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Nonadiabatic dynamics of electrons and atoms under nonequilibrium conditions
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An approach to nonadiabatic dynamics of atoms in molecular and condensed matter systems under general
nonequilibrium conditions is proposed. In this method interaction between nuclei and electrons is considered
explicitly up to the second order in atomic displacements defined with respect to the mean atomic trajectory,
enabling one to consider movement of atoms beyond their simple vibrations. Both electrons and nuclei are treated
fully quantum-mechanically using a combination of path integrals applied to nuclei and nonequilibrium Green’s
functions to electrons. Our method is partitionless: initially, the entire system is coupled and assumed to be at
thermal equilibrium. Then, the exact application of the Hubbard-Stratonovich transformation in mixed real and
imaginary times enables us to obtain, without doing any additional approximations, an exact expression for the
reduced density matrix for nuclei and hence an effective quantum Liouville equation for them, both containing
Gaussian noises. It is shown that the time evolution of the expectation values for atomic positions is described
by an infinite hierarchy of stochastic differential equations for atomic positions and momenta and their various
fluctuations. The actual dynamics is obtained by sampling all stochastic trajectories. It is expected that applications
of the method may include photoinduced chemical reactions (e.g., dissociation), electromigration, and atomic
manipulation in scanning tunneling microscopy, to name just a few.
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I. INTRODUCTION

There are a very large number of phenomena in physics,
chemistry, and biology in which it is necessary to consider
nonadiabatic dynamics of system atoms. Prominent examples
include, in biology and chemistry, photosynthesis [1,2], vision
[3,4], photoisomerization of rhodopsin and isorhodopsin [5],
molecular photochemistry of biomolecules [6], proton [7–9]
and electron transfer [10–13] reactions, also between distant
redox centers [14]. Nonadiabatic dynamics is often essential
in energy production (photovoltaics) [15,16], in photoinduced
dissociation [17,18] and isomerisation [19] dynamics, in fem-
tosecond chemistry [20,21], oxygen production in comets [22],
and acceleration of urethane and polyurethane formation due
to vibrational excitation [23]. In physics nonadiabatic effects
are also widespread and may be highly important, e.g., in
vibrationally promoted electron emission from a metal surface
[24], dynamics of nanoparticles under strong laser pulses
[25], coupling of plasmons and vibrations in nanoparticles
[26], electromigration [27–38] that can adversely affect the
nanodevices due to atomic rearrangement leading to their
subsequent degradation [39,40], local heating in a conductor
(e.g., in atomic wires) [41–46], photoelectron spectroscopy
[47], radiation damage [48], and atomic manipulation in
scanning tunneling microscopy [49–52].

A considerable number of theoretical tools have been
developed over the years to tackle these kinds of problems
where dynamics of both electrons and nuclei are considered
simultaneously. These methods can be crudely divided into
two big classes: (i) wave-function-based methods applicable
at zero temperatures, and (ii) density-matrix-based methods
which can be applied at any temperature.

In the simplest mixed quantum-classical Ehrenfest ap-
proach, within the first class of methods, the nuclei are treated

classically (they satisfy classical equations of motion) while
the electronic wave function is evolved in time via the time-
dependent Schrödinger equation [53]. If transitions between
different potential energy surfaces (PESs), e.g., due to an
optical excitation (and after it upon relaxation), are required
to be considered, the simplest strategy is offered by the fewest
switches surface hopping method [54,55], in which regions
near conical intersections of the PESs along the adiabatic
trajectory are branched in a certain way. The advantages and
(many) disadvantages of this approximate method are critically
discussed in the reviews [56,57].

We note that there is also a method in which the evolution
of the electronic subsystem is replaced by the dynamics of
a system of fictitious harmonic oscillators; this enables one to
run molecular dynamics simulations of nonadiabatic processes
entirely classically. A “quantization” of the electronic states
is added approximately. Some successes of this method are
reviewed in [58].

An expression for the atomic forces due to electrons is
required to couple classical equations of motion for atoms
and time evolution of the electronic wave function. Usually,
the force on the classical atomic degree of freedom A in
the quantum-classical approaches is calculated via an ex-
pression Fe

A = −〈ψt |∂xA
He|ψt 〉 with He being the electronic

Hamiltonian (that includes interaction with nuclei) and ψt the
corresponding many-electron wave function [31,56,57,59–62]
(the density matrix for the electrons can also be used [63]).
Since only the potential energy of interaction between nuclei
and electrons, Vne, in He actually depends on the atomic
positions xA, one gets ∂xA

He ≡ ∂xA
Vne, and so the above

expression for the force then formally coincides [64] with the
Hellman-Feynman force normally used in density functional
calculations [65,66]. Note that a proper definition of this force
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is essential, especially under nonequilibrium conditions, and
not in all cases it can be assigned simply to the gradient
of the potential energy. Indeed, for instance, at the current
flow conditions (e.g., in molecular junctions and nanodevices),
when open boundary conditions are used, the number of
electrons is not well defined, and hence the potential energy.
This problem is formally solved by appealing to the original
(and formally exact) Ehrenfest equations [65,67,68], which, if
written for zero temperature, are

mA∂t 〈xA〉t = 〈pA〉t ,
∂t 〈pA〉t = Fe

A + F i
A = −〈∂xA

Vne〉t + F i
A,

where F i
A is the contribution to the total force due to direct

interaction between atoms. In these equations the averages
〈. . .〉t = 〈�t | . . . |�t 〉 are assumed with the wave function �t

for the combined electron-nuclear system, so replacing in
the expression of the force �t with ψt may seem, although
intuitively appealing, still an approximation. In fact, it can
easily be shown that this result is exact if it is assumed,
within the model of classical nuclei, that the electron-nuclear
interaction is described by the integral

∫
ne(r )̂vne(r)dr, where

ne(r) is the electron density and v̂ne(r) the one-electron
potential provided by the nuclei [68]. Indeed, in this case this
term contributes, in the Lagrangian equations of motion (with
atoms treated classically), a contribution∫

ne(r)[−∂xA
v̂ne(r)]dr ≡ −〈ψt |∂xA

Vne|ψt 〉,

which is exactly the contribution employed in quantum-
classical approaches. Note that the atomic force thus defined
has nonzero curl and hence is not conservative, as may be
anticipated [31,60].

The next, more sophisticated class of methods, still based
on the wave function treatment of the electronic subsystem,
uses Gaussian wave packets (GWPs) to represent the nu-
clei wave function [69,70]. The PESs in these methods are
calculated “on the fly” which is efficient. There are several
variants of this method: trajectory surface hopping (TSH)
[54,55,71], coupled coherent states (CCSs) [72], ab initio mul-
tiple spawning (AIMS) [73], multiconfigurational Ehrenfest
(MCE) [53], ab initio multiple cloning [74], and variational
multiconfigurational Gaussian wave packet (vMCG) [75,76],
the latter, being more flexible than the others (the parameters
of the wave packets are determined “on the fly” as well), can
describe tunneling, but it is also more expensive and numeri-
cally more difficult to handle [70]. The multiconfigurational
time-dependent Hartree (MCTDH) [77–79] method can be
considered as a generalization of the previously mentioned
methods that use a Gaussian basis, as in MCTDH the nuclear
basis is more general. Although these methods, especially
their generalized variants vMCG and MCTDH, may provide
(in the limit of the complete basis set) an exact solution of
the electron-nuclear time-dependent Schrödinger equation, the
methods are quite expensive computationally and can only be
applied to small systems (a small number of nuclear degrees
of freedom and of electrons).

Gross et al. have developed a reformulation of the ex-
act time-dependent Schrödinger equation in which the wave
function of the combined system is factorized in the Born-

Oppenheimer (BO) form as a product of two variational
functions: one for electrons, which depends on the nuclear
positions, and one for nuclei [80–82]. The two equations for
each of the wave functions are coupled by a scalar and vector
potentials that are subject to some gauge conditions. The two
equations are strictly equivalent to the original Schrödinger
equation, and hence are not easier to solve. One advantage of
this method is based on the fact that the wave function is not
expanded into BO electronic wave functions for each electronic
state, and hence the PES for each such a state does not appear.
Instead, an effective PES is introduced (the mentioned scalar
potential), which corresponds to an effective propagation of
the system in time. This proved to be useful in analyzing
results of the dynamics simulations. The other advantage of
this method is that it allows introducing approximations in a
more controlled way. Various approximate incarnations of this
method have been applied to a number of applications (see, e.g.,
[83,84]), demonstrating that the method is very promising.

Concerning density-matrix-based methods, a number of
approaches exist varying in underlying approximations and
the cost of the calculations. In the quantum-classical Liouville
equation (QCLE) method [85–88] the most important degrees
of freedom are treated quantum mechanically (called “the
open system”), while the rest of the variables (“the bath”)
are treated approximately as semiclassical. The latter is done
by, first, transforming the Liouville equation using the Wigner
transform with respect to the bath variables and then making
an expansion in the power series with respect to h̄. In the
first order an intuitively expected result is obtained for the
transformed Liouville operator that becomes a simple sum
of (symmetrized) classical and quantum Poisson brackets
[89–94]. This approach enables one to obtain an approximate
equation of motion for the reduced (with respect to the bath
degrees of freedom) open system density matrix; the classical
variables are evolved in time classically. In the generalized
quantum master equation (GQME) method [86] the classical
bath degrees of freedom are projected out from the Liouville
equation using Nakajima-Zwanzig projection operators, and
then the partitioned approach is applied to obtain a self-
contained equation for the reduced density matrix of the
system. This equation has the form of the first-order differential
equation with an integral memory term. Then approximations
are applied to the calculation of the kernel in the memory term.
The partitioned approach assumes the density matrix at the
initial time is factorized into a direct product of independent
density matrices of the system and bath; i.e., the whole system
is initially decoupled. Moreover, the bath is assumed to be at
thermal equilibrium. A more general approach that can treat
the initial system-bath coupling was developed in [95]. It is
argued in [86,96] that if in the QCLE method only short time
evolutions are accessible, the main advantage of the GQME
approach is that one can access relatively longer timescales in
the dynamics.

Another way to consider both nuclei and electrons quantum-
mechanically is based on path integrals. The most popular
are two approaches, the ring-polymer molecular dynamics
(RPMD) [97,98] and centroid molecular dynamics (CMD)
[99,100]. In both methods the starting point is the imaginary-
time path-integral representation of the partition function
for the nuclear system associated, initially, with the (single)
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ground state PES that could be calculated, for instance, with
advanced ab initio electronic structure methods like density
functional theory (DFT). Then the mapping between the
Hamiltonian in the Euclidean action of the path integral
and that of a ring polymer is exploited that enables one to
run “classical” molecular dynamics simulations in extended
phase space. The method is very efficient and can be applied
to systems containing hundreds of atoms. If initially these
methods were only applied to an adiabatic dynamics on a
single PES, its extensions to nonadiabatic dynamics have also
been proposed, both for RPMD [101–105] and CMD [106,107]
incarnations. The main limitation of the above methods is that
they are designed only for equilibrium; one cannot use these
methods for investigating time-dependent and nonequilibrium
phenomena, although nonequilibrium situations have also
started to be addressed [108].

The methods reviewed so far were derived at different levels
of theory and using various approximations. Among the wave-
function-based methods, approaches based on GWPs are still
computationally expensive and can only be applied to relatively
small systems. The computationally cheap Ehrenfest-based
methods with hoppings have a number of shortcomings which
cannot be controlled. The method developed in the Gross
group, although theoretically elegant, if applied directly with-
out any approximation, is computationally expensive; only its
approximate variants can be used to study realistic systems. A
definite advantage of this method is that it is not based on the
adiabatic PES. Nonzero temperature methods based on solving
the Liouville equation are all approximate, treating nuclei
semiclassically. Finally, the path-integral-based approaches
cannot be directly applied to nonequilibrium phenomena.
Neither of the previously considered techniques is universal;
for instance, it is not obvious how they can be used for
problems that require open boundary conditions (e.g., to study
current-carrying molecular junctions).

A systematic approach that can be applied to a wide class of
problems, including the ones with open boundary conditions,
has also been developed, called the correlated electron-ion dy-
namics (CEID) [109]. In the initial formulation of the method
[110,111] the Hamiltonian is expanded in a Taylor series with
respect to the atomic displacements uA = xA − 〈xA〉t from the
mean atomic trajectories 〈xA〉t = Tr[ρ̂(t )xA] [where ρ̂(t ) is
the density matrix of the entire system at time t]; then various
correlation functions appear corresponding to fluctuations of
positions, uA, and momenta, �pA = pA − 〈pA〉t , for which
equations of motion are derived as well. This procedure leads
to an infinite hierarchy of first-order differential equations
which is terminated at a certain order. In [112,113] an entirely
new formulation of the method has been developed based on
the Wigner transform, which enables one to derive the CEID
equations up to an arbitrary order in a systematic way. The
main difficulty of the CEID method, in our view, is related to
the fact that it deals directly with the electronic density matrix.
As a result, certain approximations (e.g., Hartree-Fock) for it
are inevitable to facilitate the solution of the CEID equations.

