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Entanglement features of random Hamiltonian dynamics
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We introduce the concept of entanglement features of unitary gates, as a collection of exponentiated
entanglement entropies over all bipartitions of input and output channels. We obtained the general formula
for time-dependent nth-Rényi entanglement features for unitary gates generated by random Hamiltonian. In
particular, we propose an Ising formulation for the second Rényi entanglement features of random Hamiltonian
dynamics, which admits a holographic tensor network interpretation. As a general description of entanglement
properties, we show that the entanglement features can be applied to several dynamical measures of thermalization,
including the out-of-time-order correlation and the entanglement growth after a quantum quench. We also analyze
the Yoshida-Kitaev probabilistic protocol for random Hamiltonian dynamics.
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I. INTRODUCTION

The dynamics of quantum many-body entanglement lies
in the core of understanding thermalization, information
scrambling, and quantum chaos in many-body systems [1–
18]. Recently, there has been rapid progress in the study of
entanglement production and propagation in random unitary
dynamics [19–26], where the time evolution of quantum many-
body systems is modeled by a unitary circuit in which all
local unitary gates are independently random. The randomness
in the unitary circuit efficiently removes the basis specific
details and allows us to focus on the universal properties of
entanglement dynamics. The same philosophy also underlies
the recent works [27–34] of using random tensor networks
to model entangled many-body states or chaotic unitary evo-
lutions. Due to the lack of time-translation symmetry in the
random unitary circuit, energy is not conserved under random
unitary dynamics, which obscure its application to problems
like energy transport. One step toward a generic quantum
dynamics with energy conservation is to consider the random
Hamiltonian dynamics [35–39], i.e., unitary evolutions U (t ) =
e−iHt generated by time-independent random Hamiltonians H .

In this work, we will consider the system of N qudits. Each
qudit corresponds to a d-dimensional local Hilbert space. The
many-body Hilbert space is a direct product of qudit Hilbert
spaces. The quantum dynamics of qudits is described by a
random Hamiltonian that simultaneously acts on all qudits
without locality. Although the Hamiltonian is nonlocal, the
tensor product structure of the many-body Hilbert space still
allows us to specify entanglement regions and to define the
entanglement entropy over different partitions of qudits. The
goal of this work is to study the entanglement dynamics
under the time evolution generated by such nonlocal random
Hamiltonians. Similar discussions of subsystem entanglement
with nonlocal Hamiltonians also appear in the study of the
Sachdev-Ye-Kitaev (SYK) models [40–45].

To be more concrete, we want to calculate the entangle-
ment entropies for all possible bipartitions of both past and

future qudits in the unitary evolution generated by random
Hamiltonians. All these data are summarized as what we
called the entanglement features [32] of the unitary evolution,
which characterizes all the entanglement properties of the
corresponding quantum dynamics. An idea that we wish to
put forward is to think of the entanglement entropy as a
kind of “free energy” associated to each configuration of
entanglement regions [27,28,32]. The underlying statistical
mechanical model that reproduces the free energy functional
then provides an efficient description of the entanglement fea-
tures. Such a statistical mechanical interpretation of quantum
many-body entanglement originated in the study of random
tensor networks [27], where it was shown that the entanglement
entropy of a random tensor network state can indeed be mapped
to the free energy of a statistical mechanical model defined
on the same graph as the tensor network. The model can be
as simple as an Ising model if the second Rényi entropy is
considered. It is also shown that the holographic Ising model
can be constructed from the entanglement features by ma-
chine learning [32], which decodes the emergent holographic
geometry from quantum entanglement. In this work, we will
follow the same idea to reveal the holographic Ising model that
describes the entanglement features of the random Hamiltonian
dynamics. The holographic interpretation provides us with a
toy model of black hole formation in the holographic bulk
under quantum chaotic dynamics on the holographic boundary.

Another practical motivation of this work is to bridge
the two existing notions of thermalization in quantum many-
body systems: eigenstate thermalization [46–49] and quantum
chaos [9,50,51]. The eigenstate thermalization focuses on
the static (equilibrium) aspects of thermalization, such as
the energy level statistics and the reduced density matrix
of a single eigenstate [52–57]. The quantum chaos focuses
on the dynamical aspects of thermalization, such as entropy
growth, butterfly effect, and information scrambling. The
relation between these two notions of thermalization is still
under active investigation. A minimal theoretical description
for the eigenstate thermalization is the random matrix theory
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[58–60], where the quantum many-body Hamiltonian is treated
as a random matrix. This relatively crude model already
provides nice predictions of many properties of a thermalizing
system, including the Wigner-Dyson level statistics and the
volume-law entanglement entropy. On the side of quantum
chaos, several measures has been proposed to characterize
the chaotic dynamics, including the tripartite information [9],
the out-of-time-order correlation (OTOC) [4,7,10,11,61–73],
and the entanglement growth after a quantum quench [74–76].
These measures can be unified and formulated systematically
in terms of entanglement features of the unitary evolution itself.
Therefore by studying the entanglement features of random
Hamiltonian dynamics, we can learn about the typical quantum
chaotic behavior of many-body systems that exhibits eigenstate
thermalization.

II. GENERAL DISCUSSIONS

A. Definition of entanglement features

We consider a quantum many-body system made of N

qudits (each qudit has a Hilbert space of dimension d). The
total Hilbert space H is the tensor product of all qudit Hilbert
spaces, whose dimension isD = dN . A random Hamiltonian is
a D × D Hermitian operator H acting on H and drawn from a
Gaussian unitary ensemble (GUE), described by the following
probability density:

P (H ) ∝ e− D
2 Tr H 2

. (1)

The normalization of the Hamiltonian H is such chosen that
in the D → ∞ limit, the spectral density of H approaches the
Wigner semicircle law ρ(E) = 1

2π

√
4 − E2 of fixed spectral

radius. A random Hamiltonian dynamics is a unitary time
evolution generated by a fixed (time-independent) GUE Hamil-
tonian. These unitary operators form an ensemble that evolves
with time:

E (t ) = {U (t ) = e−iHt |H ∈ GUE}. (2)

The ensembleE (t ) starts with a simple limit at t = 0 containing
just the identity operator and gradually evolves into a compli-
cated random unitary ensemble (but not exactly Haar-random
[38] in the long-time limit) which entangles all qudits together.
With the tensor product structure of the Hilbert space, we will
be able to address how the entanglement is generated among
different subsets of qudits.

A unitary operator can be graphically represented as

(3)

where each leg represents the action in a qudit Hilbert space
and the time flows upwards. It can also be viewed as a quantum
gate, where the bottom (top) legs are input (output) quantum
channels. This tensor-network-like picture encourages us to
treat the unitary gate as an (unnormalized) quantum state, such
that we can ask about the entanglement entropies of different
subsets of the input and output channels.

To describe the entanglement property of the unitary gate
U (t ) systematically, we introduce the concept of entanglement
features [32]. The entanglement features of a unitary gate

U refer to the collection of (exponentiated) entanglement
entropies over all partitions of the input and output channels to
all orders of Rényi index. Each specific entanglement feature
W

(n)
U [σ, τ ] is defined as

W
(n)
U [σ, τ ] = Tr U⊗nXσ (U⊗n)†Xτ , (4)

where n is the Rényi index and U⊗n is the n replication of the
unitary U . Given the Rényi index n, the entanglement feature
is specified by two permutation group elements σ, τ ∈ S×N

n ,
which can be written in the component form as σ = σ1 × σ2 ×
· · · × σN and similarly for τ . Each element σi ∈ Sn represents
a permutation among the n replica of the i-th qudit. Xσ denotes
the representation of σ ∈ S×N

n in the n-replicated Hilbert space
H⊗n.

