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Metamagnetic jump in the spin-1
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The magnetization process of the spin-1/2 antiferromagnetic Heisenberg model on two-dimensional square-
kagome lattice is studied theoretically. The metamagnetic jumps exist in the magnetization process at the higher
edge of the 1/3 and 2/3 plateaus. The parameter-dependencies of the critical field and the magnitude of the
magnetization jump at the higher edge of the 1/3 plateau are obtained by using the approximated state in the unit
cell and compared with the numerical results of the exact diagonalization of 42 sites.
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I. INTRODUCTION

The magnetization process in frustrated Heisenberg spins
attracts much interest.

Kagome lattice consists of triangles and hexagons. The
triangle structure makes frustration on the system. Recently,
lattice with triangles, squares, and octagons, called square
kagome lattice or shuriken lattice (see Fig. 1), has also been
studied [1–5]. It has been reported that besides the magnetic
plateaus at 1/3 and 2/3 in the magnetization process, the
magnetization jump occurs at the high field edge of the
1/3 plateau [3–5]. There exists another magnetization jump
between 2/3 plateau and the saturation of the magnetization,
which is known to occur in kagome lattice [6,7]. Ising spins
on the square kagome lattice has also been studied recently
[8]. Effective Hamiltonians have been proposed to study the
frustrated spin systems [2,9].

The magnetization jump, or metamagnetic jump, in
anisotropic spin systems is rather easily understood as a spin
flop phenomenon, which is a first-order transition between
differently ordered states. In the Heisenberg antiferromagnetic
spins on the square kagome lattice, on the other hand, the jump
occurs in the isotropic spin systems. The magnetization jump
on the square kagome lattice is also the first-order transition,
but the phases are not so easily imagined as a classical spin
picture. The magnetization jump is also shown to exist in
the square lattice with the next-nearest-neighbor interactions
(J1 − J2 model) [10], where the first-order transition between
different states occurs. Recently, another isotropic spin system
(Cairo pentagon lattice [11,12]) has been discovered to have the
magnetization jump. The Cairo pentagon lattice has no triangle
structure but the frustration is caused by the pentagon structure.
The square kagome lattice and the Cairo pentagon lattice can
be constructed from the Lieb lattice, where frustration does not
exist, as shown in Fig. 2. It is well known that the Lieb-lattice
antiferromagnet holds the so-called Marshall-Lieb-Mattis the-
orem [13,14]. This theorem clarifies that this system shows
the ferrimagnetic ground state. Additional interaction bonds
like J2 in Fig. 2 change the behavior of the system. Other
types of additional interactions were studied [15–17]. Among
them, the kagome-lattice and Lieb-lattice antiferromagnets are
connected by the additional interactions [15]. There is also
another modulation from the kagome-lattice antiferromagnet.

In the case of the
√

3 × √
3 modulation in the kagome lattice,

the magnetization jump also occurs [4,18,19]. The square
kagome lattice and Cairo pentagon lattice have smaller unit
cells (six spins in the unit cell) than the kagome lattice with
the

√
3 × √

3 modulation (nine spins in the unit cell), so it
is more appropriate to study the magnetization jump in the
frustrated spin systems numerically and analytically.

Plateau and jump in the magnetization process have also
been studied in the frustrated Heisenberg spin ladder [20,21]
and in the anisotropic triangular antiferromagnet [10]. It is
known that the triangular-lattice Heisenberg antiferromagnet
shows a plateau without jumps at both edges [22–26]. Ad-
dition and removal of interactions in the triangular-lattice
antiferromagnet were also studied from the viewpoints of
the changing plateau behavior [27–29]. Therefore, it is worth
studying how the change of interaction affects the behavior of
various magnetic systems.

In this paper we study the magnetization process, especially
the J2/J1 dependencies of the critical magnetic field h2 and
magnitude of the magnetization jump at h2, in the square
kagome lattice by using the approximated eigenstate and we
give insights for the magnetization jump obtained numerically
in this system. Rousochatzakis et al. [2] have introduced the
effective models in the square-kagome lattice and similar
lattices, i.e., the effective interactions between β spins around
the singlet formed by four α spins are obtained in the case of
J1 � J2. They also gave the nearest-neighbor valence-bond
description at J1 ≈ J2, which has been studied in the kagome
lattice [30,31]. Although they extensively studied the states of
M = 0 and the plateau boundary at J2/J1 � 1, little attention
has been paid to the magnetization jump in the square-kagome
lattice at J2/J1 ≈ 1. We show that the magnetization jump at
the higher edge of the 1/3 plateau can be approximated as the
uniform phase of the entangled state (or the linear combination
of the eigenstates) in the unit cell.