In principle, this difficulty is circumvented in field-
theoretical methods in which electrons are treated via many-
body Green’s functions (see, e.g., [114]); the Green’s func-
tions represent a more convenient tool than the electronic
(reduced) density matrix itself involved directly in CEID.

The Green’s functions based techniques have been for a
long time applied to treating interacting electron-nuclear (in
fact, electron-phonon) systems at equilibrium [65,115–117].
To study nonequilibrium phenomena, such as the effect of
phonons on quantum transport through a molecular junction
[65,118] or carrier dynamics in semiconductors [119], one has
to consider nonequilibrium techniques based on nonequilib-
rium Green’s functions (NEGFs) [120–122]. These methods
are very useful and powerful in calculating, e.g., electronic
densities (occupations), currents, and phonon spectra at general
nonequilibrium conditions and for a wide class of systems
with either open or periodic boundary conditions. Their main
limitation, however, as far as our main goal here is concerned,
is that they can only be used in calculating observables which
are expressed via an even number of field (or creation and
annihilation) operators, such as the electronic density and
current. However, they are not suitable for calculating atomic
trajectories as atomic positions are linear in field operators;
hence, atoms are simply assumed to oscillate around their
equilibrium positions in these methods.

In this paper we propose a general nonzero temperature
method which enables one to establish quantum “equations
of motion” for the expectation values of atomic positions,
〈xA〉t , i.e., their mean trajectory, for arbitrary electron-nuclear
systems with either periodic or open boundary conditions. The
notion of the PES is not invoked here, which we consider
an advantage. In this method, at variance with the CEID, the
electronic NEGF is employed instead of the electronic reduced
density matrix, which enables one to apply this method at
well known levels of approximation [122] to a wide class of
nonequilibrium phenomena and virtually any system, ranging
from molecules to condensed phases and molecular junctions.
The obtained equations of motion have a stochastic form;
i.e., they contain three types of Gaussian noises which are
correlated with each other in a certain way via the electronic
NEGF. Our method originates from a few powerful ideas that
were put forward a long time ago by Hedegård [123] and then
recently extended to current-carrying molecular junctions in
[45], that allowed one to express the reduced density matrix
of nuclei in the coordinate representation via a partial path
integral taken with respect to the nuclear subsystem, while the
electronic subsystem is presented via an influence functional
with the electronic NEGF (defined in a slightly more general
way than usual). In these papers the partitioned approach
for the initial density matrix (at time t0) of the combined
system was assumed [ρ̂(t0) is a direct product of the density
matrices of electrons and nuclei] corresponding physically
to the two subsystems being completely decoupled initially.
Also, the method used in [45] to obtain equations of motion
for atoms from the path-integral representation of the nuclei
reduced density matrix was largely intuitive. The approach we
propose here is a significant generalization and extension of
this method. In detail, several important advances have been
made: (i) we do not assume that initially the electronic and
nuclei subsystems were decoupled; instead, we assume that
the whole combined system was at thermal equilibrium, so that
time-dependent phenomena can in principle be considered in-
cluding the transient effects (e.g., switch-on of the bias [124]);
(ii) the path-integral method employed here is also considered
as an intermediate tool; however, the passage from the path

014307-3



L. KANTOROVICH PHYSICAL REVIEW B 98, 014307 (2018)

integrals to the equations of motion for the mean atomic
positions is done rigorously, leading to an infinite hierarchy
of stochastic differential equations for atomic positions and
momenta and their various fluctuations, similarly in spirit
to the CEID equations; (iii) by employing an expansion of
the electron-nuclear interaction term around the mean atomic
trajectory, similarly in spirit to CEID and Ref. [125], which
was done up to the second order, we are able to consider
a general nonequilibrium situation, whereby atoms do not
merely oscillate around their equilibrium positions, but may
move along more general trajectories (e.g., as in photoinduced
dissociation reactions or during STM manipulation).

In the coming sections we shall present the complete formu-
lation of the main equations of the method and the necessary
detailed derivations. No implementation and calculations with
this method are yet available and hence will not be presented
here; this is left for future work.

II. THEORY

A. Hamiltonian

At initial time t0 the entire system (electrons and nuclei) is
assumed to be at thermal equilibrium with temperature T , and
described by the initial Hamiltonian

H0 = H0
1(x, p) + H0

2 + H0
12(x), (1)

where H0
1 describes the nuclear subsystem to be considered

explicitly with coordinates and momenta x = {xA} and p =
{pA} (with A designating an nuclear degree of freedom), H0

2
is the Hamiltonian of the electrons in the whole system, and
H0

12 describes the electron-nuclear interaction. We only show
explicitly the dependence of the Hamiltonian on the nuclear
coordinates and momenta. Note that although interaction of all
nuclei with electrons is taken into account, not all nuclei may
be allowed to be displaced from their equilibrium positions;
only those allowed to move are explicitly included in the
subsystem (or region) 1 and hence presented in the part
H0

1(x, p) + H0
12(x) of the Hamiltonian and therefore included

in x. For instance, in the case of a molecule interacting with
an external field we may consider all its atoms to be allowed
to be displaced, and in this case their displacements will be
considered explicitly. In the case of a molecular junction only
atoms in the central region may be considered explicitly;
all other atoms belonging to the leads will be frozen and
not included in x. The sum of the last two operators, H 0

2 =
H0

2 + H0
12(x), constitutes the electrons-only Hamiltonian (for

which we shall adopt the second quantization later on). No
assumptions are made concerning the form of the nuclear-only,
H0

1, and electron-only, H0
2, Hamiltonians at this stage, they

could be as complex as required.
The Hamiltonian of the whole system at later times t > t0

can be split in a similar way,

H = H1(x, p) + H2 + H12(x), (2)

and it does not need to coincide with H0, as it may depend
explicitly on time, e.g., due to an external field contained in
H1 + H2.

The interaction between electrons and nuclei that are free
to move, H0

12 and H12, will be treated approximately in the
following way: we shall expand this part of the Hamiltonian

in terms of nuclear displacements. Two cases need to be
considered: (i) initial state of the whole system at time t0 and
(ii) later times, t > t0. In the former case nuclei from region 1
are displaced from their equilibrium positions x0 = (x0

A), and
H0

12 is expanded up to the second order in terms of them:

H0
12 ≡

∑
nm∈C

V 0
nm(x)c†ncm, (3)

where n, m are indices of the localized atomic basis placed
on atoms in region 1 (this basis forms a set of orbitals C) to
represent electrons, c†n and cm are the corresponding electronic
creation and annihilation operators in that region, while

V 0
nm(x) =

∑
A

V A,0
nm uA + 1

2

∑
AB

V AB,0
nm uAuB (4)

are the corresponding matrix elements that depend on the
nuclear displacements uA = xA − x0

A. Note that the free term
in the expansion, corresponding to zero displacements, is
incorporated into the electrons-only Hamiltonian H0

2.
We need to have in mind that our goal here is to be able

to study nuclear dynamics, and hence our nuclei may not
simply oscillate, but follow a more complex trajectory at later
times, t > t0. To simplify the problem, in the spirit of CEID
[109] we shall adopt a harmonization approximation [125] in
which nuclear positions are assumed to deviate no more than
quadratically from their “exact” instantaneous positions given
by the mean nuclear trajectory 〈x〉t = (〈xA〉t ), where 〈xA〉t =
Tr[ρ̂(t )xA] and ρ̂(t ) is the density matrix of the combined
system “electrons+nuclei”:

H12 ≡
∑

nm∈C

Vnmc†ncm, (5)

Vnm =
∑
A

V A
nmuA + 1

2

∑
AB

V AB
nm uAuB, (6)

where uA = xA − 〈xA〉t . Here the expansion coefficients V A
mn

and V AB
mn will depend explicitly on the mean trajectory 〈x〉t , and

hence, on time t . Similarly to the equilibrium case, Eqs. (3) and
(4), the free term in the expansion of H12 is incorporated into
H2, so that the latter becomes implicitly time-dependent via
the dependence of Vmn on the mean trajectory, H2 ≡ H2(t ).

We stress here that the mean trajectory is not yet known,
and our goal in this work is to derive an appropriate equation
of motion for it. Since from the very beginning parameters of
the Hamiltonian are assumed to depend on the mean trajectory,
the equation of motion we are after may become nonlinear, so
that only numerical solution of these equations is anticipated.

B. Influence functional

We shall start by deriving an explicit expression for the
nuclear density matrix, reduced with respect to the electronic
subsystem and written in the nuclear coordinate representation
by means of the path-integrals method. The detailed derivation
of all cases needed here is given in Appendix A.

As was shown in Ref. [123], the full propagator Û (t1, t0) of
the whole combined system, written in the coordinate represen-
tation with respect to the nuclear subsystem, 〈x1|Û (t1, t0)|x0〉,
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can be expressed via a path integral over nuclear trajectories:

〈x1|Û (t1, t0)|x0〉 =
∫ x(t1 )=x1

x(t0 )=x0

Dx(t )eiS1[x(t )]/h̄Û2(t1, t0), (7)

where

Û2(t, t ′) = T̂+ exp

{
− i

h̄

∫ t

t ′
[H2(t ′′) + H12(x(t ′′))]dt ′′

}
(8)

is the electronic propagator (and hence the subscript 2), in
which the trajectory x(t ) of nuclei enters as a “classical”
fixed function (and hence serves as a parameter) via the
coupling term, H12. The latter depends explicitly on time via
its dependence on the trajectory x(t ) in the path integral; i.e.,
H12 is expanded as in Eqs. (5) and (6) with the displacements
given by functions uA(t ) = xA(t ) − 〈xA〉t . Recall that H2 also
depends on time, since nuclei are assumed to be clamped in
their average positions 〈xA〉t on the mean trajectory at each
time t . The propagator satisfies the usual equations of motion:

ih̄∂t Û2(t, t ′) = [H2(t ) + H12(x(t ))]Û2(t, t ′),

−ih̄∂t ′Û2(t, t ′) = Û2(t, t ′)[H2(t ′) + H12(x(t ′))]. (9)

Next, S1[x(t )] in Eq. (7) is the classical action associated with
the isolated nuclear subsystem described by H1 only (which
may depend on time). Finally, T̂+ is the time-ordering operator
arranging operators in the exponent by their times ascending
from right to left.

It is essential to stress that the propagator (7) is an operator
with respect to the electronic degrees of freedom, but is a
classical object as far as the nuclei are concerned. This form is
a hybrid between the Feynman (classical) and usual quantum
(operator) representations of the propagator.

The evolution of the total density matrix ρ̂(t1) for the com-
bined system (electrons + nuclei) is given by the corresponding
solution of the Liouville equation,

ρ̂(t1) = Û (t1, t0)ρ̂(t0)Û (t0, t1), (10)

which in the coordinate representation, again written with
respect to the nuclei only, reads

〈x1|ρ(t1)|x0〉
=
∫

dx2dx3〈x1|Û (t1, t0)|x2〉

×〈x2|ρ(t0)|x3〉〈x3|Û (t0, t1)|x0〉

=
∫

dx2dx3

∫ x(t1 )=x1

x(t0 )=x2

Dx(t )
∫ x ′(t0 )=x3

x ′(t1 )=x0

Dx ′(t )

×ei{S1[x(t )]−S1[x ′(t )]}/h̄ Û2(t1, t0) 〈x2|ρ(t0)|x3〉Û †
2 (t1, t0).

(11)

Here the propagator Û2(t1, t0) depends explicitly on the nuclear
trajectories x(t ) taken forward in time between t0 and t1, while
the propagator Û

†
2 (t1, t0) = Û2(t0, t1) depends explicitly on the

nuclear trajectories x ′(t ) taken backward in time, from t1 to t0.
We shall explicitly indicate this by writing Û2(t1, t0)x(t ) and
Û2(t0, t1)x ′(t ) for the two propagators.

The matrix element 〈x2|ρ̂(t0)|x3〉 of the initial density
matrix is still an operator for electrons, and hence cannot be
permuted with the two electronic propagators on both sides of

it. However, assuming that the whole system was at thermal
equilibrium at the initial time t0,

ρ̂(t0) = Z−1
0 e−β(H0−μN ), Z0 = Tr[e−β(H0−μN )], (12)

where Z0 is the partition function of the combined system at
equilibrium at time t0, β = 1/kBT is the inverse temperature,
μ the chemical potential, and N the number operator for the
electrons. The −μN term is convenient to absorb in the part
H0

2 of the initial Hamiltonian H0, and this is what is implied in
what follows. Since the initial density matrix is not assumed
here as a direct product of the nuclear and electronic density
matrices, our method is partitionless.