As U (t ) evolves in time, its entanglement features also
change. In fact, W

(n)
U (t )[σ, τ ] can be considered as the time cor-

relation functionWn
U [σ, τ ] = Tr Xσ (t )Xτ between Heisenberg

evolved permutations Xσ (t ) = U⊗nXσ (U⊗n)† and Xτ in the
replicated Hilbert space H⊗n. The entanglement features are
directly related to the entanglement entropies of the unitary
gate [9,77,78] (by definition),

S
(n)
U [σ, τ ] = 1

1 − n
ln

W
(n)
U [σ, τ ]

Dn
. (5)

The von Neumann entropy corresponds to the limit that n → 1
by analytic continuation. In this notation, the entanglement
region A is specified by the permutations σ and τ according to
the assignment of either the cyclic c (like ) or the identity
1 (like ) permutations,

σi, τi =
{
c if i ∈ A,

1 if i /∈ A.
(6)

Putting together all Rényi indices n and all permutations σ and
τ , the time-dependent entanglement features capture the full
information of the entanglement dynamics under the unitary
evolution U (t ).

In Appendix A, we study the entanglement features of
two-qudit gates generated by random Hamiltonian, where
we notice that as the qudit dimension d becomes large, the
ensemble fluctuation for entanglement features is suppressed
quickly. Therefore, in the following sections, we will focus on
the ensemble averaged entanglement features,

W (n)[σ, τ ] = 〈W (n)
U [σ, τ ]〉U∈E (t ). (7)

The ensemble averaged entanglement feature W (n)[σ, τ ] is
time-dependent (although not spelt out explicitly), as the
unitary ensemble E (t ) evolves with time according to Eq. (2).

B. Connections to other quantities of interest

The entanglement features are useful as they are closely
related to many important characteristics of thermalization. For
example, the growth of entanglement entropy after a global
quench |ψ (t )〉 = U (t )|ψ (0)〉 on a product state |ψ (0)〉 is
given by

S
(n)
|ψ (t )〉[τ ] = 1

1 − n
ln

�(d )N

�(d + n)N
∑
[σ ]

W
(n)
U (t )[σ, τ ]. (8)
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Also, the operator-averaged OTOC can be expressed in terms of
the entanglement features of the unitary [9,65]. Consider A and
B are two subsets containing NA and NB qudits, respectively.
Let OA and OB be Hermitian operators supported on A and
B, and OA(t ) = U (t )OAU †(t ) be the time-evolved operator.
As we average over all Hermitian operators OA and OB within
their supports, the OTOC at infinite temperature can be related
to the second Rényi entanglement feature W

(2)
U (t ) by

OTOC(A,B ) ≡ avg
OA,OB

1

D
Tr OA(t )OBOA(t )OB

= d−N−NA−NB W
(2)
U (t )[σ, τ ], (9)

given that the permutations σ and τ are determined by the
operator supports A and B as

σi =
{
c if i ∈ A,

1 if i /∈ A;
τi =

{
1 if i ∈ B,

c if i /∈ B.
(10)

Therefore we can gain much understanding of the random-
Hamiltonian-generated quantum chaotic dynamics by study-
ing the entanglement features of the corresponding unitary
evolutions. Although the above framework is quite general,
calculating all entanglement features is rather difficult. To
keep things simple, we will mainly focus on the second Rényi
entanglement features (i.e., the n = 2 case). It turns out that the
second Rényi entanglement features are sufficient to capture
all the four-point operator-averaged OTOC as in Eq. (9), which
is of our main interest.

III. ENSEMBLE AVERAGED ENTANGLEMENT FEATURES

A. Spectral form factors

A random Hamiltonian generated unitary evolution U (t ) =
e−iHt can always be diagonalized as

U (t ) = V �(t )V †, (11)

where V is the unitary matrix that also diagonalizes the
Hamiltonian H , and �(t ) is a diagonal matrix whose diagonal
elements are phase factors �(t )mm = e−iEmt specified by the
eigenenergies Em of H . For random Hamiltonians taken from
the GUE, V are simply Haar random unitaries, and the energy
levels follow the joint probability distribution

PGUE[E] ∝
∏

m>m′
(Em − Em′ )2e− D

2

∑
m E2

m . (12)

The statistical features of the energy spectrum can be encoded
in the spectral form factors [79–81]. Most generally, each kind
of spectral form factor R[k] can be labeled by a set of integers
ki ∈ Z denoted as [k] = [k1, · · · , kl], based on the following
definition:

R[k](t ) = D−l

〈∏
i

Tr �(t )ki

〉
GUE

= 〈e−it
∑

i kiEmi 〉GUE

=
∫

[E]
PGUE[E]e−it

∑
i kiEmi , (13)

where l is the size of the set [k]. R[k] is nonvanishing only
if [k] satisfies the neutralization condition, i.e.,

∑
i ki = 0.

Due to the E → −E symmetry of the GUE distribution, the
spectral form factor is even in [k], i.e., R[k] = R[−k]. Analytic
formulas for some of the spectral form factors can be found in
Ref. [38], which are rather complicated and will not be repeated
here. Here we would just mention the asymptotic forms to the
leading order in D,

R[k](t ) =
∏

i

J1(2kit )

kit
+ O(D−1), (14)

where J1 is the Bessel function of the first kind.
Sometimes, it is convenient to introduce another notation

of the spectral form factor, labeled by permutation group
elements, which is defined as

R(n)
g (t ) = 1

Tr Xg

〈Tr(�(t )⊗n ⊗ �∗(t )⊗n)Xg〉GUE, (15)

where �∗(t ) = �(−t ) is the complex conjugate of the diag-
onal phase matrix. Both � and �∗ are n-replicated, which
leads to totally 2n layers. g ∈ S2n is a permutation among
these 2n layers and Xg denotes the matrix representation of
g in the H⊗2n Hilbert space. For the special case of n = 2,
the correspondence between R(n)

g and R[k] is listed in Table II,
which will be useful for our later discussion.

B. Ensemble average

Now we are in the position to calculate the ensemble
averaged nth Rényi entanglement features defined in Eq. (7).
Plugging in the definition of entanglement feature in Eq. (4)
and express the unitary evolution in its diagonal basis following
Eq. (11), we can rearrange Eq. (7) into

W (n)[σ, τ ] = 〈Tr(V �V †)⊗nXσ (V �∗V †)⊗nXτ 〉
= 〈Tr V ⊗2n(�⊗n ⊗ �∗⊗n)V †⊗2n(Xσ ⊗ Xτ )Xx︸ ︷︷ ︸

(see Fig. 1 for diagrammatic representation)

〉.

(16)

We have introduced Xx to represent the large swap operator
between the � layers and the �∗ layers at the bottom of the
diagram in Fig. 1. The trace operator Tr acting on the diagram
simply connects the top legs to the bottom legs by imposing
a “periodic boundary condition” in the vertical direction. The
ensemble average includes both averaging V and V † over Haar
random unitary ensembles and averaging � over the energy
levels of GUE random matrices.

Let us first take the Haar ensemble average of V and V †.
The result reads [82]

W (n)[σ, τ ] =
∑

g,h∈S2n

Wgg−1h〈Tr(�⊗n ⊗ �∗⊗n)Xg〉

× Tr Xh(Xσ ⊗ Xτ )Xx, (17)

where g ∈ S2n stands for permutations among the 2n layers,
and Xg denotes the representation of g in the H⊗2n Hilbert
space. Wgg is the Weingarten function, which appeared in the
integration of Haar random unitaries. Wgg is a class function
in g and is a rational function in the Hilbert space dimension
D. In the large D limit, the Weingarten function (for S2n group)
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X X

V V V V

� �

x

V V V V

FIG. 1. The diagrammatic representation of Eq. (16) for the n = 2
case. The generalization to n > 2 cases is straightforward.

has the asymptotic form

Wgg = D−4n+#(g)
∏

i

(−)νi (g)−1Cνi (g)−1 + · · · , (18)

where #(g) is the number of cycles in g and νi (g) is the length
of the ith cycle in g. Cm = (2m)!/m!(m + 1)! is the Catalan
number.

We then carry out the ensemble average over energy
levels. According to Eq. (15), the result can be expressed in
terms of the spectral form factor as 〈Tr(�⊗n ⊗ �∗⊗n)Xg〉 =
R(n)

g Tr Xg . So the problem boils down to evaluating various
traces of permutation operators, which is essentially a prob-
lem of counting permutation cycles. To evaluate the trace
Tr Xh(Xσ ⊗ Xτ )Xx , we note that every permutation matrix
in this expression is a direct product of the small permutations
that act independently in the quantum channel of each qudit.
So the result can be factorized to

Tr Xh(Xσ ⊗ Xτ )Xx =
∏

i

d−Kh(σi ,τi ), (19)

where Kh(σi, τi ) = #(h(σi ⊗ τi )x) is a cycle counting
function.

