivity between NNNs. The inset shows a schematic
picture of the B-site spinel structure only focusing onto X ions and B
ions. See the main contents for a detailed explanation.

interactions via X mediated superexchanges completely van-
ish. However, the next-nearest-neighbor (NNN) interactions
via X-A-X mediated superexchanges generate both finite spin
dependent and independent terms (i.e., tij �= 0 and dij �= 0
between the NNN sites i and j ). Furthermore, it turns out
that the magnitude of |dij |/tij is quite large, indicating the im-
portance of spin dependent hopping between NNNs. (See the
Supplemental Material [19] for details.) In the Mott insulating
regime, therefore, we derive the following spin Hamiltonian
with NNs and NNNs at large U :

H =
∑
〈ij〉

J
′αβ

ij (�)Sα
i S

β

j +
∑
〈〈ij〉〉

J
αβ

ij (φ,θ )Sα
i S

β

j , (2)

where 〈ij 〉 and 〈〈ij 〉〉 indicates the nearest-neighbor (NN) and
next-nearest-neighbor (NNN) interactions between i site and j

site,J ′ andJ characterize exchange coupling between NNs and
NNNs, respectively. On symmetry grounds, the interactions
between NNs only require one dimensionless parameters � =
tan−1 ( ± |dij |/tij ) with 〈ij 〉, while the interactions between
NNNs require two parameters φ and θ ; φ which parametrizes
the unit vector d̂ij lying on the plane perpendicular to the

twofold rotation axis and θ = tan−1 ( ± |dij |/tij ) with 〈〈ij 〉〉.
(A detailed derivation is explained in the Supplemental Ma-
terial [19].) For clarification, Eq. (3) exemplifies J

′
ab(�) and

Jcd (φ,θ ) for a given bond, marked as J03 and J ′
03 respectively

in Fig. 1. (See the Supplemental Material [19] for the detail

form of j
′
n and jn in terms of � and (φ,θ ), respectively.)

J
′
03(�) =

⎛
⎜⎝

j
′
2 j

′
3 j

′
4

j
′
3 j

′
2 j

′
4

−j
′
4 −j

′
4 j

′
1

⎞
⎟⎠, J03(φ,θ ) =

⎛
⎝
j6 j3 −j2

j5 j6 −j4

j4 j2 j1

⎞
⎠.

(3)

The lattice structure of pyrochlores especially for the
connectivity between NNNs is shown in Fig. 1. The super
tetrahedron includes four tetrahedra (colored in red) and each
tetrahedron is made by four sublattices (green spheres). Here
the NNs are marked by orange solid lines. In the super
tetrahedron structure, each face consists of a hexagon formed
by three tetrahedra. In a hexagon (we focus on one at the
bottom of the super tetrahedron), the NNNs connect different
sublattices forming two triangles, marked as blue solid lines in
Fig. 1. In total, each sublattice has 6 NNs and 12 NNNs in a
pyrochlore lattice.

II. MAGNETIC PHASE DIAGRAM

Taking into account the previous argument of superex-
change paths, we start from the general spin model for NNNs,
i.e., a finite J

αβ

ij (φ,θ ) with J
′αβ

ij (�) = 0 first and then consider
the stabilities of each phase with finite NN interactions.
Figure 2 shows the phase diagram with two dimensionless
parameters φ and θ . It is worth to note that any point
with a given parameter (φ,θ ) is identical to the point with

FIG. 2. Phase diagram of magnetic ordering as functions of φ and
θ : Green, blue, and orange regions denote local XY phase (XY), all-in
all-out phase (AIAO), and Palmer-Chalker phase (�4), respectively,
which all belong to Q = 0 ordering. Red and purple regions represent
octagonal prism phase (OP) and distorted cubic phase (DC), which all
belong to noncoplanar ordering with finite Q’s. Thick red, purple, and
cyan lines mark octagonal (O), cubic (C), and coplanar spiral (CS)
phases. See the main text for a detailed description.
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TABLE I. Summary of classical magnetic ground states of Eq. (2):
For given ground states, coplanarity and ordering wave vector Q are
described and the stability of each phase (at ∗ points in Fig. 2) in the
presence of nearest-neighbor Heisenberg interaction J1 is shown in
the last column. (Negative J1 is for ferromagnet.)

Ground states Coplanarity Q J1(∗)

Coplanar spiral (CS) Yes
(

4π

3 00
)

–
Local XY (XY) No (000) −1.8,∞
All-in all-out (AIAO) No (000) −0.3,∞
Palmer-Chalker (�4) Yes (000) −1.6,∞
Octagonal (O) Yes (2ππ0) −2.6,0.2
Octagonal prism (OP) No (2ππ0) −0.1,0.9
Cubic (C) No (πππ ) –
Distorted cubic (DC) No (πππ ) −0.7,10

[φ + mπ,(−1)mθ + nπ ] where m and n are arbitrary integers.
Thus, we plot the phase diagram within the parameter ranges
φ ∈ [0,π ) and θ ∈ [0,π ).