Using a similar argument to that in Ref. [123], one can
write the matrix element 〈x2|ρ(t0)|x3〉 via an imaginary-time
path integral with respect to nuclei only (i.e., keeping it still as
an operator in the electronic Hilbert space):

〈x2|ρ̂(t0)|x3〉 = 1

Z0

∫ x(βh̄)=x2

x(0)=x3

Dx(τ ) e−S0
1 [x(τ )]/h̄Û2(βh̄, 0).

(13)

Here S0
1 [x(τ )] is the Euclidean action associated with the initial

nuclear Hamiltonian H0
1(x, p);

Û2(τ, τ ′) = T exp

{
− 1

h̄

∫ τ

τ ′

[
H0

2 + H12(x(τ ′′))
]
dτ ′′
}

(14)

is the Euclidean propagation operator and T the imaginary-
time-ordering operator. In particular, Û2(βh̄, 0) evolves the
electronic subsystem in the imaginary time from τ ′ = 0 to τ =
βh̄. Here yet again the trajectory x(τ ) of nuclei (entering via
the coupling term) is fixed, so that the propagation operator
explicitly depends on it, to be indicated as Û2(βh̄, 0)x(τ ).

The operator (14) satisfies

−h̄∂τ Û2(τ, τ ′) = [H0
2 + H12(x(τ ))

]
Û2(τ, τ ′),

h̄∂τ ′Û2(τ, τ ′) = Û2(τ, τ ′)
[
H0

2 + H12(x(τ ′))
]
. (15)

Using Eqs. (11) and (13), we can write for the density matrix
of the combined system, still in the coordinate representation
for nuclei, an expression:

〈x1|ρ̂(t1)|x0〉 = 1

Z0

∫
dx2dx3

∫
Dx(t )

∫
Dx ′(t )

×
∫

Dx(τ ) e
i
h̄ {S1[x(t )]−S1[x ′(t )]}− 1

h̄
S0

1 [x(τ )]

× Û2(t1, t0)x(t )Û2(βh̄, 0)x(τ )Û
†
2 (t1, t0)x ′(t ).

The obtained expression is still an operator for the electronic
subsystem. To obtain the reduced density matrix for the nuclear
subsystem we are interested in, we have to take a trace [to be
denoted Tr2(. . .)] with respect to the Hilbert space associated
with the electrons:

〈x1|ρ̂ions(t1)|x0〉
= 1

Z0

∫
dx2dx3

∫
Dx(t )

∫
Dx ′(t )

×
∫

Dx(τ ) e
i
h̄ {S1[x(t )]−S1[x ′(t )]}− 1

h̄
S0

1 [x(τ )]

×Tr2[Û2(βh̄, 0)x(τ )Û2(t0, t1)x ′(t )Û2(t1, t0)x(t )], (16)
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FIG. 1. Konstantinov-Perel contour γ . On the horizontal upper
(forward) track of the contour γ the coupling part of the Hamiltonian
depends explicitly on the fixed nuclear trajectory x(t ); the horizontal
lower (backward) track, on the fixed nuclear trajectory x ′(t ); while
the vertical track, on the fixed nuclear trajectory x(τ ) corresponding
to Euclidean evolution.

where the cyclic invariance of the trace has been used. This
expression is not an operator anymore.

The product of the three operators under the trace, if read
from right to left, has first a forward propagation from t0 to
t1, then a backward propagation from t1 to t0, and, finally,
imaginary-time propagation from t−0 ≡ t0 − i0 to t0 − iβh̄.
It is convenient to introduce a single contour consisting of
these three parts: t+0 ≡ t0 + i0 → t1 → t−0 → t0 − iβh̄. This
is known as the Konstantinov-Perel contour, Fig. 1, which will
be denoted hereafter as γ . It is essential that the time t1 on
γ is fixed as corresponding to the observation time [see the
left-hand side of Eq. (16)]. Also, it is essential to remember
that on each of the three parts (tracks) of the contour the
coupling Hamiltonian H12 is taken with a particular fixed
nuclear trajectory, either x(t ) or x ′(t ) on the horizontal tracks,
and H0

12 with x(τ ) on the vertical one. This brings a time
dependence to the electronic problem; it is additional to any
other existing, e.g., due to the time-dependent field and the
harmonization, approximation.

Hence, denoting the product as a single operator,

Ûγ (t0 − iβh̄, t+0 ) = Û2(βh̄, 0)x(τ )Û2(t0, t1)x ′(t )Û2(t1, t0)x(t ),

(17)

and using the fact that the order in which the operators appear
in the product is fixed, it is possible to rewrite it as a single
evolution operator over the whole contour:

Ûγ (t0 − iβh̄, t+0 ) = T̂γ exp

{
− i

h̄

∫
γ

H2(z1)dz1

}
. (18)

Here T̂γ is the time-ordering operator on the contour with the
direction of z1 ∈ γ increasing as shown by arrows in Fig. 1. The
integral over the contour consists of a sum of three integrals:
over the upper, then lower, and finally over the vertical tracks
with the electronic Hamiltonian in each part of the contour
(written by the corresponding Roman letter) defined as follows:

H2(z) ≡

⎧⎪⎨⎪⎩
H2(t ) + H12(x(t )), if z ∈ upper track,

H2(t ) + H12(x ′(t )), if z ∈ lower track,

H0
2 + H0

12(x(t )), if z ∈ vertical track.

(19)

We have explicitly indicated here how the electron-nuclear part
depends on the nuclear positions on each track. The electron-
nuclear parts of the Hamiltonian, H12 and H0

12, are given by

Eqs. (3)–(6), where atomic displacements uA are given some-
what differently depending on the track on the contour γ : on
the horizontal tracks the “classical” displacement of the degree
of freedom A is defined as uA(t ) = xA(t ) − 〈xA〉t (upper) and
u′

A(t ) = x ′
A(t ) − 〈xA〉t (lower), while on the vertical track the

displacement uA(τ ) = xA(τ ) − x0
A is used that is defined with

respect to the equilibrium positions of the atoms. The matrices
VA(z) = (V A

nm(z)) and VAB (z) = (V AB
nm (z)), see Eqs. (4) and

(6), may still depend on z ∈ γ on the horizontal tracks via its
possible dependence on the averages 〈xA〉t , i.e., they are VA(t )
and VAB (t ) on both tracks, while on the vertical track there
is no time dependence, i.e., VA(τ ) ≡ VA

0 and VAB (τ ) ≡ VAB
0 ,

the values at thermal equilibrium.
In all these cases the nuclear trajectories are fixed [by the

corresponding path integrals in Eq. (16)]; i.e., they serve as
“external” parameters (functions). As will be clear later on,
the fact that the Hamiltonian on each track is different and
depends on time in this rather general way creates additional
complications in developing theory.

For the following it is convenient to introduce a more
general evolution operator between any two variables z and
z′ somewhere on γ ,

Ûγ (z, z′) = T̂γ exp

{
− i

h̄

∫ z

z′
H2(z1)dz1

}
. (20)

The operator (18) is obtained by taking z = t0 − iβh̄ and z′ =
t+0 , and the electronic Hamiltonian H2(z) on γ is defined as
described above. By its definition (20), Ûγ (z, z′) is essentially
a product of the required number of evolution operators, which
are necessary to bridge the two “times” z and z′. Hence, using
Eqs. (9) and (15) and the fact that on the imaginary (vertical)
track z = t0 − iτ , the propagator Ûγ (z, z′) is seen to satisfy
the usual equations of motion:

ih̄∂zÛγ (z, z′) = H2(z)Ûγ (z, z′),

−ih̄∂z′Ûγ (z, z′) = Ûγ (z, z′)H2(z′). (21)

Concluding, the trace of the product of three electronic
propagators can be written as

Tr2[Û2(βh̄, 0)x(τ )Û2(t0, t1)x ′(t )Û2(t1, t0)x(t )]

= Tr2[Ûγ (t0 − iβh̄, t+0 )] ≡ 〈Ûγ (t0 − iβh̄, t+0 )〉2, (22)

and hence we have to develop methods of calculating the trace
of the electronic propagation operator on the right-hand side.

Following the steps of Ref. [123], one can derive a useful
formula for the required expectation value 〈Ûγ (t0 − iβh̄, t+0 )〉2

of the evolution operator (18) on γ that would enable us to
define the (generalized) electronic Green’s function later on.
We first introduce a parameter λ that stipulates the strength of
the coupling term:

Hλ
2 (z) ≡

⎧⎪⎨⎪⎩
H2(t ) + λH12(x(t )), if z ∈ upper track,

H2(t ) + λH12(x ′(t )), if z ∈ lower track,

H0
2 + λH12(x(t )), if z ∈ vertical track.

(23)

Here, Hλ
2 (z) is defined with either x(t ), x ′(t ), or x(τ ), depend-

ing on the position of the variable z on the contour γ . At λ = 1
we have our original Hamiltonian (19). At λ = 0 the electron-
ion coupling is completely switched off, although electrons still
interact (via H2 or H0

2) with nuclei clamped at their respective
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positions. Correspondingly, in H2 nuclei are assumed to be at
positions 〈xA〉t for z anywhere on the horizontal tracks, while
on the vertical track they are at equilibrium positions x0

A.
Next, we define a new evolution operator via

Ûλ
γ (z, z′) = T̂γ exp

{
− i

h̄

∫ z

z′
Hλ

2 (z1)dz1

}
(24)

between any two points z and z′ on γ . At λ = 1 this operator
goes over into the one we introduced above, Eq. (20), and
which we actually need. The new operator satisfies the usual
equations of motion:

ih̄∂zÛ
λ
γ (z, z′) = Hλ

2 (z)Ûλ
γ (z, z′),

−ih̄∂z′Ûλ
γ (z, z′) = Ûλ

γ (z, z′)Hλ
2 (z′). (25)

Then, it follows from a well-known expression valid on the
contour γ that

∂

∂λ
Ûλ

γ (z, z′) = − i

h̄

∫
γ

dz1Û
λ
γ (z, z1)

∂Hλ
2 (z1)

∂λ
Ûλ

γ (z1, z
′)

= − i

h̄

∫
γ

dz1Û
λ
γ (z, z1)H12(z1)Ûλ

γ (z1, z
′). (26)

Therefore, the derivative of the trace of the evolution operator
with the times on γ as appearing in Eq. (22) can be written as

∂

∂λ

〈
Ûλ

γ (t0 − iβh̄, t+0 )
〉
2

= − i

h̄

∫
γ

dz1
〈
Ûλ

γ (t0 − iβh̄, z1)H12(z1)Ûλ
γ

(
z1, t

+
0

)〉
2
.

Dividing both sides of this equation by 〈Ûλ
γ (t0 − iβh̄, t+0 )〉2

and integrating with respect to λ between 0 and 1, one obtains

〈Ûγ (t0 − iβh̄, t+0 )〉2 ≡ 〈Ûλ
γ (t0 − iβh̄, t+0 )

〉λ=1

2

= Z0
2 exp

{
i

h̄
�Seff [x(t ), x ′(t ), x(τ )]

}
,

(27)

where we have introduced an effective action

�Seff [x(t ), x ′(t ), x(τ )] = −
∫ 1

0
dλ

∫
γ

dz1 Fλ(z1), (28)

where

Fλ(z) =
〈
Ûλ

γ (t0 − iβh̄, z)H12(z)Ûλ
γ (z, t+0 )

〉
2〈

Ûλ
γ (t0 − iβh̄, t+0 )

〉
2

. (29)

In deriving the above result, use has been made of the fact
that at λ = 0 the coupling between the nuclei and electrons
disappears, and hence〈

Ûλ
γ (t0 − iβh̄, t+0 )

〉λ=0

2

= Tr[Û2(t0 − iβh̄, t−0 )Û2(t−0 , t1)Û2(t1, t
+
0 )]λ=0

= Tr[Û2(t0 − iβh̄, t−0 )] = Tr
[
e−βH0

2
] = Z0

2

is the electron-only partition function at t0 calculated while
nuclei are clamped at their equilibrium positions x0 = (x0

A).
Hence, finally, we obtain for the reduced density matrix of

nuclei an expression

〈x1|ρ̂ions(t1)|x0〉 = Z0
2

Z0

∫
dx2dx3

∫
Dx(t )

∫
Dx ′(t )

×
∫

Dx(τ ) e
i
h̄

(S1−S ′
1+�Seff )− 1

h̄
S0

1 , (30)

where S1 ≡ S1[x(t )], S ′
1 ≡ S1[x ′(t )], S0

1 ≡ S0
1 [x(τ )], and

�Seff depends on all three trajectories. The prefactor Z0
2/Z0

is a constant, which depends on temperature. We will have to
consider it later on.

The above expression contains all the information about the
electronic subsystem in the form of the influence functional,
i.e., in the expression in the exponent, which is basically the
effective action �Seff . The obtained result generalizes the
formula obtained in Refs. [45,123] for the partitioned case
to the one in which the electrons and nuclei are considered
coupled from the very beginning, i.e., at initial thermalization.
Hence, our method is strictly partitionless, and hence, at least in
principle, consideration of a response of the system in real time
to external time-dependent perturbations should be possible
(e.g., bias switch-on).