Putting all pieces together, Eq. (17) becomes

W (n)[σ, τ ] =
∑

g,h∈S2n

Wgg−1hR
(n)
g D#(g)−Kh[σ,τ ], (20)

where Kh[σ, τ ] = 1
N

∑
i Kh(σi, τi ). The time dependence en-

ters from the spectral form factor R(n)
g (t ) defined in Eq. (15).

This gives the general formula for the nth Rényi entanglement
feature averaged over the ensemble E (t ). In the following, we
will restrict to the n = 2 case and discuss several applications.

IV. 2ND RÉNYI ENTANGLEMENT FEATURES

A. Ising formulation

For n = 2, Eq. (20) reduces to

W (2)[σ, τ ] =
∑

g,h∈S4

Wgg−1hR
(2)
g D#(g)−Kh[σ,τ ], (21)

TABLE I. The Ising coupling energy Kh(σi, τi ) for different
permutations h ∈ S4.

h ∈ S4 Kh(σi, τi)

, − 1
2
σiτi − 3

2

, + 1
2
σiτi − 3

2

, , , − 1
2
σi − 1

2
τi − 2

, , , + 1
2
σi + 1

2
τi − 2

, , , − 1
2
σi + 1

2
τi − 2

, , , + 1
2
σi − 1

2
τi − 2

+ 1
2
σi − 1

2
τi − 3

− 1
2
σi + 1

2
τi − 3

− 1
2
σi − 1

2
τi − 3

+ 1
2
σi + 1

2
τi − 3

where σ = σ1 × σ2 × · · · × σN and similar for τ . Here,
σi, τi ∈ S2 are identity or swap operators. However, it will be
more intuitive to treat them as Ising variables living on the
input and output channels of the unitary gate, respectively, and
think of Kh(σi, τi ) as an energy functional that describes the
Ising couplings between them. In this regard, we will assign
±1 values to the S2(= Z2) group element as

σi, τi =
{+1 for ,

−1 for .
(22)

Then the energy functional Kh(σi, τi ) can be enumerated as
in Table I for all h ∈ S4. To evaluate Eq. (21), we also need
to know the spectral form factor R(2)

g for all g ∈ S4. We can
first express R(n)

g (t ) in terms of R[k](t ). Their correspondences
are listed in Table II. These spectral form factors R[k](t )
are calculated in Ref. [38], whose notation is different from
ours by a factor of D to some power, see the last column of
Table II.

No approximation has been made up to this point. If we sub-
stitute the exact expressions of both the Weingarten function
Wgg−1h and the spectral form factor R(2)

g to Eq. (21) and carry
out the double summation over the S4 group, we can arrive
at the exact result of the ensemble averaged entanglement
features W (2). However, the expression is rather complicated
to present here (see Appendix B for the full expression), so we

TABLE II. Spectral form factors R(2)
g for different permutations

g ∈ S4 in terms of R[k]. The last column shows the corresponding
notation in Ref. [38].

g ∈ S4 R
(2)
g Ref. 38

R[111̄1̄]
1

D4R4

R[22̄]
1

D2R4,2

, R[21̄1̄]
1

D3R4,1

, R[00]

, , , R[11̄0]
1

D2R2

, , , , , R[0]

, , , , , , , R[11̄]
1

D2R2
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will just show the result to the leading order in D = dN ,

W (2)[σ, τ ] = R[111̄1̄]D
3+στ

2 − 2(R[111̄1̄] − R[21̄1̄] )D
1−στ

2

+ (R[00] − R[111̄1̄] )
(
D

2+σ+τ
2 + D

2−σ−τ
2

)
− (2R[00] − R[0] + 2R[21̄1̄] − 3R[111̄1̄] )

× (
D

σ−τ
2 + D

−σ+τ
2

) + · · · , (23)

where the σ , τ , and στ are respectively the mean magnetiza-
tions on both input and output sides and the Ising correlation
across the unitary gate,

σ = 1

N

∑
i

σi, τ = 1

N

∑
i

τi , σ τ = 1

N

∑
i

σiτi . (24)

Therefore to the leading order in D, the second Rènyi en-
tanglement features W (2) of random Hamiltonian dynamics
can be given by Eq. (23) as Boltzmann weights (partition
weights) of the Ising variables σ and τ . The time dependence
of the entanglement features are captured by the spectral form
factors R[k], whose large-D asymptotic behavior was given by
Eq. (14). Based on this result, we can further explore the en-
tanglement growth and the OTOC under random Hamiltonian
dynamics.

B. Holographic interpretations

Given W (2)[σ, τ ] in the form of a Boltzmann weight, we
would like to understand, what kind of Ising model does
W (2)[σ, τ ] describe? The most naive approach is to follow the
standard idea of statistical mechanics and assume that there is
a single Ising Hamiltonian H [σ, τ ] that models the Boltzmann
weight via W (2)[σ, τ ] ∝ e−H [σ,τ ]. Such a Hamiltonian would
necessarily involve multispin interactions in the general form
of H [σ, τ ] = ∑

J
j1···jn

i1···im σi1 · · · σimτj1 · · · τjn
, which requires ex-

ponentially (in N ) many couplings to parametrize. This naive
approach does not provide us a more intuitive understanding
of the entanglement features.

How to efficiently represent the “big data” of entangle-
ment features? An idea developed in the machine learning
community is to encode the exponential amount of data in
the polynomial amount of neural network parameters if the
data have strong internal correlations. In this approach, hidden
neurons are introduced into the neural network to mediate
the many-body correlations among the visible neurons. We
will take the similar philosophy to model the entanglement
features as a superposition of several Ising models with hidden
variables, such that each Ising model only contains few-
body interactions that can be efficiently parameterized by a
polynomial amount of couplings.

As can be seen from Eq. (23), there are four terms in
W (2)[σ, τ ], each term can be interpreted as an Ising model
with at most two-body interactions. Putting these terms to-
gether is like a statistical superposition of different Ising
models defined on different background geometries (graph
connectivities) with weights that are not necessarily positive.
The superposition of Ising models can be considered as a
kind of gravitational fluctuation, as the lattice structure (graph
connectivity) of the Ising model is changing from model to
model. On each fixed background, the Ising variables have no

(connected) correlations beyond two-body correlations. But
once the gravitational fluctuations are introduced, complicated
many-body correlations will be generated among all Ising
variables.

If we introduce some auxiliary degrees of freedom in the
holographic bulk, we can separate the entanglement features
in Eq. (23) into two terms:

W (2)[σ, τ ] = Wearly[σ, τ ] + Wlate[σ, τ ], (25)

where Wearly governs the early-time behavior, and Wlate governs
the late-time behavior (as to be justified soon):

Wearly[σ, τ ] =
∑
υ=±1

D
1
2 (υστ+υ )Fearly(υ ),

Wlate[σ, τ ] =
∑

υ1,2=±1

D
1
2 (υ1σ+υ2τ+υ1υ2 )Flate(υ1υ2). (26)

Auxiliary Ising variables υ (or υ1,2) are introduced as the
bulk degrees of freedom, whose fluctuations are governed by
the partition weight Fearly(υ ) [or Flate(υ1υ2)], which can be
directly read off from Eq. (23),

Fearly(υ ) =
{
R[111̄1̄]D υ = +1,

−2(R[111̄1̄] − R[21̄1̄] )D υ = −1;
(27)

Flate(υ ) =

⎧⎪⎪⎨
⎪⎪⎩

(R[00] − R[111̄1̄] )D
1
2 υ = +1,

−(2R[00] − R[0] + 2R[21̄1̄]

−3R[111̄1̄] )D
1
2 υ = −1.