II. SQUARE KAGOME LATTICE AND THE
EXACT DIAGONALIZATION

The square-kagome lattice is shown in Fig. 1. There are four
α sites and two β sites in the unit cell which is shown by the red
square in Fig. 1. Each β site is shared by neighboring unit cells.
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FIG. 1. Square kagome lattice. Unit cell is shown by the red
square, which consists of four α sites (1–4) and two β sites (5–8;
each spin belongs to two neighboring unit cells), forming the shuriken
structure.

The Heisenberg model on the square-kagome lattice is given
by [4]

H = H1 + H2 + HZeeman, (1)

where H1 is the nearest-neighbor interaction between spins on
the α and β sites,

H1 = J1

∑
〈i,j〉,i∈α,j∈β

Si · Sj , (2)

H2 is the nearest-neighbor interaction between spins on the α

sites,

H2 = J2

∑
〈i,j〉,i∈α,j∈α

Si · Sj , (3)

and HZeeman is the Zeeman energy in the magnetic field h,

HZeeman = −h
∑

j

Sz
j . (4)

We have reported [5] the magnetization process obtained by
exact diagonalization in the square kagome lattice of Ns = 24,
30, 36, and 42, where Ns is the number of spins and N0 = Ns/6
is the number of unit cell. The exact diagonalization is carried
out based on the Lanczos algorithm and the Householder
algorithm. The latter one is used only for the case when the
dimension of the Hilbert space is small. When the dimension
of the Hilbert space becomes extremely large, on the other
hand, the Lanczos diagonalization is carried out using an
MPI-parallelized code, which was originally developed in the
study of Haldane gaps [32]. The usefulness of our program
was confirmed in several large-scale parallelized calculations
[5,19,33–35]. The result of the magnetization process obtained
by the exact diagonalization with the parameters J2/J1 = 1.04
and Ns = 42 is shown in Fig. 3. The magnetization process of
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FIG. 2. Square kagome lattice, topologically same as Fig. 1 and
the Cairo pentagon lattice. Unit cell is shown by the red square, which
consists of four α sites and two β sites.

the Heisenberg antiferromagnetic spins on the square kagome
lattice is shown schematically in Fig. 4. There are plateaus
in the magnetization process at M/Ms = 1/3 and 2/3 when
h1 � h � h2 and h3 � h � h4, respectively.

The metamagnetic jump at h = h2 is determined by the
Maxwell construction [5,36]

The size dependence of the jump at h = h2 is shown in
Fig. 5. The size dependence of h2 is small as obtained from
Ns = 30, 36, and 42.

III. MAGNETIZATION PROCESS

We define the total spin operators for α spins (1–4 in Fig. 1)
and β spins (5–8 in Fig. 1) as

Sα = S1 + S2 + S3 + S4, (5)
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FIG. 3. Magnetization process obtained by the exact diagonaliza-
tion for the system J2/J1 = 1.04 and Ns = 42 and the close-up plot
of the magnetization jump for J2/J1 = 1, 1.02, and 1.04. The results
for J2/J1 = 1 and 1.02 are reported in the previous papers [3–5], and
the results for J2/J1 = 1.04 are the additional data. The critical fields
h1, h2, h3, and h4 are indicated by the red arrows. The magnetization
jumps are seen at h2 and h4
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FIG. 4. Schematic figure of the magnetization process of the
Heisenberg antiferromagnetic spins on square-kagome lattice. There
is 1/3 plateau at h1 � h � h2 and 2/3 plateau at h3 � h � h3. The
magnetization jumps occur at h = h2 and h = h4
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FIG. 5. Close-up plot of the magnetization process near 1/3
plateau on square-kagome lattice with (a) J2/J1 = 1.02 and (b)
J2/J1 = 1.04 obtained by the exact diagonalization. The results of
J2/J1 = 1.02 were already reported in the previous paper [5], and
these of J2/J1 = 1.04 are added to study the J2/J1 dependence on
h2. Black triangles, green diamonds, blue squares, and red circles are
obtained in the systems of Ns = 24, 30, 36, and 42, respectively. The
broken lines represent the results before the Maxwell construction is
carried out [5]. Magnetization jumps are seen in all cases except for
the case of J2/J1 = 1.02 and Ns = 24. Note that the critical value h2