C. Green’s function

Because the Hamiltonian Hλ
2 (z) is different on both hor-

izontal tracks of γ , the two possible positions of the initial
time t0, either on the upper (as t+0 ) or lower (t−0 ) tracks, are
not equivalent. Hence, the definition of the Heisenberg picture
is not unique. Therefore, the electronic Green’s function (GF)
cannot be introduced in the usual way via the operators in the
Heisenberg representation as this appears to be ambiguous.
Following Ref. [126], we generalize the definition of the GF
as follows:

Gλ
ab(z, z′) = − i

Zλh̄

{〈
Ûλ

γ (t0 − iβh̄, z)caÛ
λ
γ (z, z′)c†bÛ

λ
γ (z′, t+0 )

〉
2, if z > z′,

−〈Ûλ
γ (t0 − iβh̄, z′)c†bÛ

λ
γ (z′, z)caÛ

λ
γ (z, t+0 )

〉
2, if z < z′,

(31)

where

Zλ = 〈Ûλ
γ (t0 − iβh̄, t+0 )

〉
2

(32)

and the arguments z and z′ in the GF could be anywhere on
the contour γ . Here, and in the following, the indices like
a, b correspond to any atomic orbital in the whole electronic

system, either included in the set C or not. We shall use indices
like n, m to indicate orbitals from region C only. Note that the
usual definition of the GF can also be brought into the form
above where the two propagation operators around ca and c

†
b

are combined into one; hence, the defined above GF satisfies
the usual equations of motion.
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Note in passing an important point, which shall be used
extensively in the following, that it is, e.g., insufficient to
indicate whether the GF is “lesser” or “greater” as it may also
be necessary to indicate explicitly on which tracks of γ the two
“time” variables actually are. This will be indicated explicitly
by the indices +, −, or M depending on whether each variable
is on the upper, lower, or vertical track. For instance, if both
variables z, z′ ∈ +, then we shall use the notation G++(z, z′),
and then one can also introduce lesser, greater, retarded, and
advanced components; if z ∈ + and z′ ∈ M , then we shall use
G+M (z, z′) (which is a lesser component) as the usual notation
G�(z, z′) is insufficient as it is still not clear on which horizontal
track the variable z lies. Only for GFs defined in such a way that
the same Hamiltonian is used (i.e., both times are on the same
horizontal track), are the usual notations (without + and −)
applicable.

With this definition, the function Fλ(z) in Eq. (29), needed
for calculating the effective action, Eq. (28), becomes

Fλ(z) = −ih̄
∑

nm∈C

Vnm(x(z))Gλ
mn(z, z+)

= −ih̄ trC{V(x(z))Gλ(z, z+)}, (33)

where the trace written above using small letters corresponds to
the usual trace of a matrix; V and G are the matrices composed
of the matrix elementsVnm of the electron-nuclear coupling and
Gmn of the GF. Hence, the effective action reads

�Seff [x(t ), x ′(t ), x(τ )]

= ih̄

∫ 1

0
dλ

∫
γ

dz trC{V(x(z))Gλ(z, z+)}

≡ ih̄

∫ 1

0
dλ

∫
γ

dz trC{V(x(z))Gλ,<(z, z)}. (34)

In the last two equations z+ is infinitesimally “later” on the
contour γ than z, so that essentially only the lesser GF is
needed on the contour (the last equality). This formula is
analogous to the one derived initially in Refs. [45,126] based
on the partitioned approach; as we shall see, going beyond this
approximation simply extends the integration from Keldysh to
the Konstantinov-Perel contour.

Writing the contour integral in Eq. (34) explicitly, we obtain
for the effective action

�Seff [x(t ), x ′(t ), x(τ )]

= ih̄

∫ 1

0
dλ

{∫ t1

t0

dt trC
[
V+(t )Gλ,<

++ (t, t )−V−(t )Gλ,<
−− (t, t )

]
− i

∫ βh̄

0
dτ trC

[
VM (τ )Gλ,<

MM (τ, τ )
]}

. (35)

The electronic GF introduced above depends explicitly
on the strength parameter λ. At λ = 0, no interaction of
electrons with nuclear displacements exists and nuclei are
assumed to be clamped at either positions 〈xA〉t or x0

A, as
explained above. The GF, corresponding to the absence of
interaction between electrons and nuclear displacements, will
be denotedG(z, z′) = (Gab(z, z′)). This GF corresponds to the
Hamiltonian Hλ=0

2 , Eq. (23), where interaction of electrons
with nuclear displacements is included only in the zeroth

order with nuclei following the mean trajectory 〈x〉t on both
horizontal tracks and placed at equilibrium x0 on the vertical
track. Correspondingly, the Hamiltonian on the horizontal
tracks is the same for G (and the usual Langreth rules [122]
apply) and hence this particular GF is exactly the same as
the usual one. There is no need to indicate explicitly on which
tracks the times are; one can use lesser, greater, etc. (the usual),
notations for G without confusion.

The interactions of electrons with nuclear displacements,
Eqs. (3) and (5), is a one-particle operator

λH12(z) = λ
∑

nm∈C

Vnm(z)c†ncm

(and similarly for H0
12), and hence the two GFs, G and Gλ, are

related via the Dyson equation:

Gλ(z, z′) − G(z, z′) = λ

∫
γ

dz1 G(z, z1)V(z1)Gλ(z1, z
′)

= λ

∫
γ

dz1 Gλ(z, z1)V(z1)G(z1, z
′).

(36)

Note that in the following only this equation will be explored.
Since it is valid for any electronic Hamiltonian that may even
include electronic correlations, the method to be adopted below
is general; we shall assume, however, that the calculation of
the unperturbed GF G(z, z′) is feasible. Note that this equation
is also valid for the CC block of the GF, Gλ

CC (z, z′), in the
situation when only within region C nuclei are allowed to move
(see Appendix B); in this case the vector function V(z) →
VC (z) is defined only on this region’s orbitals (Vab 	= 0 only
if the orbitals a, b ∈ C).

Further, we note that since the matrices V±(t ) and VM (τ )
are nonzero only within region C, only CC elements of the GF
are needed in Eq. (35) to calculate the effective action (the in-
fluence functional). This also means that only CC elements of
the unperturbed GF G(z, z′) are needed in the Dyson equation.
If the set C does not cover the whole system, e.g., it corresponds
only to the central region (molecule) in the quantum transport
setup, then calculation of the contribution due to other orbitals
(of the leads in the case of the quantum transport) is required.
If the interaction between orbitals in C and the rest of the
system is described in the one-electron approximation, then
the contribution to the CC block, GCC (z, z′), from the rest
of the system appears in the usual way via a self-energy
(Appendix B).

Hence, the calculation of the action, Eq. (35), requires three
lesser components of the total electronic Green’s function with
the coupling added using the strength λ. This requires solving
the Dyson equation (36). We shall do it approximately by
noting that the atomic displacements uA(t ), u′

A(t ), and uA(τ ),
with respect to which the path integrals are actually calculated
in Eq. (30), enter here only via the matrix V(z) = (Vnm(x(z))).
We shall expand the GF in powers of this matrix reiterating
the Dyson equation. Since the effective action (34) is already
proportional to such a matrix, and a progress can only be
made if the effective action is quadratic with respect to atomic
displacements, we shall limit ourselves to the first-order term
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only (cf. [45]):

Gλ(z, z′) 
G(z, z′) + λ

∫
γ

dz1G(z, z1)V(z1)G(z1, z
′). (37)

We stress that this approximation does not imply that the
electron-nuclear coupling is small; rather, we treat nuclear

displacements from the corresponding mean positions (either
〈xA〉t or x0

A on the horizontal and vertical tracks, respectively)
as small. Calculation of the contour integral in the above
equation requires an appropriate generalization of the Langreth
rules which the reader can find in Appendix C.

We now have everything we need to calculate the effective
action.

D. Calculation of the effective action

Using the generalized Langreth rules in Eq. (37), one can calculate all three components of the lesser GF required in Eq. (35):
on the upper track,

Gλ<
++(t, t ) 
 G<(t, t ) − iλ

∫ βh̄

0
dτ G�(t, τ )VM (τ )G�(τ, t ) + λ

∫ t1

t0

dt ′ {Gr (t, t ′)V+(t ′)G<(t ′, t )

+G<(t, t ′)V+(t ′)Ga (t ′, t ) + G<(t, t ′)[V+(t ′) − V−(t ′)]G>(t ′, t )}, (38)

on the lower track,

Gλ<
−−(t, t ) 
 G<(t, t ) − iλ

∫ βh̄

0
dτ G�(t, τ )VM (τ )G�(τ, t ) + λ

∫ t1

t0

dt ′ {Gr (t, t ′)V−(t ′)G<(t ′, t )

+G<(t, t ′)V−(t ′)Ga (t ′, t ) + G>(t, t ′)[V+(t ′) − V−(t ′)]G<(t ′, t )}, (39)

and on the vertical track,

Gλ<
MM (τ, τ ) 
 G<

MM (τ, τ ) − iλ

∫ βh̄

0
dτ ′ [Gr

MM (τ, τ ′)VM (τ ′)G<
MM (τ ′, τ ) + G<

MM (τ, τ ′)VM (τ ′)Ga
MM (τ ′, τ )

+G<
MM (τ, τ ′)VM (τ ′)G>

MM (τ ′, τ )
]+ λ

∫ t1

t0

dt G�(τ, t )[V+(t ) − V−(t )]G�(t, τ ). (40)

Here, the dependence of the GF components on the coupling strength is shown explicitly. As was already indicated, the unperturbed
(electron-only, i.e., without the coupling) GF G is defined for the Hamiltonian which is the same on both horizontal tracks.
Therefore, there is no need to indicate the particular track anymore, and hence the +/− subscripts have been omitted. Also, the
right and left functions like G+M or GM−, which have one time on the vertical and one on the horizontal tracks, do not require
indicating explicitly which horizontal track is used, and hence can simply be denoted as G� and G�, respectively.

The first (λ-independent) term in the above expansions for the three components of the GF gives rise to the first-order
approximation to the effective action, Eq. (35):

�S
(1)
eff [u(t ), u′(t ), u(τ )] = ih̄ trC

{∫ t1

t0

dt[V+(t ) − V−(t )]G<(t, t ) − i

∫ βh̄

0
dτ VM (τ )G<

MM (τ, τ )

}
. (41)

Using Eqs. (4) and (6) to express the electron-nuclear matrix elements on different parts of γ via atomic displacements, we obtain

�S
(1)
eff [u(t ), u′(t ), u(τ )] =

∫ t1

t0

dt

[∑
A

ih̄Y<
A (t )[uA(t ) − u′

A(t )] + ih̄

2

∑
AB

Y<
AB (t )[uA(t )uB (t ) − u′

A(t )u′
B (t )]

]

+
∫ βh̄

0
dτ

[∑
A

h̄Y
<

A (τ )uA(τ ) + h̄

2

∑
AB

Y
<

AB (τ )uA(τ )uB (τ )

]
, (42)

where

Y<
A (t ) = trC[G<(t, t )VA(t )], (43)

Y<
AB (t ) = trC[G<(t, t )VAB (t )], (44)

Y
<

A (τ ) = trC
[
G<

MM (τ, τ )VA
0

]
, (45)

Y
<

AB (τ ) = trC
[
G<

MM (τ, τ )VAB
0

]
. (46)

Hence, the first-order effective action contains both linear and quadratic terms with respect to atomic displacements. Above,
scalar functions of real and imaginary times, Eqs. (43)–(46), have been defined.
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Consider now the second-order term which is obtained from the other terms in Eqs. (38)–(40), that are proportional to λ. Note
that as the arguments of the functions in the terms appearing in convolutions are implicit, there is no need anymore to show them
explicitly. We obtain after some algebra

�S
(2)
eff [u(t ), u′(t ), u(τ )] = − ih̄

2

∫ βh̄

0
dτ

∫ βh̄

0
dτ ′ trC

{
VMG<

MMVM

(
Gr

MM + Ga
MM + G>

MM

)}
+ ih̄

2

∫ t1

t0

dt

∫ t1

t0

dt ′ trC[(Gr + Ga )(V+G<V+ − V−G<V−) + (V+ − V−)(G>V+G< − G<V−G>)]

+ h̄

∫ βh̄

0
dτ

∫ t1

t0

dt trC[(V+ − V−)G�VMG�]. (47)

The transformations that follow are simple but rather cumbersome. We first introduce new functions on the horizontal tracks,

vA(t ) = uA(t ) − u′
A(t ) and rA(t ) = 1

2 [uA(t ) + u′
A(t )], (48)

in terms of which the first- and the second-order contributions to the action read

�Seff [u(t ), u′(t ), u(τ )] = ih̄

∫ t1

t0

dt
∑
A

Y<
A (t )vA(t ) + h̄

∫ βh̄

0
dτ
∑
A

Y
<

A (τ )uA(τ )