If we trace out the boundary freedoms σ and τ , we can obtain
the effective theory for the bulk freedom υ, from which we
can evaluate the expectation value of the weight functions
F̄early,late = 〈Fearly,late(υ )〉υ . They characterize the relative im-
portance between the two models Wearly and Wlate. We plot
F̄early,late(t ) as a function of time t in Fig. 2(a). There is a
crossover between F̄early and F̄late around an order-one time
scale tc ≈ 0.58 (in unit of the inverse of the energy scale of
the GUE Hamiltonian). So the early (late) time entanglement
features are indeed dominated by Wearly (Wlate).

0.01 0.1 1 10 100
0.0

0.2

0.4

0.6

0.8

1.0

t

�a�

F early �D F late D�1�2

FIG. 2. (a) The weight functions F̄early and F̄late vs time t , showing
the crossover from the early-time model Wearly to the late-time model
Wlate. Holographic Ising models in (b) the early time Wearly and (c) the
late time Wlate. Each dot is an Ising variable and each bond corresponds
to a ferromagnetic Ising coupling. The light triangles in (b) denote the
three-body interaction between boundary and bulk.
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In the early time, the entanglement features are dominated
by Wearly = Trυ e−HearlyFearly, which can be described by an
Ising Hamiltonian with a bulk variable υ,

Hearly[σ, τ ; υ] = − ln d

2

∑
i

υσiτi − ln D

2
υ. (28)

The last term is a strong Zeeman field that pins the bulk
variable to υ = +1. Then the first term simply describes a
direct coupling between input and output along each quantum
channels separately, as illustrated in Fig. 2(b). This is indeed
the entanglement feature expected for the unitary gate close to
the identity. In most cases, the feedback effect from the first
term will not be able to overturn the strong Zeeman pinning
of the second term, unless the input and output variables are
antipolarized, i.e., στ � −1, which corresponds to choosing
the entanglement region to be either the input or the output
channels only. In this case, the bulk fluctuates strongly and the
entanglement features are dominated by 1/D effects. Apart
from this strong fluctuation limit, the bulk will be well behaved
and the corresponding holographic geometry is a fragmented
space (i.e., each quantum channels are far separated from each
other in the holographic space because there is almost no
entanglement among them).

In the late time, the entanglement features are dominated by
Wlate = Tr[υ] e

−HlateFlate, which can be described by an Ising
Hamiltonian with two bulk variables υ = [υ1, υ2],

Hlate[σ, τ ; υ] = − ln d

2

∑
i

(υ1σi + υ2τi ) − ln D

2
υ1υ2. (29)

The late-time model only contains two-body interactions as
illustrated in Fig. 2(c). All the input (output) variables couple to
υ1 (υ2) with coupling strength ln d/2. The bulk variables υ1 and
υ2 themselves couple strongly with the strength ln D/2 (which
is N times stronger than ln d/2). As shown in Ref. [27], the
holographic Ising model implies to a random tensor network
description (of the unitary gate) with the same network geome-
try. In the tensor network description, all quantum information
from the input side that enters the tensor υ1 gets scrambled.
The scrambled information is then emitted from the tensor υ2 to
the output side. This implies that υ1 and υ2 can be considered
as a pair of temporally entangled black hole and white hole
in the holographic bulk, matching the holographic interpre-
tation of quantum chaotic unitary evolution in the late-time
regime.

As a final remark, although we tend to think of Eq. (25)
as a superposition of early-time and late-time Ising models,
the “statistical weights” Fearly,late are not positive definite.
Currently, we do not have a good physical interpretation of the
indefinite weight. We think that it may imply some emergent
fermionic degrees of freedom in the holographic bulk that also
couple to the bulk Ising variables υ (or υ1υ2), such that the
negative sign may originate from the fermion sign. However,
to prevent overinterpretation of our result, we will leave this
interesting possibility for future exploration.

C. Early-time and late-time limits

In this section, we will go beyond the leading D result
in Eq. (23) and list some exact results of ensemble averaged
entanglement features in the early-time and late-time limits. In

the early-time limit, the unitary ensemble E (t = 0) contains
only the identity gate, whose second Réntyi entanglement
features are given by

W
(2)
0 [σ, τ ] = D

3+στ
2 , (30)

which can be derived from Eq. (21) by using the fact that
R(2)

g (t = 0) = 1 for any g ∈ S4.
In the late-time limit, the unitary ensemble E (t → ∞)

approaches to a random unitary ensemble but not exactly Haar
random. The deviation from the Haar random unitary ensemble
has to do with the nonvanishing late-time limit of the following
spectral form factors [38]:

R[111̄1̄] = 2D − 1

D3
,R[21̄1̄] = 1

D2
,

(31)

R[22̄] = R[11̄0] = R[11̄] = 1

D
.

Using these late-time limit of the spectral form factors and
evaluate Eq. (21), we can obtain the late-time limit (t → ∞)
of the second Rény entanglement feature (to all order of D):

W (2)
∞ [σ, τ ] = 1

(D + 1)(D + 3)

[
2D

1
2
(
(D + 2)D

στ
2 − D− στ

2
)

+ D(D2 + 4D + 2)
(
D

σ+τ
2 + D− σ+τ

2
)

− D(D + 4)
(
D

σ−τ
2 + D− σ−τ

2
)]

, (32)

where σ , τ , στ were defined in Eq. (24). In comparison, the
second Rényi entanglement features of Haar random unitaries
are given by

W
(2)
Haar[σ, τ ] = D2

D2 − 1

(
D

(
D

σ+τ
2 + D− σ+τ

2
)

− (
D

σ−τ
2 + D− σ−τ

2
))

. (33)

W
(2)
∞ and W

(2)
Haar have the same large-D limit. Their difference

is revealed only at the sub-leading order of D.

V. APPLICATIONS AND NUMERICS

A. Input-output mutual information

As an application of the entanglement features, let us first
consider the mutual information between input and output
channels for N qudits. Suppose N is large (and correspond-
ingly D = dN is large), we can use the leading D result in
Eq. (23) to analyze the entanglement properties. Consider a
subset A of input channels and a subset C of output channels
of the unitary gate U ∈ E (t ), we are interested in the ensemble-
averaged second Rényi mutual information I (A : C) =
S (2)(A) + S (2)(C) − S (2)(AC) between subregions A and C.
Let NA (or NC) be the number of qudits in A (or C), and
NA∩C (or NA∪C) be the number of qudits in the intersection
(or union) of A and C, as illustrated in Fig. 3(a). With this
setup, S (2)(A) = NA ln d and S (2)(C) = NC ln d are trivially
determined, and S (2)(AC) = − ln W (2)[σ, τ ]/D2 can be ex-
pressed in terms of the entanglement feature with the Ising
variables following σ = 1 − 2NA/N , τ = 1 − 2NC/N , στ =
1 − 2(NA∪C − NA∩C )/N .

Using the result in Eq. (23), for dNA+NC � dN , the mutual
information between the input subregion A and the output
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FIG. 3. (a) Specifications of subsets A and C on the input and
output sides of the unitary gate U (t ). (b) Mutual information I (A :
C ) in unit of NA∩C dits (take d = 2 for instance here), calculated
according to Eq. (34). Different colors correspond to different NA∩C .
For large NA∩C , the envelop decays with ln t linearly.

subregion C follows:

I (A : C) = ln(R[111̄1̄](d
2NA∩C − 1) + 1), (34)

where the spectral form factor simply reads R[111̄1̄] =
(J1(2t )/t )4 as the large-D limit is taken. As time evolves,
the mutual information I (A : C) deveats from 2NA∩C ln d to
nearly zero O(D−2), as shown in Fig. 3(b) for different NA∩C .
This describes how the input and output qudits lose mutual
information under random Hamiltonian dynamics as a result
of the information scrambling. The time that I (A : C) first
approaches 0 is of the same order as the scrambling time of
this system, which is an O(1) time scale. For large NA∩C , it
takes exponentially long time for I (A : C) to approach zero,
as demonstrated in Fig. 3(b). This time scale can be identified
as the “dip time” td introduced in Ref. [83], which is set by the
equation R[111̄1̄](td )d2NA∩C ∼ 1. For large NA∩C ,

td = (dNA∩C /π )1/3. (35)

Within the intermediate time range 1 � t � td , the mutual
information I (A : C) decays linearly with ln t ,

I (A : C) � 2NA∩C ln d − 6 ln t − 2 ln π, (36)

as seen in Fig. 3(b).
The late-time (t > td ) saturation value of I (A : C) can be

calculated from Eq. (32). The result is

I∞(A : C) = ln

[
1

(D + 1)(D + 3)
(2(1 + 2D−1)d2NA∩C

+ (D2 + 4D + 2)(1 + D−2d2(NA+NC ) )

− (1 + 4D−1)(d2NA + d2NC ) − 2D−2d2NA∪C )

]
.