In the colored regions, we have found magnetic phases with
commensurate ordering wave vectors where both Luttinger-
Tisza and iterative minimization agrees with each other.
(Explanation of each method is given in the Supplemental
Material [19].) However, in the rest of parameter space, we
have only found incommensurate ordering wave vectors within
Luttinger-Tisza approximation. To check the stability of each
phase, one specific parameter at each phase is chosen (marked
as ∗ in Fig. 2) and we investigate the phase robustness in the
presence of the nearest-neighbor Heisenberg interaction J1.
Table I shows the summary of magnetic ground states we have
found in our model.

Coplanar phases with Q �= 0: At θ = 0 our model becomes
a simple antiferromagnetic (AF) Heisenberg model of NNNs.
In this limit, the model has been already investigated and its
magnetic ground state is described by coplanar spiral phase
(marked as CS in Fig. 2.) with an ordering wave vector Q =
( 4π

3 ,0,0) [20]. Unlike the case of AF interaction between NNs
where the system possess extensive degeneracy of magnetic
ground states, AF interaction between NNNs favors specific
coplanar spiral state with a finite Q.

When (φ = 0,0.45 � θ � 0.65) or (φ = 0,2.73 � θ �
2.77) marked as a thick red colored region in Fig. 2, there
is another coplanar phase which is described with an ordering
wave vector at high symmetric W point [see Fig. 3(c)]. In this
phase, spins at sublattice 0 and 2 [colored blue in Fig. 3(a)]
point four different directions, whereas at sublattices 1 and 3
[colored green in Fig. 3(a)], spins point another four different
directions. Since spins point all eight different directions in
total, we label this phase as octagonal (O) phase. The spin
configuration at a sublattice a is Sa = �a exp(iQ · R) + c.c.
with �a = (f e−iβ(−1)a ,0,−if eiβ(−1)a ), (f,β) are functions of
the parameter θ and Q = (2π,π,0). (Illustration of spin con-
figuration is given in the Supplemental Material [19].)

Magnetic phases with Q = 0: As we tune parameters φ and
θ , our model shows three different types of magnetic phases
without enlarging unit cell Q = 0; all-in all-out phase (AIAO),
local XY phase (XY), and Palmer-Chalker phase (�4). All
these phases belong to the degenerate ground state manifolds of
AF Heisenberg interaction between NNs, satisfying the sum of
four spins for every tetrahedron to be zero. Thus, these phases
are stable even in the limit of J1 → ∞ as shown in Table I.

In blue colored region in Fig. 2 all-in all-out phase is
stabilized. With a given local coordinate at each sublattice,
all-in all-out phase is described by all four spins in a unit cell
aligned on their local ẑ or −ẑ axes, having twofold degeneracy.
(See the Supplemental Material [19] for a description of local
coordinates and spin configuration.)

In local XY phase, on the other hand, each spin lies in its
local xy plane, having the same azimuthal angle ϕa ≡ ϕ. (See
the green colored region in Fig. 2.) ϕa is measured within local
xy plane starting from local x axis for each sublattice a. In this
phase, one can freely chooseϕ ∈ [0,2π ) thus U (1) symmetry is
present at a mean field level. (See the Supplemental Material
[19] for illustration of spin configuration.) There is possible
quantum or thermal order by disorder in this phase, having
pseudo-Goldstone mode with little gap at low temperature.
Since this local XY phase is stabilized by anisotropic spin
interactions between NNNs, it may choose different ordered
phase due to fluctuations compared to the case studied in
Refs. [21–23] and further detailed studies are required in the
future.

FIG. 3. Common origin plots (COP) and magnetic ordering wave vectors Q of octagonal (prism) phase and (distorted) cubic phase: (a)
Octagonal (O) phase—Spins point eight different directions on a plane. Spin directions at sublattices 0 and 2 (1 and 3) are identical as colored
in blue (green). (b) Octagonal prism (OP) phase—Spins at each sublattice form a plane and the planes are distinct for sublattices, forming
a shape of an octagonal prism. Four distinct colors indicate the spin directions in different sublattices. (c) Q of O and OP phase—Magnetic
ordering wave vector is located at W points shown in the first Brillouin zone. (d) Cubic (C) phase—Spins point all eight different directions
forming a cubic structure. At every sublattice, spins are pointing every eight vertices of cube. (e) Distorted cubic (DC) phase—Spins point all
32 different directions resulting in distortion of perfect cube. At every sublattice, spins are pointing every eight vertices of one rhombohedron.
(f) Q of C and DC phase—Both C and DC phases are described by ordering wave vectors located at high symmetric L points. More detailed
explanation is given in the main text.
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The Palmer-Chalker state (or equivalently referred as �4

state) is stabilized in the orange colored region in Fig. 2 [18,24].
It is described by the following three different sets of azimuthal
angles ϕa for sublattices a (a ∈ 0, 1, 2, and 3), and their
time reversal symmetric partners (six different configurations
in total): (ϕ0 = ϕ1 = π