+ ih̄

2

∫ t1

t0

dt

∫ t1

t0

dt ′
∑
AB

{LAB (t, t ′)vA(t )vB (t ′) + KAB (t, t ′)rA(t )vB (t ′)}

+ h̄

∫ βh̄

0
dτ

∫ t1

t0

dt
∑
AB

Y
��
AB (τ, t )uA(τ )vB (t ) − ih̄

2

∫ βh̄

0
dτ

∫ βh̄

0
dτ ′ ∑

AB

LAB (τ, τ ′)uA(τ )uB (τ ′),

(49)

where the following scalar functions were introduced:

LAB (t, t ′) = 1
2 [Y><

BA (t, t ′) + Y<>
BA (t, t ′)] ≡ LBA(t ′, t ), (50)

KAB (t, t ′) = 2δ(t − t ′)Y<
AB (t ) − 2θt ′t [Y

><
BA (t, t ′) − Y<>

BA (t, t ′)], (51)

LAB (τ, τ ′) = iδ(τ − τ ′)Y
<

AB (τ ) + θττ ′Y
<>

BA (τ, τ ′) + θτ ′τ Y
><

BA (τ, τ ′) ≡ LBA(τ ′, τ ), (52)

where θtt ′ (θττ ′) is the Heaviside function on the upper (vertical) track of the contour. Note that the objects LAB (t, t ′) and LAB (τ, τ ′)
form symmetric matrices. Several Y and Y double-time functions have also been defined:

Y
αβ

AB (t, t ′) = trC{Gα (t, t ′)VA(t ′)Gβ (t ′, t )VB (t )}, (53)

Y
αβ

AB (τ, τ ′) = trC
{
Gα

MM (τ, τ ′)VA
0 G

β

MM (τ ′, τ )VB
0

}
, (54)

Y
��
AB (τ, t ) = trC

{
G�(t, τ )VA

0 G
�(τ, t )VB (t )

}
, (55)

where α, β indicate various components 〈, 〉 of the GFs contained in the trace. In simplifying the above expression use has been
made of the identities relating the retarded and advanced GFs with the greater and lesser ones, Gr (z, z′) = θzz′ (G>(z, z′) −
G<(z, z′)) and Ga (z, z′) = −θz′z(G>(z, z′) − G<(z, z′)), which are valid when both arguments belong either to the horizontal
or vertical tracks of γ .

Concluding, we have gotten an expression for the effective action which is found to be a second-order form with respect to
the functions vA(t ), rA(t ), and uA(τ ). When inserting the effective action into the matrix element of the reduced density matrix,
Eq. (30), linear terms in displacements can easily be incorporated into the existing actions as they contain single-time integrals;
however, this is not the case for quadratic in displacement terms as they enter via double-time integrals. Therefore, a procedure
is required to linearize them.
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E. Real-imaginary time Hubbard-Stratonovich transformation

Consider two sets of functions, {kA
i (t )} and {kA

j (τ )}, defined for real and imaginary times, respectively, and the corresponding
complex Gaussian noises {zA

i (t )} and {zA
j (τ )}. A different number of functions may be in each set. Then, the following identity

can be established [127] (see also [128] where the same identity was written via contour integrals):〈
exp

{
i
∑
A

[ ∫ t1

t0

dt
∑

i

zA
i (t )kA

i (t ) +
∫ βh̄

0
dτ
∑

j

zA
j (τ )k

A

j (τ )

]}〉
{z,z}

= exp

{
−1

2

∑
AB

[ ∫ t1

t0

dt

∫ t1

t0

dt ′
∑
ii ′

kA
i (t )kB

i ′ (t ′)ΠAB
ii ′ (t, t ′) +

∫ βh̄

0
dτ

∫ βh̄

0
dτ ′ ∑

jj ′
k

A

j (τ )k
B

j ′ (τ ′)Π
AB

jj ′ (τ, τ ′)

+ 2
∫ t1

t0

dt

∫ βh̄

0
dτ
∑

j

∑
i

k
A

j (τ )kB
i (t )Π̃AB

ji (τ, t )

]}
, (56)

where the indices i, i ′ were used for real-time functions, while
j , j ′ for imaginary-time functions. The introduced double-time
functions are actually correlation functions of the noises:

ΠAB
ii ′ (t, t ′) = 〈zA

i (t )zB
i ′ (t

′)
〉
{z,z} ≡ ΠBA

i ′i (t ′, t ), (57)

Π̃AB
ji (τ, t ) = 〈zA

j (τ )zB
i (t )

〉
{z,z}, (58)

Π
AB

jj ′ (τ, τ ′) = 〈zA
j (τ )zB

j ′ (τ ′)
〉
{z,z} ≡ Π

BA

j ′j (τ ′, τ ). (59)

Note that ΠAB
ii ′ (t, t ′) and Π

AB

jj ′ (τ, τ ′) form symmetric matrices.
In the above equations each angle bracket 〈. . .〉{z,z} term
corresponds to the stochastic averaging over the noises {z, z} =
{zA

i (t ), zA
j (τ )} with a Gaussian distribution function. These are

actually path integrals in their own right as the noises depend
on time; see details in Ref. [127].

Similarly to the method developed in Ref. [127], for each
A we introduce four functions for the real time (i = 1, . . . , 4)
and two functions for the imaginary one (j = 1, 2):

kA(t ) =

⎛⎜⎜⎜⎝
kA

1 (t )

kA
2 (t )

kA
3 (t )

kA
4 (t )

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
vA(t )/h̄

0

rA(t )/h̄

0

⎞⎟⎟⎟⎠,

k
A

(τ ) =
(

k
A

1 (τ )

k
A

2 (τ )

)
=
(

iuA(τ )/h̄

0

)
, (60)

which correspond to the noises as follows:

zA(t ) =

⎛⎜⎜⎜⎝
zA

1 (t )

zA
2 (t )

zA
3 (t )

zA
4 (t )

⎞⎟⎟⎟⎠ ≡

⎛⎜⎜⎜⎝
ηA(t )

η∗
A(t )

νA(t )

ν∗
A(t )

⎞⎟⎟⎟⎠,

zA(τ ) =
(

zA
1 (τ )

zA
2 (τ )

)
≡
(

μA(τ )

μ∗
A(τ )

)
. (61)

The rationale for choosing three pairs of complex conjugate
noises (ηA(t ), η∗

A(t )), (νA(t ), ν∗
A(t )), and (μA(τ ), μ∗

A(τ )) for
each nuclear degree of freedom A is as follows: (i) the
noises must be complex as their corresponding correlation

functions are in general complex (see below); (ii) we chose
pairs of complex conjugate noises to ensure that the Gaussian
distribution associated with them is real; our six complex
noises are equivalent to choosing six real noises; (iii) three
pairs of noises is a minimal possible set of noises necessary to
establish the mapping we need as for each A there are three
“variables” in the double integral (49): vA(t ), rA(t ), and uA(τ ).

Then, the right-hand side of Eq. (56) can be exactly mapped
to the second-order effective action in Eq. (49) if the following
mapping conditions are satisfied for the correlation functions
of the noises:

ΠAB
11 (t, t ′) ≡ 〈ηA(t )ηB (t ′)〉{z,z} = h̄2LAB (t, t ′), (62)

ΠAB
31 (t, t ′) ≡ 〈νA(t )ηB (t ′)〉{z,z} = h̄2

2
KAB (t, t ′), (63)

Π̃AB
11 (τ, t ) ≡ 〈μA(τ )ηB (t )〉{z,z} = −h̄2Y

��
AB (τ, t ), (64)

Π
AB

11 (τ, τ ′) ≡ 〈μA(τ )μB (τ ′)〉{z,z} = h̄2LAB (τ, τ ′), (65)

ΠAB
33 (t, t ′) ≡ 〈νA(t )νB (t ′)〉{z,z} = 0,

Π̃AB
13 (τ, t ) ≡ 〈μA(τ )νB (t )〉{z,z} = 0. (66)

Other correlation functions are not required. Note that the

correlation functions ΠAB
11 (t, t ′) and Π

AB

11 (τ, τ ′) are automat-
ically symmetric, as required, due to the symmetry of the
objects LAB (t, t ′) and LAB (τ, τ ′), respectively [see Eqs. (50)
and (52)].

We see that the noises satisfy certain correlations, which
are related to the electronic Green’s functions. The correlation
functions above do not necessarily depend on the time differ-
ence; most likely they depend on both times. It is seen that the
correlation functions are complex, see Eqs. (50)–(55), which
justifies the choice we have made for the noises (61) to be
complex.

F. Nuclei-only (reduced) density matrix

Because of the established mapping, the contribution of the
second-order effective action can be replaced with an average
〈· · · 〉{z,z} of a product of three fully independent exponential
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terms:

exp

{
i

h̄

∫ t1

t0

dt
∑
A

(
ηA(t ) + νA(t )

2

)
uA(t )

}
exp

{
− i

h̄

∫ t1

t0

dt
∑
A

(
ηA(t ) − νA(t )

2

)
u′

A(t )

}
exp

{
− 1

h̄

∫ βh̄

0
dτ
∑
A

μA(τ )uA(τ )

}
.

Therefore, Eq. (30) can now be rewritten as the average over the Gaussian noises,

ρ̂ions(t1) = 〈ρ̂S
ions(t1)

〉
{z,z}, (67)

where the superscript S indicates that the density matrix operator ρ̂S
ions corresponds to a particular manifestation of the noises,

and

〈x1|ρ̂S
ions(t1)|x0〉 =

∫
dx2dx3〈x1|

∫
Dx(t ) eiS+

1 /h̄|x2〉 〈x2|Z
0
2

Z0

∫
Dx(τ ) e−S1/h̄|x3〉〈x3|

∫
Dx ′(t ) e−iS−

1 /h̄|x0〉 (68)

is its corresponding matrix element. It contains the following real- and imaginary-time actions acting on each track of γ ,

S+
1 =

∫ t1

t0

dt

{
L1(t ) +

∑
A

[
ih̄Y<

A (t ) +
(

ηA(t ) + νA(t )

2

)]
uA(t )

}
, (69)

S−
1 =

∫ t1

t0

dt

{
L1(t ) +

∑
A

[
ih̄Y<

A (t ) +
(

ηA(t ) − νA(t )

2

)]
u′

A(t )

}
, (70)

S1 =
∫ βh̄

0
dτ

{
L1(τ ) +

∑
A

[−ih̄Y
<

A (τ ) + μA(τ )]uA(τ )

}
, (71)

whereL1(t ) is the Lagrangian of an isolated nuclear subsystem,
L1(τ ) being its corresponding Euclidean counterpart; the
electron-nuclear coupling enters here via the first-order and
noise terms (expressions with the square brackets). The actions
above imply the following effective Hamiltonians acting on
each track of the contour γ :

Ĥ±(t ) = H1(t ) −
∑
A

[
ih̄Y<

A (t ) +
(

ηA(t ) ± νA(t )

2

)]
uA,

(72)

H (τ ) = H0
1 +

∑
A

[−ih̄Y
<

A (τ ) + μA(τ )]uA, (73)

where uA = xA − 〈xA〉t for the real-time Hamiltonians Ĥ±(t ),
while uA = xA − x0

A for the imaginary-time one, H (τ ).
In Eq. (68) the density matrix is factorized and that enables

one to write an exact expression for the reduced (nuclei-only)
density matrix operator (see Appendix A and Ref. [127]), for
the given manifestation of the noises, as follows:

ρ̂S
ions(t ) = Û+(t, t0)ρ̂S

0 Û−(t0, t ), (74)

where ρ̂S
0 ≡ ρ̂S

ions(t0) is the initial reduced density matrix (for
the same noises), to be discussed below, and two propagation
operators have been introduced on each part of the horizontal
track,

Û+(t, t0) = T̂+ exp

{
− i

h̄

∫ t

t0

dt ′ Ĥ+(t ′)
}
, (75)

Û−(t0, t ) = T̂− exp

{
i

h̄

∫ t

t0

dt ′ Ĥ−(t ′)
}
, (76)

which satisfy the following equations of motion:

ih̄∂t Û+(t, t0) = Ĥ+(t )Û+(t, t0), (77)

ih̄∂t Û−(t0, t ) = −Û−(t0, t )Ĥ−(t ). (78)

In the above equations T̂+ and T̂− are the corresponding
time-ordering operators on the upper (forward) and lower
(backward) tracks of the contour γ . Note that the density
matrix operator (74) is not normalized to unity at any time
t , TrN [ρ̂S

ions(t )] 	= 1, although the final density matrix (67) is,
TrN [ρ̂ions(t )] = 1 (the trace is understood here as being taken
over the Hilbert subspace of the nuclei subsystem).