(37)

This is exact to all orders of D, but looks rather complicated. In
the following, we consider two limits where I∞(A : C) admits
a simpler (approximate) expression. One limit is the large-D
limit, when Eq. (37) is dominated by its second line and can
be approximated by

I∞(A : C) � ln(1 + d2(NA+NC−N ) ). (38)
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FIG. 4. The late-time mutual information I∞(A : C ) in a d = 2,
N = 8 system. (a) For generic NA and NC , the numerically calculated
I∞(A : C ) data points (small circles) fall along the theoretical curve
of Eq. (38). The largest deviation is at NA + NC = N (red circle with
large error bar). In that case, another setup NA = M , NC = N − M

is considered in (b) to expose the deviation from Eq. (38) at small
M , where the numerical data points (small circles) coincide with the
curve of Eq. (39).

The approximation works well unless |NA − NC | → N . In that
limit, we can consider a special (but useful) case of NA = M ,
NC = N − M with dM � dN , then

I∞(A : C) � ln(2 − d−2M ). (39)

They can be benchmarked with numerics, as shown in Fig. 4,
where the numerical calculation of I∞(A : C) is performed
for eight-qubit (N = 8, d = 2) random Hamiltonians and the
result validates Eqs. (38) and (39). By comparing early-time
Eq. (34) and late-time Eq. (38) formulas, we can see that I (A :
C) is mainly a function of NA∩C in the early time, which crosses
over to a function of NA + NC in the late time. This behavior is
associated to the crossover of the entanglement features W (2)

as analyzed previously.
As a fun application, we can implement our result to analyze

the Hayden-Preskill problem [84], as illustrated in Fig. 5(a).
The problem can be formulated as follows. Alice has some
qudits encoding some confidential quantum information. She
throws her qudits A into a black hole B hoping to hide the
information forever. However, Bob is spying on Alice. He has a
system B ′, which was maximally entangled with the black hole
B before Alice threw her qudits in. Then Bob captures some
Hawking radiation D at time t after Alice’s qudits have been
thrown in. Can Bob recover the quantum information about
Alice’s qudits from the captured radiation D and the purifying
system B ′? Hayden and Preskill showed that the decoding task
is information-theoretically possible.

Recently, Yoshida and Kitaev proposed a probabilistic and a
deterministic decoder in Ref. [85]. In the probabilistic protocol,
as illustrated in Fig. 5(b), Bob first prepare a maximally
entangled state between A′ and A′′, each contains the same
amount NA of qudits as Alice’s qudits A. Then he applies
the unitary gate U ∗(t ) to A′B ′, where U ∗(t ) is the complex
conjugate of the unitary evolution U (t ) of the black hole and
Alice’s qudits. Essentially, Bob needs a quantum computer to
simulate the quantum evolution U ∗(t ). Then he projects the
captured Hawking radiation D and its counterpart D′ onto the
standard EPR state. The projection will either succeed with
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FIG. 5. (a) The Hayden-Preskill problem. (b) The Yoshida-Kitaev
protocol for a probabilistic decoder. (c) The success rate � (in blue)
of the Yoshida-Kitaev probabilistic decoder and its fidelity F (in red),
calculated for qubit (d = 2) systems under the assumption of dNA �
dND � dN . The solid (or dashed) curves correspond to the case of
NA = 1 (or NA = 10).

probability

� = 1

d2NA
eI (A:C), (40)

or signal a failure with probability 1 − �. If succeeded, the
projection has the effect of “teleporting” Alice’s qudits A to
Bob’s qudits A′′ with a fidelity of

F = e−I (A:C). (41)

The decoding becomes possible if the black hole has effectively
forgotten Alice’s information, i.e., I (A : C) → 0 (and the
fidelity F → 1 correspondingly). As I (A : C) approaches
zero with time t , Alice’s information becomes available to Bob
in the encoded form, which can be in principle recovered from
the Hawking radiation D and purifying system B ′.

We assume that the time evolution of the black hole can
be modeled by a random Hamiltonian dynamics, then we can
apply our result to study the time-dependence of the protocol
success rate � and the decoder fidelity F . First of all, in the
late time limit t → ∞, we can apply Eq. (38) to obtain the
saturation values of � and F ,

�∞ = 1

d2NA
+ 1

d2ND
,

(42)

F∞ = 1

1 + d2(NA−ND )
.

As long as dND � dNA , the fidelity will be close to one.
Therefore to decode Alice’s quantum information ofNA qudits,
Bob only needs to collect a few more qudits (ND > NA) from
the Hawking radiation.

In the case of dNA � dND � dN , the mutual information
I (A : C) can be evaluated using Eq. (34) (where typically
NA∩C � NANC/N → NA), then from Eqs. (40) and (41), we
can obtain � and F as functions of the radiation capture time t ,

as plotted in Fig. 5(c). For larger NA, it takes exponentially long
time td = (dNA/π )1/3 for the information of Alice’s qudits to
be fully scrambled. However, Bob does not need to wait for
such a long time, because there is a sequence of time windows
in the intermediate time regime 1 � t � td in which the fidelity
can approach one shortly, as demonstrated by the NA = 10
case in Fig. 5(c). So it is possible to recover the information of
Alice’s qudits from these intermediate-time radiations if Bob
can seize the moment.

B. Out-of-time-order correlation

Now we turn to the operator-averaged OTOC under random
Hamiltonian dynamics. As previously defined in Eq. (9), we
use OTOC(A,B ) to denote the infinite-temperature OTOC
averaged over all Hermitian operators OA (and OB) supported
in region A (and B):

OTOC(A,B ) ≡ avg
OA,OB

1

D
Tr OA(t )OBOA(t )OB. (43)

As shown in Ref. [9], OTOC(A,B ) can be expressed in terms
of the second Rényi entanglement features W

(2)
U (t )[σ, τ ] fol-

lowing Eq. (9). We will focus on the OTOC averaged over the
unitary ensemble E (t ), which amounts to replacing W

(2)
U (t )[σ, τ ]

by its ensemble expectation W (2)[σ, τ ] given in Eq. (23) to
the leading order of D = dN . The choices of σ and τ are
specified in Eq. (10), which corresponds to σ = 1 − 2NA/N ,
τ = −1 + 2NB/N , στ = −1 + 2(NA∪B − NA∩B )/N . Here,
NA (or NB) is the size (number of qudits) of the operator
support A (or B). NA∩B characterizes the operator overlap,
and NA∪B = NA + NB − NA∩B .

With these, we found that to the leading order in D, the
operator-averaged OTOC is given by

OTOC(A,B ) = R[111̄1̄]d
−2NA∩B −2(R[111̄1̄] − R[21̄1̄] )d

−2NA∪B

+ (R[00] − R[111̄1̄] )(d
−2NA + d−2NB )

− (2R[00] − R[0] + 2R[21̄1̄] − 3R[111̄1̄] )

× (d−2(NA+NB ) + d−2N ) + · · · . (44)

As expected, the expression is symmetric in exchanging A and
B. In the early-time limit t → 0,

OTOC = 1

d2NA∩B
− 2κt2 + O(t4),

(45)

κ = 1

d2NA∩B
+ 1

d2NA∪B
− 1

d2NA
− 1

d2NB
.

The OTOC generally deviates quadratically (∼ − 2κt2) from
initial value in the early time, with κ � 0 for any choice of
subsets A and B [except when κ vanishes and the early time
behavior will be taken over by O(t4) terms since OTOC has to
be an even function of t in our setting]. The scrambling time
is always of order 1 regardless of the operator size and the
system size, due to the nonlocality (not even k-local [86]) of the
random Hamiltonian. In the late-time limit t → ∞, the OTOC
approaches to the saturation value OTOC∞ with oscillation.
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according to Eq. (44). (a) The disjoint case NA∩B = 0 with different
operator size NA = NB . (b) Fixed operator size at NA = NB = 20
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dashed curve traces out the envelope function.