depends very little on the size Ns at J2/J1 = 1.02 and 1.04 except for
Ns = 24.

and

Sβ = S5 + S6 + S7 + S8, (6)

respectively. If the system preserves the translational symme-
try, S5 and S6 should be the same as S7 and S8, respectively.
Since we are interested in the ground states in the magnetic field
and the excited states from the plateau states, the translational
symmetry may be broken in general. Since β spins belong to
two unit cells simultaneously, the total spin in the unit cell is
given by

S = Sα + 1
2 Sβ. (7)

When J1 = 0 we can obtain the eigenstates of the Hamil-
tonian (H2 + HZeeman) as shown in Fig. 6 (see Appendix A).
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FIG. 6. Eigenvalues ofH2 + HZeeman of four α spins as a function
of external magnetic field.

We study the 1/3 plateau state and the magnetization jump at
the higher edge of the magnetic field (h = h2) by using the
approximate states of the entangled state in the unit cell. We
also discuss the jump between 2/3 plateau and the saturated
state at h = h4, which is obtained exactly.

A. 1/3 plateau state at h1 < h < h2

When J2 = 0, the square kagome lattice is the same as the
Lieb lattice as seen in Fig. 2. The Lieb lattice has no frustration.
The ground state of the Lieb lattice with classical spins at
h = 0 is the ferrimagnetic state, i.e., all α spins are up and
all β spins are down, resulting in the magnetization of 1/3 of
the saturation value. Even if the spins are quantum spins with
S = 1/2, the ferrimagnetic state with the 1/3 magnetization
survives, although the amplitudes of the local spins are reduced
by the quantum effects.

In the other limit of J1 = 0 at h = 0, four α spins form the
spin singlet state and the β spins are arbitrary.

When 0 < J1 � J2, the effective interactions between β

spins have been studied by Rousochatzakis et al. [2] using
degenerate perturbation theory. They have shown that the
ground state at J1 � J2 and h = 0 can be approximated by
the singlet state of four α spins and the crossed-dimer valence
bond crystal state of β spins, resulting in the plateau at M = 0
due to a finite spin gap. When J1 ≈ J2, the ground states at
h = 0 are different from the ground state at J1 � J2 and h = 0
and are not definitely determined [2].

As we have shown previously [5], the 1/3 plateau state at
h1 � h � h2 for J2/J1 � 0.96 is different from the states for
J2/J1 � 0.96. When J2/J1 � 0.96, the 1/3 plateau state is the
ferrimagnetic state, similar to that in the Lieb lattice. When
J2/J1 � 0.96, the plateau state can be approximated by the
similar state at J1 = 0, i.e., the spin singlet state is formed by
four α spins and all β spins align up. The latter approximation is
justified numerically for J2/J1 � 1. The exact diagonalization
studies [4,5] show that in the region of magnetic field 0 < h <

h1, 〈Sz
i 〉 (i ∈ β) is obtained to be nearly proportional to h, while

〈Sz
i 〉 (i ∈ α) is almost zero. We approximate the 1/3 plateau

state as the direct product state of |00〉αd for four α spins and
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FIG. 7. Approximate state at h � h2 is an entangled state of the
two states of |11〉α

a |21〉β and |10〉α
a |22〉β .

all up states for β spins, i.e.,

|0,0〉αd |2,2〉β, (8)

which can be justified if J2/J1 � 1. Although the condition
J2/J1 � 1 is not fulfilled in the present case, we treat H1 as a
perturbation. The magnetization of this state is

M

Ms

= 1

3
. (9)

The energy of this state is approximated as

E
(h1�h�h2)
h ≈ N0(−2J2 − h). (10)