G. Initial preparation of the system

In order to obtain the density matrix at real times, ρ̂S
ions(t )

(for the given manifestation of the noises), one has to first
determine the corresponding initial density matrix ρ̂S

0 . It can
be found as the result of the propagation of an auxiliary density
matrix ρ̂S (τ ) in imaginary time,

ρ̂S
0 ≡ ρ̂S (τ )|τ=βh̄, ρ̂S (τ ) = Z0

2

Z0
Û S (τ ) = ξÛS (τ ), (79)

where the imaginary-time propagator

Û S (τ ) = T exp

{
− 1

h̄

∫ τ

0
dτ ′ H (τ ′)

}
(80)

has been defined, Û S (0) = 1̂, that satisfies the following
equation of motion in imaginary time:

−h̄∂τ Û
S (τ ) = H (τ )Û S (τ ) (81)
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with T being the corresponding time-ordering operator on the
vertical (down) track of the contour γ . Of course, the operator
ρ̂S (τ ) is not normalized to unity for any τ .

At t = t0 we have the boundary condition,

ρ̂S
ions(t0) = ρ̂S

0 ≡ ρ̂S (τ )
∣∣
τ=βh̄

. (82)

Note that here ρ̂S
ions(t0) (or ρ̂S

0 ) is defined up to (yet
unknown) scaling factor ξ , Eq. (79). This factor can be obtained
by noticing that the exact initial density matrix of the nuclear
subsystem is obtained after averaging over the noises {μA(τ )},

ρ̂0 ≡ ρ̂ions(t0) = 〈ρ̂S
0

〉
{μA}. (83)

Note that correlations with the real-time noises are irrelevant
in the case of the initial equilibration. Then, a subsequent
normalization of the exact initial density matrix operator ρ̂0

should fix the scaling factor ξ .
Since the constant prefactor ξ = Z0

2/Z0 does not depend
on the noises (it only depends on the initial Hamiltonian) and
hence is the same for each evolution of ρ̂S

ions(t ), i.e., for any
particular manifestation of the noises, it can be determined
in practice by running a certain number of representative
imaginary-time evolutions as described below.

From this point on we shall be using a matrix representation
of the density matrix operators and related quantities by
employing an appropriate basis set {χi (x)} that depends on
all nuclear coordinates x. To obtain the numerical prefactor
ξ and the initial density matrix, it is convenient to propagate
numerically the matrix US (τ ) = (US

ij (τ )) associated with the
auxiliary operator Û S (τ ) (we shall remove the hat from
operators when indicating their matrix representation):

−h̄∂τU
S
ij (τ ) =

∑
k

H ik (τ )US
kj (τ ), (84)

where

Hik (τ ) = 〈χi |H0
1|χk〉 +

∑
A

[−ih̄Y
<

A (τ )

+μA(τ )]〈χi |uA|χk〉 (85)

is the matrix element of the Hamiltonian (73). One must use the
unit matrix as the initial condition in solving these equations,
US (τ = 0) = 1 = (δij ). Then the normalization factor is ob-
tained via ξ = 1/〈ξS

0 〉{μA}, where ξS
0 = tr[US (βh̄)] is the trace

of the auxiliary matrix corresponding to the given run. Note
that this calculation, if required, enables one also to determine
the matrix corresponding to the exact initial density matrix
ρ0 = (ρ0

ij ), where ρ0
ij = 〈χi |ρ̂0|χj 〉, as ρ0

ij = ξ 〈US
ij 〉{μA}; it is

now properly normalized, tr(ρ0) = 1.
Having obtained the normalization factor, the real-time

simulations of the matrix ρions(t ) = (〈χi |ρ̂ions(t )|χj 〉) can
be initiated. We first run the imaginary-time evolution to
τ = βh̄ starting from the auxiliary density matrix with ele-
ments ρS (0) = (ρS

ij (0)) = (ξδ
ij

). Using the obtained matrix
(ρS

ij (βh̄)) as the initial condition for ρS
ions(t0), one proceeds

with the real-time run. This procedure ensures that, at any
time t � t0, the density matrix 〈ρS

ions(t )〉{z,z}, sampled over
all noises, will be properly normalized. Sampling over all the

real-time runs, the total reduced density matrix, ρions(t ), at any
time t � t0 is obtained.

Alternatively, one may run many imaginary + real time
simulations from ρS (0) = (ρS

ij (0)) = (δ
ij

), and then determine
the normalization factor ξ by sampling the density matrix at
some particular time t � t0 and then normalizing. Then the
actual reduced density matrix ρions(t ) is obtained by scaling
the calculated density at all times by ξ .

In any case, the expectation value 〈Ô〉t of any nuclear-only
operator Ô is calculated by taking the trace of the product of
the matrices ρions(t ) (after normalization) and O = (Oij ),

〈Ô〉t =
∑
ij

[ρions(t )]ijOji = tr[ρions(t )O].

Equations (74) and (79) present the central result of this
paper. They perform an exact transition from the path integrals
of the reduced density matrix of nuclei to its operator form. The
path integrals were used as an intermediate device to introduce
the stochastic fields, and, by means of the real-imaginary time
Hubbard-Stratonovich transformation, to factorize the influ-
ence functional and hence to make the reverse transformation
to the operator representation possible.

H. Equations of motion for nuclei

Direct propagation of the observables in real time is also
possible. This may be numerically more preferable since the
density matrix scales quadratically with the number n of the
nuclear degrees of freedom, while the number of observables
will scale linearly with n. We assume in what follows that
the normalization prefactor ξ is known, and hence the initial
density matrix ρS

ions(t0), obtained by propagating in imaginary
time the auxiliary matrix ρS (τ ), is also known.

Having obtained an explicit expression for the operator of
the density matrix of the nuclei, Eq. (74), we can differentiate
it with respect to time. Using the equations of motion for the
propagation operators, Eqs. (77) and (78), one can easily obtain
an equation of motion for the reduced density matrix:

ih̄∂t ρ̂
S
ions(t ) = Ĥ+(t )ρ̂S

ions(t ) − ρ̂S
ions(t )Ĥ−(t )

= [H1(t ), ρ̂S
ions(t )

]
− −

∑
A

{
[ih̄Y<

A (t ) + ηA(t )]

×[xA, ρ̂S
ions(t )

]
− + νA(t )

2

[
uA(t ), ρ̂S

ions(t )
]
+

}
,

(86)

where uA(t ) = xA − 〈xA〉St is the displacement operator. The
equation of motion contains both commutators and anti-
commutators, indicated with the minus and plus subscripts,
respectively. As expected [127,128], the dynamical evolution
of the density matrix of an open system (the nuclei) contains
the anticommutator and hence is not Hamiltonian.

Correspondingly, an equation of motion for the expectation
value of an arbitrary nuclear-only operator Ô (for a particular
realization of the noises, indicated again by the superscript S)
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reads

ih̄∂t 〈Ô〉St
= 〈[Ô,H1(t )]−〉St −

∑
A

{
[ih̄Y<

A (t ) + ηA(t )]〈[Ô, xA]−〉St

+ νA(t )

2
〈[Ô, uA(t )]+〉St

}
, (87)

where 〈Ô〉St = TrN [ρ̂S
ions(t )Ô]. As one can see, this equation

contains only real-time noises; however, it is to be emphasized
that the real-time noises are correlated with the imaginary-
time noises used to generate the initial auxiliary density
matrix. In general, if transient effects (immediately after initial
equilibration) are of interest, these correlations must be taken
into account in calculating the real-time evolution.

Applying Eq. (87) to the unity operator, Ô = 1̂, one ob-
tains an equation for the time evolution of the trace ξS (t ) =
TrN [ρ̂S

ions(t )] of the density matrix for the given stochastic run:

∂tξ
S (t ) = − 1

ih̄

∑
A

νA(t )〈uA(t )〉St .

Since by definition uA(t ) = xA − 〈xA〉St , then 〈uA(t )〉St = 0.
This means that the trace of the density matrix remains constant
during each stochastic run in real time, being equal to its initial
value, ξS (t ) ≡ ξS

0 , at time t0. Of course, these values will be
different for different runs.

We shall now apply the above result to derive the time
evolution of the nuclear positions, when Ô → xA. In this case
we obtain

∂t 〈xA〉St = 1

mA

〈pA〉St − 1

ih̄

∑
B

νB (t )
[〈xAxB〉St −〈xA〉St 〈xB〉St

]
,

(88)

wherepA = −ih̄ ∂
∂xA

is the corresponding momentum operator.
Note that an expression within the square brackets is in fact a
fluctuation 〈uA(t )uB (t )〉St .

Putting Ô → pA in Eq. (87), we obtain a complimentary
equation of motion for the momentum:

∂t 〈pA〉St = −
〈
∂U1

∂xA

〉S
t

+
(

ih̄Y<
A (t ) + ηA(t ) + νA(t )

2

)
ξS

0

− 1

ih̄

∑
B

νB (t )
[〈xBpA〉St − 〈xB〉St 〈pA〉St

]
, (89)

where U1 is the potential energy of nuclei due to the nuclei-
nuclei interaction as well as due to a possible external field
acting directly on nuclei. The last term in the square brackets
contains another fluctuation, 〈uB (t )pA〉St .

To proceed, we have to find an appropriate expression for
the derivative of the potential U1. In principle, one can try
to write an equation of motion for the operator ∂U1/∂xA.
It depends only on the atomic positions and hence only its
commutator with momenta in the first term of Eq. (87) needs
to be considered, as well as the last (anticommutator) term in
the same equation. The equation obtained in this way would

also contain noises in its right-hand side:

∂t

〈
∂U1

∂xA

〉S
t

=
∑
B

1

mB

[
−ih̄

〈
∂3U1

∂xA∂2xB

〉S
t

+ 2

〈
∂2U1

∂xA∂xB

pB

〉S
t

]

− 1

ih̄

∑
B

νB (t )

[〈
∂U1

∂xA

xB

〉S
t

−
〈
∂U1

∂xA

〉S
t

〈xB〉St
]
.

As a way of illustration, let us also work out this term within
the harmonization approximation [125]. Indeed, expanding the
potential energy U1 in terms of nuclear displacements up to the
second order,

U1 
 U 0
1 +

∑
A

∂U1
(〈x〉St

)
∂〈xA〉St

uA(t )

+ 1

2

∑
AB

∂2U1
(〈x〉St

)
∂〈xA〉St ∂〈xB〉St

uA(t )uB (t ), (90)

we obtain, after differentiation and taking the average,〈
∂U1

∂xA

〉S
t


 ∂U1
(〈x〉St

)
∂〈xA〉St

. (91)

If we expandU1 to the third order in the displacements, which is
beyond the harmonization approximation, then the next term
would contain fluctuations 〈uB (t )uC (t )〉St . One can see that
within the harmonization approximation the average (91) can
easily be calculated directly from the mean atomic positions;
no need in this case to construct a specific equation of motion
for the average.

The obtained equations are not self-contained since they re-
quire knowledge of the time evolution of additional quantities
such as 〈xAxB〉St , 〈xApB〉St , 〈 ∂2U1

∂xA∂xB
〉St , and 〈 ∂U1

∂xA
xB〉St , and so on.

Writing the corresponding equations of motion for these quan-
tities results in the appearance of higher-order fluctuations. In
the end, one obtains an infinite set of hierarchical equations of
motion containing higher-order fluctuations and higher-order
derivatives of the potential U1. Correspondingly, in practice
one has to terminate the hierarchy at some point to obtain a
finite set of equations. This can be done by noticing that an
average 〈AB〉t of a product of two operators A and B can
always be written as a sum of their uncorrelated product and a
fluctuation:

〈AB〉t = 〈A〉t 〈B〉t + [〈AB〉t − 〈A〉t 〈B〉t ].
Hence, dropping the term with the fluctuation would express
the average of the product as a product of the averages of
simpler operators for which equations of motion may already
exist. In addition, to deal with the operator corresponding to
the derivatives of the potential energy U1, the latter can be
expanded in terms of atomic displacements up to an appropriate
order as in Eq. (90), which would yield only averages of a
product of positions and momenta operators to appear in the
equations of motion.

Note that solution of the above equations requires knowl-
edge of the initial (at t = t0) mean values of all operators
these equations contain. These are easily obtained, for each
stochastic run, at the end of the imaginary-time evolution via

〈Ô〉St=t0
= tr

[
ρS

ions(t0)O
]
. (92)
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III. DISCUSSION AND CONCLUSIONS

In this paper we have considered a coupled system of nuclei
and electrons. Either all or some of the nuclei are allowed to
move. The goal was to obtain equations of motion for the nuclei
taking full account of their interaction with the electrons and
the electronic relaxation. Our method is based on a few ideas
developed in Refs. [45,123]. However, at variance with the
mentioned work, in our method we do not invoke the partition
approximation as the nuclei and electrons are considered
fully coupled and thermalized at the initial time, which is
more physically sound. In addition to that, we demonstrated,
following the previous work [127], how one can get an exact
expression for the reduced density matrix from its path-integral
representation.