The envelop of the OTOC decays in power laws as

OTOC � OTOC∞ + αt−9/2 + βt−6,

OTOC∞ = 1

d2NA
+ 1

d2NB
− 1

d2(NA+NB )
− 1

d2N
,

α = 1√
2π3/2

(
1

d2NA∪B
− 1

d2(NA+NB )
− 1

d2N

)
, (46)

β = 1

π2

(
1

d2NA∩B
+ 3

d2(NA+NB )
− 1

d2NA

− 1

d2NB
− 2

d2NA∪B
+ 3

d2N

)
.

In all parameter regimes, it turns out that the αt−9/2 term is
always overwhelmed by either the βt−6 term (for t � td ) or the
OTOC∞ term (for t � td ), so the t−9/2 will not be observed.
Therefore the timescale that OTOC saturates to the final value
will be set by the dip time td = (β/OTOC∞)1/6.

To be concrete, let us consider a more specific case when the
operators OA and OB are of the same size NA = NB , and their
supports overlap over NA∩B qudits. In the limit that dNA �
dN , the typical behaviors of the operator-averaged OTOC are
shown in Fig. 6. In the disjoint case, Fig. 6(a), when NA∩B = 0,
the OTOC deviates from 1 as

OTOC � 1 − 2t2 + · · · (t → 0), (47)

and approaches to saturation (to the leading order of d) as

OTOC � 2

d2NA
+ 1

π2t6
. (48)

The saturation time is td = (dNA/π )1/3/
√

2. Within the in-
termediate time range 1 � t � td , the envelope of the OTOC
exhibits the t−6 power law behavior, which has been discussed
in Refs. [39,63,87]. Increasing the operator size NA will both
suppress the saturation value and delay the saturation time
exponentially, as shown in Fig. 6(a). Now, if we fix the operator
size and allow the operators OA and OB to overlap in their
supports, the initial OTOC d−2NA∩B will be suppressed with
NA∩B exponentially, but the t−6 power law behavior in the
intermediate time range remains, as demonstrated in Fig. 6(b).

C. Entanglement growth after a quench

The entanglement features of the Hamiltonian generated
unitary evolution can be applied to study the entanglement
growth after a quantum quench [2,3,6]. The quantum quench
problem we will discuss here is to start with an initial product
state |ψ (0)〉 and evolve it by U (t ) = e−iHt to the final state
|ψ (t )〉 = U (t )|ψ (0)〉. Generally, the quantum entanglement
will grow in time and will saturate to the thermal limit if the
Hamiltonian is quantum chaotic. The entanglement features
of the final state |ψ (t )〉 are all encoded in the entanglement
features of U (t ). To reveal their relation, let us first define the
entanglement features for a generic quantum many-body state
|ψ〉 as [32]

V
(n)
ψ [τ ] = Tr(|ψ〉〈ψ |)⊗nXτ , (49)

where n is the Rényi index and Xτ is the representation of τ ∈
S×N

n in the n-replicated Hilbert space H⊗n. The entanglement
features of a state are directly related to its entanglement
entropies by

S
(n)
ψ [τ ] = 1

1 − n
ln V

(n)
ψ [τ ], (50)

with the entanglement region A specified by the permutation
τ following Eq. (6).

If the state |ψ (t )〉 = U (t )|ψ (0)〉 is obtained from the
unitary evolution U (t ), the entanglement features of the state
V

(n)
ψ (t )[τ ] will be related to the entanglement features of the

unitary evolution W
(n)
U (t )[σ, τ ] by the following generic form:

V
(n)
ψ (t )[τ ] =

∑
[σ ]

W
(n)
U (t )[σ

−1, τ ]�(n)
ψ (0)[σ ], (51)

where�
(n)
ψ (0)[σ ] is some function ofσ ∈ S×N

n that is determined
by the initial state |ψ (0)〉. It is not the entanglement feature of
the initial state, but can be determined from that, via

V
(n)
ψ (0)[τ ] =

∑
[σ ]

W
(n)
U (0)[σ

−1, τ ]�(n)
ψ (0)[σ ]

=
∑
[σ ]

d#(σ−1τ )�
(n)
ψ (0)[σ ], (52)

which is just an application of Eq. (51) to t = 0. Here #(g)
denotes the cycle number of the permutation g. If the initial
state is a product state, we say that it is entanglement feature-
less, in the sense that its entanglement features V

(n)
ψ (0)[τ ] = 1

are trivial constants, because the entanglement entropies of a
product state always vanish for any choices of the permutation
τ and the Rényi index n. Then from Eq. (52), we can find the
solution of �

(n)
ψ (0)[σ ],

�
(n)
ψ (0)[σ ] =

∏
i

∑
τi∈Sn

Wgτ−1
i σi

= �(d )N

�(d + n)N
, (53)

where the Weingarten function Wg here is of the bound
dimension d. When we substitute the result back to Eq. (51),
we obtain the relation between the entanglement features of
|ψ (t )〉 and of U (t ),

V
(n)
ψ (t )[τ ] = �(d )N

�(d + n)N
∑
[σ ]

W
(n)
U (t )[σ

−1, τ ]. (54)
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Therefore the knowledge of the entanglement features of the
unitary evolution itself is sufficient to determine how the
entanglement will grow after a quantum quench from a product
state, as we proposed in Eq. (8). A similar relation is also
proposed in Ref. [88] recently.

In the following, we will focus on the ensemble averaged
second Rényi entanglement features of the state,

V (2)[τ ] = 〈
V

(n)
ψ (t )[τ ]

〉
U (t )∈E (t ). (55)

Applying Eq. (54) to Eq. (23), we can obtain the entanglement
features of |ψ (t )〉 to the leading order of D = dN ,

V (2)[τ ] = Vearly[τ ] + Vlate[τ ],

Vearly[τ ] = R[111̄1̄] + · · · ,

Vlate[τ ] =
∑
υ=±1

D
υτ−1

2 (R[00] − R[111̄1̄] ) + · · · , (56)

where υ is an auxiliary Ising variable in the holographic bulk.
As time evolves, V (2)[τ ] crosses over from the early-time
behavior Vearly to the late-time behavior Vlate. In the late
time, the entanglement feature can be modeled by an Ising
Hamiltonian Hlate,

Hlate[τ ; υ] = − ln d

2

∑
i

υτi, (57)

such that Vlate[τ ] = ∑
[υ] e

−Hlate[τ ;υ]D−1/2(R[00] − R[111̄1̄] ).
The holographic Ising model describes an holographic bulk
variable υ couples to all qudit variables τi . In terms of the
random tensor network, this implies that the late-time state
|ψ (t )〉 can be described by a big random tensor, which is
consistent with the random matrix theory. From the perspective
of tensor network holography [89–91], υ can be view as a black
hole horizon in the sense that the Ryu-Takanayagi surface [92]
can never cut through the interior of the random tensor that
corresponds to υ. Such a black hole picture naturally gives
rise to the volume law entanglement entropy in the late time.

We can translate the entanglement feature to the entangle-
ment entropy according to Eq. (50). Given the result in Eq. (56),
the second Rényi entropy over a subset A of NA qudits of a
quantum many-body state after a quench from the product state
follows (to the leading D order)

S (2)(A) = − ln(R[111̄1̄] + (1 − R[111̄1̄] )(d
−NA + d−NĀ )),

(58)

where NĀ = N − NA. For an N = 20 qudit system, we plot the
entanglement entropy S (2)(A) as a function of both time t and
the subset size NA in Fig. 7. The entropy grows quadratically
in time as

S (2)(A) = 2(1 − d−NA − d−NĀ )t2 + O(t4), (59)

as shown in Fig. 7(a). In contrast to the linear growth of entropy
for chaotic local Hamiltonian dynamics, the quadratic growth
is a consequence of the nonlocality of the random Hamiltonian
we considered. In the late time, the entropy approaches to the
“volume law” scaling,

S (2)(A) � NA ln d (NA � N/2), (60)

as shown in Fig. 7(b).
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FIG. 7. A system of N = 20 qudits. (a) The entanglement entropy
grows after a quench from the product state for different sizes of the
subset A, ranging from NA = 0 (blue) to 10 (red). (b) The scaling of
entanglement entropy with NA at different time, ranging from t = 0
(blue) to 2 (red).