B. Magnetization jump at h = h2

When h is larger than h2, α spins no longer stay a singlet
state |0,0〉αd . In order to increase the magnetization from 1/3
of the saturation, four α spins should become one of the
spin-triplet states, which may be |1,1〉αa state, because this
state has the lowest energy when J1 = 0 and J2 < h < 2J2

(see Fig. 6). The z component of the β spins surrounding the
α spins may decrease the z component S

β
z by changing from

|2,2〉β to |2,1〉β , as shown in the right figure in Fig. 7. However,
this state is not the eigenstate of H1 as shown in Appendix
D. We approximate the eigenstate just above the magnetic
field h2 as a linear combination of |11〉αa |21〉β and |10〉αa |22〉β
(See Fig. 8).

The state at the field h just above the higher edge of the
1/3 plateau h2 (h = h2 + 0) is studied in Appendix D and the
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FIG. 8. Some eigenstates of H2 + HZeeman. Open circles are up

spins and filled circles are down spins at cites 1, 2, 3, and 4.
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energy is approximately given by

E
(h=h2+0)
h ≈ N0

(
1

4
J1 − J2 − 5

4
h − 1

4

√
h2 − 2J1h + 9J 2

1

)
.

(11)

On the other hand the energy at the 1/3 plateau is approximated
by Eq. (10). The upper edge of the 1/3 plateau is obtained by

E
(h1�h�h2)
h = E

(h=h2+0)
h . (12)

Then we obtain

h2 = (J1 + J2)(−J1 + 2J2)

J2
= 2J1

(1 + δ
2 )(1 + 2δ)

1 + δ
(13)

≈ 2J1

(
1 + 3

2
δ

)
, (14)

where

δ = J2 − J1

J1
, (15)

and we have assumed

0 � δ � 1. (16)

Although the absolute value of h2 given in Eq. (13) is a little bit
deviated from the value obtained by the exact diagonalization
[h2 = 2 in Eq. (13), while h2 = 1.848 is obtained by the exact
diagonalization at J2 = J1], the (J2 − J1)/J1 dependence of
h2 is in good agreement between Eq. (13) and the exact
diagonalization, as shown in Fig. 9. We will discuss the
interaction between the excitations in the next section.

At the magnetic field just above h2, the eigenstate is
approximated as

|�〉 ≈ −√
2J2√

J 2
1 + 2J 2

2

|11〉αa |21〉β + J1√
J 2

1 + 2J 2
2

|10〉αa |22〉β.

(17)
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FIG. 9. The critical field h2 vs (J2 − J1)/J1 given in Eq. (13)
(solid line) and the numerical results of the exact diagonalization in
the system Ns = 42 (squares).

The magnetization at h = h2 + 0 is

〈m〉 = 1

J 2
1 + 2J 2

2

(
1

3
J 2

1 + J 2
2

)
= 4

(
1 + 3

2δ + 3
4δ2

)
9
(
1 + 4

3δ + 2
3δ2

)
≈ 4

9

(
1 + 1

6
δ

)
. (18)

If the interaction between the excitations from the state at
the 1/3 state were repulsive, the Bose-Einstein condensation of
magnons would happen, which has been shown to be realized in
several materials [37–41]. In that case the magnetization would
increase continuously when the magnetic field is increased
from h2. However, as we will show numerically in the next
section, the interaction between the excitations from the state
at the 1/3 state is attractive. Then the excitations occur on every
unit cell in the ground state at h = h2 + 0. In this case the
magnetization jumps from 1/3 to the value given in Eq. (18).

C. 2/3 plateau at h3 < h < h4 and the jump at h = h4

We study the 2/3 magnetization plateau and jump at h = h4

in this subsection in order to make clear the mechanism of the
jump in this system. All spins align to the z direction at h > h4.
This state is written as the direct product of the Sα = 2, Sα

z = 2
state of four α spins (|2,2〉α) and the Sβ = 2, S

β
z = 2 state of

four β spins (|2,2〉β). We write the state at h > h4 as

|2,2〉α|2,2〉β. (19)

The magnetization per unit cell is Ms/N0 = 3 (M/Ms = 1)
and the energy per unit cell is obtained as