The derived equations of motion for the atomic positions
have a form of an infinite hierarchy of stochastic differential
equations, containing three types of noises ({ηA(t )}, {νA(t )},
and {μA(τ )}) in real and imaginary times for each nuclear
degree of freedom A that are considered explicitly (allowed to
move). The noises are correlated with each other via various
components of the electronic-only GF G. We do not specify
how this GF is to be calculated; this depends on the particular
problem at hand. However, our analysis seems to suggest that
no matter what kind of a system is actually considered, whether
it be a molecule under an electric pulse or a molecular junction
under a bias, the general form of the equations of motion for the
nuclei remains the same; it is universal. The particular problem
under consideration is imprinted on the GF G and hence on the
correlation functions of the noises to be considered to generate
them.

The calculation proceeds in the following way:
(1) During an imaginary-time evolution, Eqs. (84) and (85),

the system is initially prepared (thermalized) adopting a certain
nuclear basis set {χi (x)}. One starts from the unit auxiliary
matrix at τ = 0, i.e., (US

ij (0)) = 1, and then propagates it in
time up to τ = βh̄. The trace of the obtained auxiliary matrix,
ξS

0 , is stored. This calculation requires generating only one
set of noises, {μA(τ )}, that are correlated via Eq. (65), and
hence the knowledge of the electronic GF on the vertical track
of the contour is only needed, G<

MM (τ, τ ′) and G>
MM (τ, τ ′),

see Eqs. (46) and (54), as only they determine the function
LAB (τ, τ ′), Eq. (52), which enters the correlation of the
noise. The calculations are repeated the necessary number
of times for different noises, and the normalization prefactor,
ξ = 1/〈ξS

0 〉{μA}, is worked out. The sampling is stopped when ξ

is converged (does not change upon addition of new stochastic
runs).

(2) To propagate the nuclear system in real time, one has
to decide upon termination at a certain order of the hierarchy
of stochastic differential equations considered in Sec. II H by
setting any higher-order fluctuations and derivatives of the
nuclear potential energy to zero. In the case of the potential
energy this approximation simply corresponds to adopting a
Taylor expansion of U1 in terms of the nuclear displacements
uA = xA − 〈xA〉St terminated at a certain order, the harmoniza-
tion approximation where all terms after the quadratic ones are
set to zero being the simplest approximation. The equations
adopted contain a finite number of specific expectation values
〈Ô1〉St , 〈Ô2〉St , etc., to propagate in time.

(3) Then, using the adopted matrix representation, many
time evolutions are run. Each such evolution consists of an
imaginary run followed up by the real-time one.

(a) During the imaginary-time run, one starts with the
auxiliary matrix ρS (τ = 0) = (ξδij ) and then propagates it
up to τ = βh̄; then the value of the trace ξS

0 is stored and the
initial values of all expectation values 〈Ô1〉St0 , 〈Ô2〉St0 , etc.,
that are met in the equations of motion are also calculated
using Eq. (92).

(b) Then one has to propagate numerically those expec-
tation values in real time employing a small time step �t

using the derived equations of motion for them from the
terminated hierarchy. This calculation requires generating
two sets of noises, {ηA(t )} and {νA(t )}, which are to be corre-
lated not only between themselves, but also with the noises
{μA(τ )} generated for the initial preparation of the system
(point 3a above), for each particular run. The calculation
of the correlation functions (62)–(64) requires obtaining all
other components of the electronic GF G<, G>, G�, and
G� at progressive times; see Eqs. (50), (51), (53), and (55).
The GFs depend on the actual positions of the atoms, 〈xA〉St ,
as these modify the electronic Hamiltonian. Therefore, the
numerical solution of the equations of motion requires
recalculating the GFs, and hence the correlation functions
and the noises {ηA(t )} and {νA(t )}, at each consecutive
time step (or after a certain number of such steps). The
recalculation of the components of the GF (G<,G>,G�, and
G�) can be done by solving their corresponding equations
of motion (Kadanoff-Baym equations) numerically using,
e.g., the time-stepping technique; there is a significant
experience in this regard (see, e.g., the book [122], p. 472).

(4) The calculation is repeated with different realizations
of the noises, and the final result is obtained by sampling over
all such calculations, i.e.,

〈xA〉t = 〈〈xA〉St
〉
{ηA,νA,μA}, 〈pA〉t = 〈〈pA〉St

〉
{ηA,νA,μA},

and so on.
The described algorithm enables one not only to calculate

the mean atomic trajectory 〈xA〉t of atoms in the system, but
also their various fluctuations from the mean trajectory. This
naturally corresponds to the fact that nuclei in our method are
considered fully quantum-mechanically.

Basically, only two approximations have been made in our
theory: (i) the part of the Hamiltonian responsible for the
interaction between electrons and nuclei (in the full-electron
picture that would simply be the corresponding Coulomb
interaction term) was considered up to the second order with
respect to the displacements of the nuclei from either their
instantaneous positions given by the mean atomic trajectory
(real-time evolution) or from their equilibrium positions [initial
preparation corresponding to the imaginary-time evolution,
Eqs. (79) and (81)]; (ii) the electronic GF was expanded only up
to the first order with respect to such displacements, Eq. (37).
Both approximations are consistent with each other and corre-
spond to the harmonization picture. No other approximations
have been made.

Note that the harmonization approximation applied here
does not assume small electron-nuclear interaction; instead, it
adopts a view that only small fluctuations of atomic positions
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from either their equilibrium positions (initial preparation
of the system) or the mean trajectory (during the real-time
evolution) are essential. This implies an application of this
method to not too large temperatures. At the same time, by
considering time-variable mean positions around which the
electron-nuclear interaction is expanded, rather than fixed
such positions (such as equilibrium positions), our methods
effectively goes beyond the harmonic approximation and does
not assume that such interaction is weak.

In spirit, our method is similar to the CEID method
[109–113], which also results in an infinite hierarchy of
differential equations for various expectation values of nuclear
related operators. The main difference (apart from the deriva-
tion itself that is rather different) is in the way electrons and
their interaction with nuclei are accounted for. If in CEID the
electrons are accounted for approximately, the formulation via
NEGF developed here has a potential of being more general
and rigorous.

One may wonder how our method is related to general-
ized Langevin equation (GLE) methods, see, e.g., [125] and
references therein, which can also be used to consider atomic
trajectories of nuclei treated as an open system (in that case the
bath was considered a set of harmonic oscillators, however).
In the GLE method equations of motion for mean atomic
trajectories have the form of stochastic differential equations
with a time-integral term (friction), which corresponds to a
memory accumulated during preceding times. Formally, our
equations of motion have a very different form; for instance,
there are no memory time integrals at all in our equations. This
observation, however, may be too rushed: indeed, we have to
deal with more than one equation: there are in fact two sets. One
consists of the equations for atomic positions and momenta,
and the other, of other equations for various fluctuations and
derivatives of the potential U1. Therefore, solving formally for
all fluctuations from the second set (this solution would have
time-integral terms) and substituting the obtained expressions
into the equations for the positions and momenta of the first set,
Eqs. (88) and (89), an integral memory-like term would appear.
However, at this stage these are just rather general observations;
detailed execution of the above program is left for future
work.

The theoretical framework proposed in this paper is rather
general. Its application to a particular system is imprinted in the
nuclear-only potential energy U1 and in the electronic GF. The
form of the equations of motion for atoms is, however, univer-
sal. This method we hope will also contribute to the discussion
[31,39,45,63,65] of current induced forces although, when
the atomic nuclei are considered as quantum, the notion of
a classical “atomic force” is not strictly meaningful (quantum
nuclei were initially considered also in [45] although in the end
the authors went back to classical nuclei when writing a GLE
for them).

The other point is that our method is fully numerical: to
obtain the atomic trajectory (and their fluctuations) one has to
solve the equations of motion discussed above on a computer.
Therefore, this method may not only be used to perform actual
calculations on realistic systems; it can serve as a benchmark
for various approximate methods.

There are several important technical issues that require
further thorough investigation. The main fundamental point
is related to the level at which the hierarchy of equations of
motion can be safely terminated; surely this should depend
on the problem at hand. The other point is related to the
time step to choose in order to integrate the equations of
motion numerically; we expect that this time step may be
longer than the electronic (femtosecond) range, but might be
shorter than the timescale of atomic vibrations. Finally, and
most importantly, an efficient implementation of the method
must be developed. The mentioned points require detailed
investigations and are left for future work.

Finally, we note that our method can only be used specifi-
cally for obtaining atomic trajectories (or expectation values of
any nuclear-related operators). It cannot be used for calculating
expectation values associated with electronic operators such
as the electronic density or current if one is willing to remain
outside the adiabatic picture. In this most general case in order
to obtain expectation values of electronic operators along the
mean atomic trajectory as functions of time, other methods
need to be developed. These are presently being developed in
our laboratory. Note, however, that if the nuclear movement can
be considered as being relatively slow, the electronic-only GF
G obtained along the mean trajectory within our method can
be used for such a calculation. This would however correspond
to the adiabatic calculation in which no electron-nuclear
interaction is considered explicitly, but the atomic trajectories
change in time.

We hope that this work will stimulate further research on
atomic dynamics of general nonequilibrium systems, e.g., in
developing new wave packet methods based on the equation
of motion (86) for the reduced (ionic) density matrix.

APPENDIX A

Consider a general propagation operator

Ûγ (z, z′) = T̂γ exp

{
− i

h̄

∫ z

z′
H(z1)dz1

}
between any two points z, z′ ∈ γ on the contour shown in
Fig. 1. In practice, to derive Eq. (16), we shall only need to
consider three particular cases, where both times lie on the
same track: (i) both z = t and z′ = t ′ are on the upper track,
t > t ′; (ii) z = t and z′ = t ′ are on the lower track with z > z′
(meaning that t < t ′), and (iii) z = t−0 − iτ and z′ = t−0 are on
the vertical track with z > z′ (τ > 0). However, we proceed
with the derivation in the general case and will consider these
particular cases at the end of the calculation.

The propagator satisfies the semigroup property,
Ûγ (z, z′) = Ûγ (z, z1)Ûγ (z1, z

′), and also Ûγ (z, z) = 1.
We are interested in writing the propagator in the coordinate

representation with respect to the nuclear positions x0 and x

(from region 1). Let us split the part of the contour between
z′ and z by n “equidistant” points with the distance between
them |ε| ∼ 1/n. Note that the meaning of ε ≡ �z depends on
where �z is: it is equal to �t or −�t on the horizontal upper or
lower tracks, respectively, and to −i�τ on the vertical track.
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Then, writing the propagator as a product of propagators over
each interval, we obtain—by inserting the resolution of identity∫ |x〉〈x|dx = 1 in appropriate places—an expression

〈xf |Ûγ (z, z′)|x0〉 =
∫

dxn−1 · · · dx1〈xf |Ûγ (z, zn−1)|xn−1〉

× · · · 〈x1|Ûγ (z1, z0)|x0〉.
Here xj is a vector of a particular instance of all nuclei degrees
of freedom associated with the time zj on the contour, with
j = 0, . . . , n. We set zn = z and z0 = z′; also, x0 corresponds
to z′ and xf to z.

The Hamiltonian in the propagator H = (K1 + K2) +
[V1(x) + V12(x) + V2] consists of kinetic and potential energy
terms for each region, as well as of the interaction V12

between them. For small ε every elementary propagator can
be factorized,

Ûγ (zj+1, zj ) 
 e−iε(K1+K2 )/h̄e−iε(V1+V2+V12 )/h̄,

leading to

〈xj+1|Ûγ (zj+1, zj )|xj 〉 
 e−iεK2/h̄e−iε[V1(xj )+V2+V12(xj )]/h̄

×〈xj+1|e−iεK1/h̄|xj 〉.
The remaining matrix element is worked out in a usual way by
inserting twice the resolution of identity

∫ |p〉〈p|dp = 1 with
respect to the vector p of all nuclear momenta, and using the
fact that

〈x|p〉 =
(∏

A

1√
2πh̄

)
eipx/h̄

and

〈p|e−iεK1/h̄
∣∣p′〉 = δ(p − p′)e−iK1(p)ε/h̄.