VI. SUMMARY

In this work, we introduce the general concept of entan-
glement features that can be defined both for unitary gates U

as W
(n)
U [σ, τ ] and for many-body states |ψ〉 as V

(n)
ψ [τ ], which

provide a systematic characterization of their entanglement
properties. In the simplest case (when σ, τ are cyclic), the
entanglement features are just exponentiated entanglement
entropies ∼e(1−n)S (n)

. If we consider the entanglement entropy
as a kind of “free energy” associated with the entanglement
region, then the entanglement features are just the correspond-
ing Boltzmann weights. From this perspective, the entangle-
ment features describe a statistical ensemble of entanglement
regions which encode the “features of entanglement” in ei-
ther a unitary gate or a many-body state. For more general
permutations σ, τ ∈ S×N

n , the entanglement features give a
more refined description of quantum entanglement that can
go beyond the description power of entanglement entropies.

The entanglement feature is useful in relating many dif-
ferent ideas together. Many quantum information theoretic
descriptions of entanglement, such as mutual and multipartite
information, are unified within the framework of entanglement
features. Moreover, several measures of quantum chaos includ-
ing the out-of-time-order correlation and the entropy growth
after quantum quench are all related to the entanglement
features of the unitary evolution itself.

At the first glance, specifying the entanglement feature for
every configuration of σ and τ seems to involve an exponen-
tially large amount of data. However, the entanglement features
are not independent. The hidden correlations among entangle-
ment features allow a more efficient modeling with much fewer
parameters. This idea is in parallel to compressing big data by
the neural network in machine learning where hidden neurons
and deep neural networks are introduced to efficiently model
the internal correlation among the data. Indeed, in our study,
the hidden Ising variables also naturally arise to simplify the
model of entanglement features. These hidden variables can
either be interpreted as hidden neurons in the neuron network
language or as the holographic bulk degrees of freedom in
tensor network holography. The holographic picture provides
us an intuitive understanding of the entanglement dynamics in
quantum many-body systems.
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To illustrate these general ideas, we take the unitary gates
generated by random Hamiltonians as our example and cal-
culate their ensemble-averaged entanglement features. For the
second Rényi case, we are able to obtain analytic expressions
for the entanglement features, from which we can find the
underlying Ising model in the holographic bulk. This provides
us with a toy model to see the emergence of the holographic
black hole under the random Hamiltonian dynamics. Finally,
we apply our results to study the OTOC and the entanglement
growth under the random Hamiltonian dynamics. As a future
direction, it will be interesting to generalize our approach to
local Hamiltonians.
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APPENDIX A: ENTANGLEMENT FEATURES
OF TWO-QUDIT GATES

For two-qudit (i.e., N = 2) gates, we are able to investigate
some aspects of entanglement features beyond ensemble aver-
age. In particular, we found an interesting tentative bound for
unitary two-qubit (i.e., N = 2, d = 2) gate.

1. Two-qudit cyclic entanglement features

We consider the system with only two qudits (i.e., N = 2)
and label the input and output channels of the unitary gate
by A, B, C, and D as in Eq. (A1). We focus on a subset of
entanglement features, called the cyclic entanglement features,
where σi and τi can only take either the identity 1 or the cyclic c
permutations. The cyclic entanglement features are sufficient
to captures the entanglement entropies over all channels of
the unitary gate to all Rényi indices. For two-qudit unitary
gates, it can be shown that there are only two independent and
nontrivial cyclic entanglement features, which can be denoted
as W

(n)
U (AC) and W

(n)
U (AD),

(A1)

The other cyclic entanglement features are either independent
of U (and thus trivial), such as

W
(n)
U () ≡ W

(n)
U [1 × 1, 1 × 1] = d2n,

W
(n)
U (A) ≡ W

(n)
U [c × 1, 1 × 1] = dn+1, (A2)

W
(n)
U (AB ) ≡ W

(n)
U [c × c, 1 × 1] = d2;

or are related the above mentioned entanglement features.
Therefore, given the qudit dimension d, the cyclic entan-
glement features of two-qudit unitary gates can be fully

FIG. 8. Plot of entanglement entropies S
(n)
U (AC) and S

(n)
U (AD)

for 10 000 unitary gates U generated by two-qubit (N = 2, d = 2)
random Hamiltonians at late time. Cases of different Rényi indices n

are shown in different subfigures. The bounding curves are given by
Eq. (A4) (in red) and Eq. (A5) (in green).

characterized by two sets of entanglement entropies S
(n)
U (AC)

and S
(n)
U (AD), which are directly related to the entanglement

features W
(n)
U (AC) and W

(n)
U (AD) according to Eq. (5).

2. Entanglement entropy plot and unitarity bound

We can numerically study the entanglement features of
the unitary ensemble E (t ) generated by the random Hamil-
tonian. Each unitary U drawn from the ensemble E (t ) can
be represented as a point on the S

(n)
U (AC)-S (n)

U (AD) plane
according to its entanglement features. Let us first consider
the late-time unitary ensemble E (t → ∞) of two qubits (i.e.,
N = 2, d = 2), generated by

U = e−iHt , H =
∑
a,b

Jabσ
ab, (A3)

where a, b = 0, 1, 2, 3 are Pauli indices and σab = σa ⊗ σb

form a basis of all two-qubit Hermitian operators. The cou-
pling strength Jab is independently drawn from Gaussian
distributions. The variance of Jab can be absorbed into t as
a (inverse) time scale, which is actually unimportant as we
consider the late-time limit t → ∞. These two-qubit unitaries
are distributed in a bounded region of S

(n)
U (AC) and S

(n)
U (AD),

as shown in Fig. 8. The shape of the region changes with the
Rényi index n. The entropies are measured in unit of dit ≡ ln d

(which reduces to bit ≡ ln 2 in the present case).
These entropy regions are pinned to four corner points at

(S (n)
U (AC), S (n)

U (AD)) = (0, 2), (1, 2), (2, 1), (2, 0) bit. Rep-
resentative Hamiltonians that generate such unitaries at these
corner points are provided in Table III. It turns out that the
boundary of the entropy region can be traced out by connecting
these corner points by linearly interpolating the representative
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TABLE III. Examples of the two-qubit Hamiltonian generated
unitary U = e−iH at the corner points in the entropy region.

H S
(n)
U (AC)/dit S

(n)
U (AD)/dit

0 0 2
π

4 σ 11 1 2
π

4 (σ 11 + σ 22) 2 1
π

4 (σ 11 + σ 22 + σ 33) 2 0

Hamiltonians. For example, in terms of the entanglement
features, the lower edge of the region (red curve in Fig. 8)
is given by

W
(n)
U (AC) = 8−n(3(1 − cos t )n + (5 + 3 cos t )n),

(A4)
W

(n)
U (AD) = 8−n(3(1 + cos t )n + (5 − 3 cos t )n),

for t ∈ [0, π/4], and the upper edge of the region (green curve
in Fig. 8) is given by

W
(n)
U (AC) = 21−n(cos2n t + sin2n t ),

(A5)
W

(n)
U (AD) = 21−2n((1 − sin 2t )n + (1 + sin 2t )n),

for t ∈ [0, π/4]. The side edges connecting (0,2) to (1,2)
and (2,0) to (2,1) are simply straight lines (blue segments
in Fig. 8). The upper and lower edges are nonlinear bounds
on entanglement entropies for unitary gates, which clearly
goes beyond the previously known linear bounds, such as the
subaddtivitiy and strong subadditivity relations.

We need to remark here that the tentative unitarity bounds
for Rényi entropies are observations based on numerics. It
will be interesting to find a solid proof for these bounds
on the subregion Rényi entropies of two-qubit unitary gates.
In addition, our method of finding these boundary curves
by interpolating special Hamiltonians does not generalize to
d > 2 cases. The corresponding nonlinear bound for general
two-qudit (d > 2) unitary gates remains an open question.