E
(h�h4)
h

N0
= (J2 + 2J1 − 3h). (20)

When we decrease the magnetic field below h4, the magne-
tization jumps from the fully polarized state (M/Ms = 1) to
the 2/3 plateau. This jump can be understood as follows. In this
2/3 plateau the spins at the β sites are aligned to the z direction,
while the four α spins form the spin triplet |1,1〉αa , since |1,1〉αa
is the lowest state within S = 1,Sz = 1 states for four α spins
(see Fig. 6). Note that both |2,2〉α|2,2〉β and |1,1〉αa |2,2〉β are
eigenstates of the Hamiltonian with the energy given as Eq. (20)
and

E
(h3�h�h4)
h

N0
= (−J2 + J1 − 2h), (21)

respectively. In both states the shared β spins are all ups.
Therefore, any spatially mixed states of |2,2〉α|2,2〉β and
|1,1〉αa |2,2〉β are also the eigenstates. If the fraction of p

(0 � p � 1) of the unit cells is the state |2,2〉α|2,2〉β and
(1 − p) of the unit cells is the state |1,1〉αa |2,2〉β , the energy is

E

N0
= p

E
(h�h4)
h

N0
+ (1 − p)

E
(h3�h�h4)
h

N0
. (22)

The lowest energy is obtained by p = 0 for h < h4 and by
p = 1 for h > h4, where the critical value h4 is obtained by
the equation

E
(h�h4)
h4

= E
(h3�h�h4)
h4

. (23)
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We obtain

h4 = J1 + 2J2. (24)

In this subsection no approximation is used. A similar situation
has been studied for the magnetization jump to the saturated
magnetization in kagome lattice [6,7].

IV. INTERACTION BETWEEN EXCITATIONS

In this section we consider the interaction between excita-
tions. We take x = M/Ms , where M is the magnetization and
Ms is the saturation value of the magnetization, Ms = Ns/2
(Ns is the number of sites). We define the energy E(x) as the
lowest energy at h = 0 (the eigenvalue of H1 + H2) among
the eigenstates having the same magnetization x. In the finite
system, x can have the discrete values

x = 2n

Ns

, (25)

where

n = 0, ± 1, ± 2, . . . , ± Ns

2
. (26)

We have assumed that Ns is an even number. We define the
lowest energy per site at h = 0 among the states with the
magnetization x,

ε(x) = E(x)

Ns

. (27)

In Fig. 10 we plot ε(x) as a function of x obtained by the
exact diagonalization with J2/J1 = 1.04 and Ns = 36. The
magnetization process is calculated as

h(x) = E(x) − E

(
x − 2

Ns

)

= Ns

[
ε(x) − ε

(
x − 2

Ns

)]
. (28)

In the limit of Ns → ∞, it becomes

h(x) = 2
dε(x)

dx
. (29)

In the magnetization process, we plot the magnetization x as a
function of h, as shown in Fig. 3.

In the region 0 < x � 1/3 (0 < h � h1), the graph of
ε(x) is downward convex (blue lines). This downward con-
vex curvature means the repulsive interaction between the
magnonlike excitations from the totally singlet state at h = 0.
The plateau at x = 1/3 corresponds to the kink of ε(x) at
x = 1/3. Above x = 1/3 the graph of ε(x) is upward convex
(red lines) as shown in Fig. 10. Although the difference
between the red lines connecting the nearest circles and the
black broken line connecting the third-nearest circles is very
small, it is much larger than the numerical errors of the exact
diagonalization (relative errors should be less than 10−10 for
example). The downward convex curvature means that the
attractive interaction works between the excitation from the
plateau state. Thus the entangled states studied approximately
in the previous section will be created in all unit cells, resulting
in the finite jump in the magnetization. The straight line of ε(x)
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FIG. 10. Energy per site [ε(x)] as a function of x = M/Ms =
n/21 obtained by the exact diagonalization (Ns = 42). At 0 < x �
1/3, ε(x) is downward convex as shown by the blue line. A kink is seen
at x = 1/3. At 1/3 � x � 10/21 the curvature is upward convex (the
red line) and a little higher than the black broken line connecting the
third-nearest circles at x = 1/3 = 7/21 and x = 10/21. At 10/21 �
x � 2/3, ε(x) is again downward convex (the blue line). At x = 2/3
there is a kink again, and all circles at 2/3 � x � 1 are on the straight
green line.

at 2/3 � x � 1 is consistent with no interaction between the
excitation from the 2/3 state or from the fully saturated state.