We obtain

〈xj+1|Ûγ (zj+1, zj )|xj 〉 =
[∏

A

(
mA

2πh̄iε

)1/2
]

exp

{
iε

h̄

[∑
A

mA

2

(
xA,j+1 − xA,j

ε

)2

− V1
(
xj

)]}

× exp

{
− iε

h̄
K2

}
exp

{
− iε

h̄

[
V12
(
xj

)+ V2
]}

,

where use has been made of the fact that the positions and momenta of region 1 commute with those of region 2.
Correspondingly, the coordinate representation of the propagator is a multiple integral of a product of the above type of terms

calculated for different positions xj :

〈xf |Ûγ (z, z′)|x0〉 

∫

dxn−1 · · · dx1

[∏
A

(
mA

2πh̄iε

)n/2
]

exp

⎧⎨⎩ iε

h̄

n−1∑
j=0

[∑
A

mA

2

(
xA,j+1 − xA,j

ε

)2

− V1(xj )

]⎫⎬⎭
×e−iK2ε/h̄e−i[V12(xn−1 )+V2]ε/h̄ · · · e−iK2ε/h̄e−i[V12(xj )+V2]ε/h̄ · · · e−iK2ε/h̄e−i[V12(x0 )+V2]ε/h̄. (A1)

The expression on the first line on the right-hand side in the
n → ∞ limit (and hence when |ε| → 0) becomes the path
integral associated with the action

S1[x(z)] =
∫ z

z′
L1(z1)dz1 =

∫ z

z′
[K1 − V1(z1)]dz1,

where the atomic velocities were defined with respect to the
“time” ε ≡ �z on the contour. Next, on the second line in
Eq. (A1) we have an ordered product of exponential operators,
with times on γ increasing from right to left from z′ to z. In
the n → ∞ limit these could then be written as a time-ordered
exponent

Û2(z, z′) = T̂γ exp

{
− i

h̄

∫ z

z′
H2(z1)dz1

}
,

where H2(z) = K2 + V2 + V12(z) and the integral is taken
between z′ and z on the contour. Therefore, we have just proved
an exact identity

〈xf |Ûγ (z, z′)|x0〉 =
∫ x(z)=xf

x(z′ )=x0

Dx(z)eiS1[x(z)]/h̄Û2(z, z′).

Clearly, this result is valid for the times z and z′ lying
anywhere on γ . Subtleties associated with factorization of

the exponential operators in the n → ∞ limit are rigorously
discussed, e.g., in Ref. [129].

Consider now the three cases we are actually interested in.
(i) Both times lie on the upper track: z = t1 and z′ = t+0 .

Then, ε = (t1 − t0)/n > 0, and we recover Eqs. (7) and (8).
(ii) Both times lie on the lower track: z = t−0 and z′ = t1.

Then, ε = (t0 − t1)/n < 0, and we obtain the reverse-time
propagator:

〈x0|Û (t0, t1)|x1〉 =
∫ x ′(t0 )=x0

x ′(t1 )=x1

Dx ′(t )e−iS1[x ′(t )]/h̄Û2(t0, t1),

where

Û2(t0, t1) = T̂− exp

{
i

h̄

∫ t1

t0

[H2(t ′) + H12(x ′(t ′))]dt ′
}

≡ Û
†
2 (t1, t0)

is the corresponding electronic propagator.
(iii) Both times lie on the vertical track: z = t−0 − iτ

and z′ = t−0 . In this case ε = −iτ/n = −i�τ , the atomic
velocity �x/�z = i�x/�τ acquires an extra i, and hence
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the following identity results:

〈x|Ûγ (τ, 0)|x0〉 =
∫ x(τ )=x

x(0)=x0

Dx(τ )e−S0
1 [x(τ )]/h̄Û2(τ, 0),

where S0
1 is the Euclidean action, and

Û2(τ, 0) = T exp

{
− 1

h̄

∫ τ

0

[
H0

2 + H0
12(x(τ ′))

]
dτ ′
}

is the corresponding imaginary-time propagator. In particular,
when the initial Hamiltonian does not depend on the imagi-
nary time and τ ≡ βh̄, the representation of the exponential
operator e−βH0

is recovered, Eqs. (13) and (14).
The obtained expressions enable one, when read from left

to right, to replace the matrix elements of the propagation
operators with appropriate partial path integrals over nuclear
trajectories. This was used in Sec. II B. However, if read from
right to left, the same identities can be used to replace path
integrals with the corresponding matrix elements of time-
ordered propagators. In fact, this has been done in Sec. II F
when going from Eqs. (68) to (80), albeit for a much simpler
case when only region 1 was present and hence there were no
operators Û2 anymore.

APPENDIX B

Here we shall consider the case when region C that includes
electron orbitals interacting with nuclear displacements does
not contain all orbitals of the whole system. In particular, this
case may correspond to a molecule on a surface, when the
electron-nuclear interaction is included only for the molecule,
or a case of a molecular junction, where this interaction is only
considered explicitly for the central region between the leads.

To illustrate the general idea, we shall consider a molecular
junction with the central region (region C) to which electrodes
(leads) are attached. We shall adopt the simplest one-particle
approximation for the leads; i.e., the following electronic
Hamiltonian H2 for all times t � t0 will be assumed:

H2(z) =
∑
αk

εαk (z)c†αkcαk +
∑
nm

Tnm(z)c†ncm

+
∑

n

∑
αk

[Tαk,n(z)c†ncαk + H.c.] + VC, (B1)

where the first term describes the leads; the second, the central
system; and the third, interaction of the latter with the leads.
The last term corresponds to electronic correlation effects
which are only considered nonzero in the central region C; i.e.,
VC only contains operators from this region. Multiple leads are
assumed here designated by α. The index k numbers states of
a particular lead.

The matrix elements in the Hamiltonian depend on z due
to the following reasons. First, the dependence on z of εαk (z)
comes from the fact that a time-dependent bias may be applied
in the junction to the leads; i.e., each lead may be subjected
to a particular potential φα (t ) for z lying on the horizontal
tracks of γ ; on the vertical track, corresponding to the initial
preparation of the system, there is no bias applied. Second, the
z dependence of the central region related matrix elements,
Tnm(z) and Tαk,n(z) = T ∗

n,αk (z), is entirely due to the fact that
nuclei positions depend on z. Namely, on the horizontal tracks

nuclei are clamped at 〈xA〉t (and hence evolve in time), while
their positions are set to the constant values x0

A on the vertical
track.

The electronic Hamiltonian (B1) can conveniently be
rewritten in a simplified form:

H2(z) =
∑
ab

hab(z)c†acb + VC, (B2)

where the summation is run over all orbitals of the entire
system, and

hαk,α′k′ (z) = δαα′

{
δkk′[εαk + φα (t )], if z ∈ horizontal track,

δkk′ (εαk − μ), if z ∈ vertical track,

(B3)

hαk,n(z) =
{

Tαk,n(t ), if z ∈ horizontal track,

T 0
αk,n, if z ∈ vertical track,

(B4)

hnm(z) =
{
Tnm(t ), if z ∈ horizontal track,

T 0
nm − μδnm, if z ∈ vertical track.

(B5)

Here we included explicitly the electronic chemical potential
for the Hamiltonian on the vertical track in accordance with
the initial density matrix (12). As was mentioned, the time
dependence of the matrix elements Tnm(t ) and Tαk,n(t ) =
T ∗

n,αk (t ) on the horizontal tracks comes from the nuclear
positions which are chosen as 〈xA〉t .

Correspondingly, the whole Hamiltonian governing the
evolution of the electronic GF is, therefore,

Hλ
2 (z) = H2(z) + Hλ

12(z) =
∑
ab

[hab(z)+λVab(z)]c†acb+VC.

(B6)

Hence, the GF introduced above satisfies the usual equations
of motion based on this Hamiltonian:

ih̄∂zG
λ
ab(z, z′)

= δabδ(z − z′) +
∑

c

[hac(z) + λVac(z)]Gλ
cb(z, z′)

+
∫

γ

dz1

∑
d∈C

�̃ad (z, z1)Gλ
db(z1, z

′), (B7)

−ih̄∂z′Gλ
ab(z, z′)

= δabδ(z − z′) +
∑

c

Gλ
ac(z, z′)[hcb(z′) + λVcb(z′)]

+
∫

γ

dz1

∑
d∈C

Gλ
ad (z, z1)�̃db(z1, z

′), (B8)

where

δ(z − z′) = d

dz
θzz′ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
δ(t − t ′), if z, z′ ∈ upper track,

−δ(t − t ′), if z, z′ ∈ lower track,

iδ(τ − τ ′), if z, z′ ∈ vertical track,

0, in all other cases,

(B9)
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which satisfies the usual filtering theorem on the contour γ for
any “good” function f (z):∫

γ

f (z′)δ(z − z′)dz′ = f (z),

and we have introduced an electronic self-energy matrix
�̃CC (z, z′) defined only for orbitals in the central region. Note
that the last term in Eq. (B7) is only kept for a ∈ C, while in
Eq. (B8) it survives for b ∈ C.

Writing Eq. (B7) in the matrix form for the blocks CC and
αC, solving for Gλ

αC , and substituting it into the equation for
Gλ

CC , one obtains using the matrix notations

ih̄∂zGλ
CC (z, z′) = 1Cδ

(
z − z′)+[hC (z) + λVC (z)]Gλ

CC (z, z′)

+
∫

γ

dz1 �CC (z, z1)Gλ
CC (z1, z

′), (B10)

where �CC (z, z1) = �CC (z, z1) + �̃CC (z, z1) is the com-
posed self-energy, containing, apart from the correlation com-
ponent, also the self-energy of the electrodes [122]:

ΣCC (z, z′) =
∑

α

Σα
CC (z, z′) =

∑
α

hCα (z)gα (z, z′)hαC (z′).

(B11)

Here gα (z, z′) is the GF of the isolated lead α associated with
the Hamiltonian hα (z). We have assumed that the leads do
not directly interact. It is seen that the leads and correlation
self-energies simply add up.

In the same way one can define the “unperturbed”
GF, G(z, z′), defined without the electron-nuclear coupling
(Sec. II C); it satisfies

ih̄∂zGCC (z, z′) = 1Cδ(z − z′) + hC (z)GCC (z, z′)

+
∫

γ

dz1 �CC (z, z1)GCC (z1, z
′). (B12)

It is essential that G(z, z′) is defined by the matrix h(z),
which is the same on both horizontal tracks of γ . Note that,
because of the time dependence of the nuclear positions on
the horizontal tracks given by 〈xA〉t , the calculation of G(z, z′)
might be nontrivial. If such a dependence is ignored (and, e.g.,
replaced by the equilibrium positions x0

A), then this GF can be
calculated explicitly, e.g., in the wideband approximation and
in the absence of electronic correlation [124,130,131].

The two functions Gλ
CC and GCC are related by a Dyson-

type equation. To derive it, we rewrite Eqs. (B10) and (B12)
in a symbolic form to keep simple notations:

(ih̄∂z − hz)Gλ = 1δ + λVGλ + �Gλ, (B13)

(ih̄∂z − hz)G = 1δ + �G. (B14)

Here convolutions are assumed in a product of any two-time
quantities, e.g., in �Gλ. If we introduce the GF for the central
region, gC (z, z′) (to be denoted simply by g in our symbolic
notations), which satisfies (ih̄∂z − hz)g= 1δ, then the two
equations transform into

Gλ = g + λgVGλ + g�Gλ,

G = g + g�G.

From the second equation g = (1 − g�)G, which, when used
in the first, gives the required relationship,

Gλ = G + λGVGλ,

which has exactly the form of the Dyson equation (36).
Hence, in any case when the region C does not cover the

whole system, the contribution of the rest of the system that
does not interact directly with nuclear displacements in region
1 manifests itself in the properly defined self-energy which
is simply added to the correlation self-energy of region C.
Therefore, having this in mind, one can use only the block CC

of the Green’s functions in the actual calculations.

APPENDIX C

Calculation of the contour integral in Eq. (37) requires a generalization of the Langreth rules [122] for the case when the
Hamiltonian on different horizontal tracks is different; also there is an extra single-variable function in the convolution, V(z).
Only the lesser component is needed for our purposes here; however, we have to consider the cases of z being on the upper, lower,
and vertical tracks.

Therefore, let us consider an integral over the contour:

C(z, z′) =
∫

γ

dz1 A(z, z1)V (z1)B(z1, z
′). (C1)

Performing the integration explicitly over each of the three tracks on γ, the following identities can be established:

C<
++(t, t ′) = −i

∫ βh̄

0
dτ A+MVMBM+ +

∫ t1

t0

dt (Ar
++V+B<

++ + A<
++V+Ba

++ + A<
++V+B>

++ − A+−V−B−+), (C2)

C<
−−(t, t ′) = −i

∫ βh̄

0
dτ A−MVMBM− +

∫ t1

t0

dt (Ar
−−V−B<

−− + A<
−−V−Ba

−− + A−+V+B+− − A>
−−V−B<

−−), (C3)

C<
MM (τ, τ ′) =

∫ t1

t0

dt (AM+V+B+M − AM−V−B−M ) − i

∫ βh̄

0
dτ1
(
Ar

MMVMB<
MM + A<

MMVMBa
MM + A<

MMVMB>
MM

)
. (C4)

Above, for simplicity of notations, the arguments of the functions are omitted; that should not cause any confusion as all integrals
correspond to convolutions. Also, note that the retarded and advanced components can only be introduced when both times are
positioned on the same track (either forward, backward, or vertical).
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The usual Langreth rules [122] are recognized here when
there is no difference between the two horizontal tracks and
the function V (z) ≡ 1. For instance, consider the first formula
(C2): in this case there is no difference between A+− = A< and

A<
++, V+ = V− ≡ 1 and also, B>

++ = B−+, so that the third and
the fourth contributions in the real-time integral cancel out, and
we arrive at the usual rules for the lesser function. Also, both
expressions (C2) and (C3) give identical results.
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