2 , ϕ2 = ϕ3 = 3π
2 ), (ϕ0 = ϕ2 = 7π

6 , ϕ1 =
ϕ3 = π

6 ), (ϕ0 = ϕ3 = 11π
6 , ϕ1 = ϕ2 = 5π

6 ) [23]. (Image of spin
configuration is given in the Supplemental Material [19].)
It is remarkable that this phase is stabilized by anisotropic
NNN exchanges even without long range dipolar interaction
or thermal/quantum fluctuations.

Noncoplanar phases with Q �= 0: Many noncoplanar mag-
netic orderings give fertile grounds where interesting phenom-
ena emerge, such as orbital currents and anomalous Hall effect
induced by nonzero spin chirality [25,26]. Although there exist
earlier studies related to noncoplanar phases with Q �= 0 in
pyrochlores, those are stabilized only as metastable phases or
due to itinerant electrons [27,28]. In our model, we find two
new types of magnetic orderings as ground states: octagonal
prism phase and (distorted) cubic phase. In Fig. 2, both red or
purple regions are where such noncoplanar states are stabilized.

Octagonal prism phase (OP): This noncoplanar phase is
described by the ordering wave vector W same as coplanar
octagonal phase but spins point 16 different directions forming
a shape of an octagonal prism as shown in Fig. 3(b). Thus
we refer it as octagonal prism phase. In this phase, the spins
at each sublattice still form a coplanar state but their planes
are distinct by sublattices. Common origin plot of all spin
configurations is shown in Fig. 3(b). Blue, green, red, and
yellow colors indicate the spin directions in each sublattice.
The magnetic unit cell is quadrupled where spins at each
sublattice align on a certain plane but the planes are distinct
for different sublattices. In detail, spin configuration at a
sublattice a is parametrized as Sa = �a exp(iQ · R) + c.c.
with �a = (f e−iβ(−1)a ,ge− iπ

4 (2a−1),−if eiβ(−1)a ), (f,g,β) are
functions of (φ,θ ) and Q = (2π,π,0). (See the Supplemental
Material [19] for illustration of spin configuration.)

In this phase, noncoplanar spin orderings can give rise to
net scalar spin chirality on each triangle connected by the
NNNs as shown in Fig. 4. Having a finite spin chirality, the
orbital current is generally induced even in the Mott insulating
phase [26,29]. Figure 4 shows the existence of net scalar spin
chirality on each triangle formed by three sites i, j , and k,
χijk = Si · (Sj × Sk) on (111) plane. Triangles with blue (red)
color exhibit positive (negative) spin chirality χijk where sites
i, j , and k are taken in counterclockwise direction, and the
relative magnitudes of χijk are represented by bond thickness.
At a given bond connected by two sites i and j , the third order
of perturbation theory at O(t3/U 2) induces the net current
proportional to Iij,k ∼ r̂ij χijk , where r̂ij is the unit vector from
site i to site j [26]. This orbital current is like the persistent
current in superconducting phase and it furthermore leads to the
finite orbital magnetic moment Lijk ∝ χijk ẑ where ẑ is normal
to the plane of the triangle. As seen in Fig. 4, the orbital current
induced by net scalar spin chirality also makes the special
current channel along ±[12̄1] directions (blue or red colored
thick lines) on (111) plane. Experimental observation of such
spatially varying current channel will be the challenging future
work.

FIG. 4. Scalar spin chirality at each triangle on (111) plane of
pyrochlores. Blue (red) colored triangles exhibit positive (negative)
chirality and bond thickness represents its magnitude. The thick
lines colored by blue and red are the direction ±[12̄1] of current
channel induced by scalar spin chirality. See the main text for more
explanation.

(Distorted) cubic phase (C or DC): At the region marked
with thick purple color in Fig. 2, the ordering wave vectors are
at high symmetric L points [see Fig. 3(f)] and common origin
plot of spin orderings is shown in Fig. 3(d). In this phase, spins
at every sublattice point eight different directions forming a
cubic structure and spin orderings at different sublattices are
all identical consisting of the same cube. Thus we label it as
cubic (C) phase. In detail, spin configuration at each sublattice
is represented as follows:

Sa = eiγa

√
3

(x̂ei Qa ·R + ŷei Q′
a ·R + ẑei Q′′

a ·R). (4)

Here ( Qa, Q′
a, Q′′

a ,γa) are three different ordering wave vec-
tors Qa , Q′

a , Q′′
a and relative phase γa at a sublattice a.