Finally, we would like to comment on the experimental
situation. Although a good candidate material for the present
system depicted in Fig. 1 was reported [42] and the numerical
study was done [43], the material has a further additional
distortion. Owing to this addition, the behavior of this material
is different from the present result [43]. Even though there is
such a difference, good candidate materials will be found in
the near future.

V. CONCLUSION

In this paper we study the magnetization process of the
Heisenberg antiferromagnet on the square kagome lattice by
using the approximated wave function. We take the approxi-
mation that the ground state just above the higher edge of the
1/3 plateau is the entangled state of the S = 1 triplet states of
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the α spins on the square and the S = 2 quintet state of the β

spins, |10〉αa |22〉β and |11〉αa |21〉β . Since the β spins are shared
by neighboring unit cells, the magnetization of the entangled
states depends on the coefficient of two states. In spite of the
crude approximation taken in this paper, it gives the reasonable
J2/J1 dependence of the value of the critical field h2 and the
magnitude of the magnetization jump, which are obtained by
the exact diagonalization study. The approximation is justified
when J2/J1 � 1. The reason it seems to work well even when
J2/J1 � 1 would be the frustration, which reduces the effective
coupling (J1) between the spins forming triangles with respect
to the coupling (J2) in the spins forming squares without
frustrations.
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APPENDIX A: EIGENSTATES OF H2 + HZeeman

The eigenstates of H2 for four α spins on the corner of the
square is written as the linear combination of |σ1,σ2,σ3,σ4〉,
where σj =↑ or ↓. The eigenstates are also written as |S,Sz〉α ,
where S is the total spin for four spins on α sites and Sz is the
z component of total spin. The same notations are used for the
four β spins (5, 6, 7, and 8).

There are one S = 2 quintet, three S = 1 triplets and two
S = 0 singlets. The S = 2 states are given as

|2,2〉α = | ↑↑↑↑〉, (A1)

|2,1〉α = 1
2 (| ↓↑↑↑〉 + | ↑↓↑↑〉
+ | ↑↑↓↑〉 + | ↑↑↑↓〉), (A2)

|2,0〉α = 1√
6

(| ↑↑↓↓〉 + | ↑↓↓↑〉

+ | ↓↓↑↑〉 + | ↓↑↑↓〉
+ | ↑↓↑↓〉 + | ↓↑↓↑〉), (A3)

|2, − 1〉α = 1
2 (| ↑↓↓↓〉 + | ↓↑↓↓〉
+ | ↓↓↑↓〉 + | ↓↓↓↑〉), (A4)

|2, − 2〉α = | ↓↓↓↓〉. (A5)

We write the three S = 1 triplets as |1,Sz〉a , |1,Sz〉b, and
|1,Sz〉c, which are given by

|1,1〉αa = 1
2 (| ↓↑↑↑〉 − | ↑↓↑↑〉 + | ↑↑↓↑〉 − | ↑↑↑↓〉),

(A6)

|1,0〉αa = 1√
2

(−| ↑↓↑↓〉 + | ↓↑↓↑〉), (A7)

|1, − 1〉αa = 1
2 (−| ↑↓↓↓〉 + | ↓↑↓↓〉
− | ↓↓↑↓〉 + | ↓↓↓↑〉), (A8)

|1,1〉αb = 1√
2

(| ↓↑↑↑〉 − | ↑↑↓↑〉), (A9)

|1,0〉αb = 1
2 (−| ↑↑↓↓〉 − | ↑↓↓↑〉
+ | ↓↓↑↑〉 + | ↓↑↑↓〉), (A10)

|1, − 1〉αb = 1√
2

(−| ↑↓↓↓〉 + | ↓↓↑↓〉), (A11)

|1,1〉αc = 1√
2

(| ↑↓↑↑〉 − | ↑↑↑↓〉), (A12)

|1,0〉αc = 1
2 (−| ↑↑↓↓〉 + | ↑↓↓↑〉
+ | ↓↓↑↑〉 − | ↓↑↑↓〉), (A13)

|1, − 1〉αc = 1√
2

(−| ↓↑↓↓〉 + | ↓↓↓↑〉). (A14)