3. Large-d limit and entropy trajectory

Similar numerical study of the entanglement features under
the two-qudit random Hamiltonian dynamics can be carried
out for d > 2 cases. Figure 9 shows the time evolution of the
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FIG. 9. Time evolution of the unitary ensemble E (t ) on the
entropy plane of S

(n)
U (AC ) and S

(n)
U (AD) for a two-qudit system of

(a) d = 3 and (b) 8. The blue, red, and green points are respectively
the initial (t = 0), intermediate (t = 0.8) and late-time (t → ∞)
ensembles.
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FIG. 10. Ensemble averaged second Rényi entropies S (2) of two-
qudit unitaries for (a) d = 2 and (b) d = 4. The small circles are
numerical simulations on 1000 random Hamiltonians. The curves are
theoretical results based on Eq. (21) (without taking the large D limit).
The S (2) for Haar random unitaries are marked out by dashed lines
according to Eq. (A7).

ensemble E (t ) on the entropy plane of S
(n)
U (AC) and S

(n)
U (AD)

(we only show the results of n = 2, for other Rényi indices have
very similar behaviors). Each point in the plot corresponds to
a unitary gate U drawn from the ensemble E (t ).

We can see that the fluctuation of the entanglement entropies
S

(n)
U is quickly suppressed as the qudit dimension d gets larger.

For d = 3, the fluctuation of ensemble E (t → ∞) is already
too small to efficiently map out the unitarity bound in numerics.
For d = 8 in Fig. 9(b), the fluctuation is negligible that the
ensemble basically traces out a well-defined entropy trajectory
under the random Hamiltonian dynamics. This implies that we
can study the dynamics of the ensemble averaged entanglement
features 〈W (n)

U 〉U∈E (t ) in the large d limit.

4. Averaged entanglement features of two qudits

According to Eq. (21), we can analytically calculate the two
nontrivial second Rényi entanglement features W (2)(AC) and
W (2)(AD) for the two-qudit random Hamiltonian dynamics,
as defined in Eq. (A1). The result is presented in terms of
the Renyi entropies S (2)(AC) and S (2)(AD) and benchmarked
with numerics in Fig. 10. The theoretical curves match the
numerical data points nicely. The late-time limit of the entan-
glement features can be calculated from Eq. (32),

W (2)
∞ (AC) = 2

(
d2 + 1

d2 + 1
− 4

d2 + 3

)
,

(A6)

W (2)
∞ (AD) = 2

(
d2 − 1 + 3

d2 + 1
− 4

d2 + 3

)
,

both of which deviate from that of Haar unitaries given by
Eq. (33),

W
(2)
Haar(AC) = W

(2)
Haar(AD) = 2d4

d2 + 1
. (A7)

The amount of deviation reduces with the qudit dimension d

and becomes negligible in the large d limit, as can be seen by
comparing Figs. 10(a) and 10(b). In conclusion, the entropy
trajectory under the random Hamiltonian dynamics in a two-
qudit system can be traced out based on Eq. (21).
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TABLE IV. Weingarten functions on S4 group.

ν(g) Wgg

(1,1,1,1) (D4 − 8D2 + 6)/Z4(D)
(2,1,1) −D(D2 − 4)/Z4(D)
(3,1) (2D2 − 3)/Z4(D)
(4) −5D/Z4(D)
(2,2) (D2 + 6)/Z4(D)

APPENDIX B: EXACT RESULT
OF ENTANGLEMENT FEATURES

1. Weingarten functions

The exact form of the Weingarten function on Sn group is
given by (for D � n)

Wgg = 1

(n!)2

∑
λ

χλ(1)2χλ(g)

sλ,D (1)
, (B1)

where the sum is over all partitions λ of n. Here, χλ is the
character of Sn corresponding to the partition λ and sλ,D is
the Schur polynomial of λ such that sλ,D (1) is simply the
dimension of the representation of U (D) corresponding to λ.
The Weingarten function is a class function, which means it
only depends on the cycle type ν(g).

For S4 group, the Weingarten functions can be enumerated
as in Table IV. They have a common denominator, which will

be denoted as

Z4(D) =
4∏

k=0

(D2 − k2). (B2)

Using this result, we can carry out the S4 group summation
in Eq. (21) exactly and obtain the ensemble averaged second
Rényi entanglement feature W (2) to all orders of D.

2. Entanglement features (exact)

To all orders of D, the second Rényi entanglement feature
still takes the early-time and late-time forms as in Eqs. (25)
and (26), which we repeat here:

W (2)[σ, τ ] = Wearly[σ, τ ] + Wlate[σ, τ ],

Wearly[σ, τ ] =
∑
υ=±1

D
1
2 (υστ+υ )Fearly(υ ), (B3)

Wlate[σ, τ ] =
∑

υ1,2=±1

D
1
2 (υ1σ+υ2τ+υ1υ2 )Flate(υ1υ2).

The common denominator Z4(D) of the Weingarten function
defined in Eq. (B2) can be factored out, which allows us to
define

Fearly(υ ) = fearly(υ )

Z4(D)
, Flate(υ ) = flate(υ )

Z4(D)
. (B4)

Now we present the exact result for fearly(υ ) and flate(υ ) as
follows:

fearly(+1) = D3(4(D2 + 6)(R[00] − R[0] ) + 16(2D2 − 3)R[11̄] + (D2 − 3)(D2 − 4)R[22̄] − 4D2(D2 + 1)R[11̄0]

− 4D2(D2 − 4)R[21̄1̄] + D2(D2 − 3)(D2 − 4)R[111̄1̄] ),

fearly(−1) = 2D5(10(R[0] − R[00]) − 4(D2 + 1)R[11̄] − (D2 − 4)R[22̄] + 4(2D2 − 3)R[11̄0]

+ (D2 − 3)(D2 − 4)R[21̄1̄] − D2(D2 − 4)R[111̄1̄] ),
(B5)

flate(+1) = D9/2(−2(D2 − 14)R[0] + (D4 − 11D2 + 8)R[00] − 40R[11̄] − (D2 − 4)R[22̄] + 4(D2 + 6)R[11̄0]

+ 6(D2 − 4)R[21̄1̄] − D2(D2 − 4)R[111̄1̄] ),

flate(−1) = D9/2((D2 + 1)(D2 − 12)R[0] − 2(D4 − 12D2 + 12)R[00] + 8(D2 + 6)R[11̄] + 3(D2 − 4)R[22̄]

− 20D2R[11̄0] − 2D2(D2 − 4)R[21̄1̄] + 3D2(D2 − 4)R[111̄1̄] ).

The spectral form factors R[k] were calculated in Ref. [38]. We copy it here for the completeness of the presentation:

R[0](t ) = R[00](t ) = 1, R[11̄](t ) = R[11̄0](t ) = r1(t )2 + (1 − r2(t ))/D,

R[22̄](t ) = R[11̄](2t ),

R[211̄](t ) = r1(2t )r1(t )2 + (−r1(2t )r2(t )r3(2t ) − 2r1(t )r2(2t )r3(t ) + +r1(2t )2 + 2r1(t )2)/D

+ (2r2(3t ) − r2(2t ) − 2r2(t ) + 1)/D2, (B6)

R[111̄1̄](t ) = r1(t )4 + (−2r1(t )2r2(t )r3(2t ) − 4r1(t )2r2(t ) + 2r1(2t )r1(t )2 + 4r1(t )2)/D + (2r2(t )2 + r2(t )2r3(2t )2

+ 8r1(t )r2(t )r3(t ) − 2r1(2t )r2(t )r3(2t ) − 4r1(t )r2(2t )r3(t ) + r1(2t )2 − 4r1(t )2 − 4r2(t ) + 2)/D2

+ (−7r2(2t ) + 4r2(3t ) + 4r2(t ) − 1)/D3,

where the functions r1,2,3(t ) are defined as

r1(t ) = J1(2t )

t
, r2(t ) =

(
1 − |t |

2D

)
�

(
1 − |t |

2D

)
, r3(t ) = sin(πt/2)

πt/2
. (B7)
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