For sublattice a = 0, 1, 2, and 3, (q2,q3,q4,0), (q1,q4,q3,π ),
(q4,q1,q2,π ), and (q3,q2,q1,π ), respectively, where ordering
wave vectors qs are symmetry related distinct L points
defined by q1 = (π,π,π ), q2 = (−π,π,π ), q3 = (π,−π,π ),
and q4 = (π,π,−π ). (See the Supplemental Material [19]
for image of spin configuration.) As described in Eq. (4),
spin configuration at every sublattice is described by three
distinct ordering wave vectors and each ordering wave vec-
tor describes x, y, or z components of spin for a particu-
lar sublattice. One can easily understand the magnetic unit
cell size is octupled compared to the original fcc lattice
unit cell. With an infinitesimal J1, the cubic phase under-
goes the distorted cubic phase, discussed in the following
paragraph.

The parameter change of φ from 0 makes small deviation
of spin direction from the vertices of cube, resulting in

014423-4



DISCOVERY OF A NEW TYPE OF MAGNETIC ORDER ON … PHYSICAL REVIEW B 98, 014423 (2018)

distorted cubic phase, shown in the parameter space colored
with purple in the phase diagram Fig. 2. In this phase, spins
at each sublattice point eight different directions forming a
rhombohedron. For instance, the cubic structure formed by
the common origin plot of spins at sublattice 0 [colored in
blue in Fig. 3(e)] goes through the rhombohedral distortion
along [111] direction. Similarly, the cubic structure formed
by the spins at different sublattices also goes through the
rhombohedral distortion along their local ẑ axis. Similar to
the cubic phase, magnetic ordering wave vectors are at high
symmetric L points with octupled magnetic unit cell. This
distorted cubic phase is remarkably stable against the AF NN
exchanges. It can be understood by the fact that the net sum of
spins for each tetrahedron is quite small in this phase, thus it
is stable even in the presence of large J1 > 0.

In these phases, one can also expect the finite scalar
spin chirality as we discussed in the case of the octag-
onal prism state and it could generate the orbital current
and orbital magnetization even in Mott insulators. How-
ever, unlike the case of octagonal prism state, we found
that the induced orbital current in these phases does not
open special channels for uniform current flow along certain
directions.

Application to spinel compound GeCo2O4: In spinel com-
pounds GeCo2O4, A-site Ge4+ is nonmagnetic and B-site Co2+

ions have partially filled d orbitals with 3d7 surrounded by
octahedrally coordinated oxygens. The Co ions realize high
spin state with S = 3/2 having five electrons occupied in
t2g orbitals and two electrons occupied in eg orbitals. The
magnetic ordering occurs atTN = 21 K, distinct from structural
transition at TS = 16 K and the neutron powder diffraction
experiments exhibit the Bragg peak atπ (1,1,1) due to magnetic
reflection [30–33]. In addition, the magnetic ordering is known
to be noncollinear based on magnetoelectric signature in this
material and thus such ordering could be relevant to the
distorted cubic phase we have studied [34]. For more argument,
however, future experiments will be required to analyze the
exact magnetic ground state.

III. DISCUSSION

In this paper we have studied the spin model of pyrochlore
spinels. Motivated by geometrical frustration in pyrochlores,
we further explored the role of anisotropic spin interactions.
Especially focusing on the spin-orbit coupled system, we
derived the spin exchanges based on psudospin jeff = 1/2
Hubbard model. It turns out that the anisotropic spin exchanges
between next-nearest neighbors play a dominant role in de-
termining magnetic ground state due to complicated superex-
change paths in pyrochlore spinels. It is notable that local
XY, all-in all-out, and Palmer-Chalker phases described by
zero ordering wave vectors also emerge purely by anisotropic
exchanges between next-nearest neighbor even in the absence
of nearest-neighbor interactions. More remarkably, we have
newly discovered noncoplanar magnetic orderings described
by finite ordering wave vectors; octagonal prism phase and
(distorted) cubic phase. These noncoplanar states can give
rise to unique properties in the Mott insulators, such as
orbital current and orbital magnetization induced by scalar
spin chirality. One of the pronounced effect in the octagonal
prism state is an alternating net current along certain direction.
In addition, we also discuss the distorted cubic phase may
help understanding the magnetic order in GeCo2O4 spinel
compounds. Our theoretical prediction of exotic magnetic
states opens a new search of pyrochlore spinel materials
with spin-orbit coupling, and guide further theoretical and
experimental studies.
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