We write two S = 0 singlets as |0,0〉d and |0,0〉e, which are
given by

|0,0〉αd = 1√
12

(| ↑↑↓↓〉 + | ↑↓↓↑〉

+ | ↓↓↑↑〉 + | ↓↑↑↓〉
− 2| ↑↓↑↓〉 − 2| ↓↑↓↑〉), (A15)

|0,0〉αe = 1
2 (| ↑↑↓↓〉 − | ↑↓↓↑〉
+ | ↓↓↑↑〉 − | ↓↑↑↓〉). (A16)

The S = 2 states are the eigenstates of H2 with the eigen-
value J2,

H2|2,Sz〉α = J2N0|2,Sz〉α, (A17)

where Sz = 2, 1, 0, − 1, or −2. One of the S = 1 states
(|1,Sz〉αa ) has the eigenvalue −J2, and the other two S = 1
states (|1,Sz〉αb and |1,Sz〉αc ) have eigenvalue 0,

H2|1,Sz〉αa = −J2N0|1,Sz〉αa , (A18)

H2|1,Sz〉αb = 0, (A19)

H2|1,Sz〉αc = 0, (A20)

where Sz = ±1 or 0.
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Two S = 0 eigenstates (|0,0〉αd and |0,0〉αe ) have eigenvalues
−2J2 and 0, respectively,

H2|0,0〉αd = −2J2N0|0,0〉αd , (A21)

H2|0,0〉αe = 0. (A22)

In Fig. 6 the eigenvalues of H2 + HZeeman are plotted as
a function of the external magnetic field h. The ground state
of H2 + HZeeman is |0,0〉αd , |1,1〉αa , and |2,2〉α for 0 < h < J2,
J2 < h < 2J2, and h > 2J2, respectively.

APPENDIX B: 2/3 PLATEAU AND h4

In this appendix we calculate the critical magnetic field h4

at which the state changes from the 2/3-plateau state to the
state of all spins up. The 2/3-plateau state is the state in which
four α spins (sites 1–4 in Fig. 1) form the |1,1〉αa state and all
β spins are up state (|2,2〉β . We consider sites 1–8 in Fig. 1.
Then we can write H1 as

H1 = J1

∑
〈i,j〉i=1∼4,j=5∼8

Si · Sj . (B1)

For example, we consider the term containing S5 in Eq. (B1),

J1
[

1
2 [S−

5 (S+
1 + S+

2 ) + S+
5 (S−

1 + S−
2 )] + Sz

5

(
Sz

1 + Sz
2

)]
. (B2)

Since

(S+
1 + S+

2 )|1,1〉αa = 0, (B3)

and

S+
5 |2,2〉β = 0, (B4)

we can show that the state of the direct product of |1,1〉αa and
all up states of spins 5–8 (|2,2〉β) are the eigenstates of H1 and
H. We obtain the energy of this state as

E
(h3�h�h4)
h = N0(J1 − J2 − 2h), (B5)

where N0 is the number of the unit cell.
At h > h4 all spins are aligned to the z direction and the

energy is

E
(h�h4)
h = N0(2J1 + J2 − 3h). (B6)

The magnetization jump from M/Ms = 2/3 to 1 occurs at
h = h4, at which

E
(h3�h�h4)
h = E

(h�h4)
h . (B7)

We obtain

h4 = J1 + 2J2. (B8)

APPENDIX C: 0 � h < h1 AND h1 < h < h2

When h = 0, the true ground state should be the total singlet
state of all spins, and the ground state at small h might be
a complicated state. We do not address the ground state at
small h in detail in this paper. However, as shown by numerical
study [4,5], in the region of magnetic field 0 < h < h1, 〈Sz

i 〉 is
nearly proportional to h for i ∈ β, while it is almost zero for
i ∈ α. We may take a simplified picture that the state for the α

spins is approximated as the singlet |00〉αd . This approximation
is justified if J1 � J2, since |00〉αd is the ground state for

H2 + HZeeman for h < J2, as shown in Fig. 6. Although the
condition J1 � J2 is not fulfilled in the present case, we treat
H1 as a perturbation. In the region 0 < h < h1 the system
is considered in the state that the α spins make |00〉αd and
the locally excited β spin from the singlet state extend over
the system forming a spin-wave-like state with the repulsive
interaction between excitations. If there were no interactions
between the excitations as in the case at h = h4 discussed in
Appendix B, or if there were attractive interaction between the
excitations, the magnetization jump would occur.

In the 1/3-plateau region (h1 < h < h2), the ground state
is approximated by the direct product of |00〉αd for four α spins
and all β spins are aligned up, i.e., |2,2〉β . The energy of this
state is approximated as

E
(h1�h�h2)
h ≈ N0(−2J2 − h). (C1)

APPENDIX D: h � h2

In this appendix we show the matrix elements ofH1 between
the eigenstates of H2 at the magnetic field just above h2.

Using the definition of |1Sz〉αa , |1Sz〉αb , and |1Sz〉αc , we obtain

H1|11〉αa = J1

[
1

2
√

2
|10〉αaS+β

a + 1

4
|10〉αbS

+β

b

+ 1

4
|10〉αc S+β

c + 1

2
|11〉αaSzβ

a + 1

2
√

2
|11〉αbS

zβ

b

+ 1

2
√

2
|11〉αc Szβ

c

]
, (D1)

H1|10〉αa = J1

[
1

2
√

2
|11〉αaS−β

a + 1

4
|11〉αbS

−β

b + 1

4
|11〉αc S−β

c

+ 1

2
|1 − 1〉αaS+β

a + 1

2
√

2
|1 − 1〉αbS

+β

b

+ 1

2
√

2
|1 − 1〉αc S+β

c

]
, (D2)

H1|1 − 1〉αa = J1

[
1

2
√

2
|10〉αaS−β

a + 1

4
|10〉αbS

−β

b

+ 1

4
|10〉αc S−β

c + 1

2
|1 − 1〉αaSzβ

a

+ 1

2
√

2
|1 − 1〉αbS

zβ

b + 1

2
√

2
|1 − 1〉αc Szβ

c

]
,

(D3)

where Sβ
a , Sβ

b , and Sβ
c are the spin operators for the β spins

defined by

Sβ
a = Sβ = S5 + S6 + S7 + S8, (D4)

Sβ

b = −S5 + S6 + S7 − S8, (D5)

and

Sβ
c = S5 + S6 − S7 − S8. (D6)

The z component, the raising operator, and the lowering
operator of Sβ

a , Sβ

b , and Sβ
c , are defined as usual, for example,

S±β
a = (Sx

5 + Sx
6 + Sx

7 + Sx
8 ) ± i(Sy

5 + S
y

6 + S
y

7 + S
y

8 ).

(D7)
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Since |1Sz〉αb , |1Sz〉αc , and |1 − 1〉αa have higher energy than
|11〉αa and |10〉αa , we restrict ourselves in the subspace in |11〉αa
and |10〉αa and neglect other states. Then H1 is approximated
in the basis of |11〉αa |21〉β and |10〉αa |22〉β as

H1 ≈ 1

2
J1

(
S

zβ
a

1√
2
S

+β
a

1√
2
S

−β
a 0

)
. (D8)

Since
β〈21|Szβ

a |21〉β = 1, (D9)

and
β〈22|S+β

a |21〉β =β 〈21|S−β
a |22〉β = 2, (D10)

we obtain

H1 ≈ J1

(
1
2

1√
2

1√
2

0

)
. (D11)

In this subspace (|10〉αa |22〉β and |11〉αa |21〉β ) the Hamiltonian
is approximated as

H(h=h2+0) ≈
(

1
2J1 − J2 − 3

2h 1√
2
J1

1√
2
J1 −J2 − h

)
. (D12)

The eigenvalues of Eq. (D12) are

E
(h=h2+0)
h = N0

(
1
4J1 − J2 − 5

4h ± 1
4

√
h2 − 2J1h + 9J 2

1

)
.

(D13)

We take the minus sign for the square root, since the state with
lower energy is realized.
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