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It has become widely accepted that particles with long-range hopping do not undergo Anderson localization.
However, several recent studies demonstrated localization of particles with long-range hopping. In particular, it
was recently shown that the effect of long-range hopping in one-dimensional (1D) lattices can be mitigated by
cooperative shielding, which makes the system behave effectively as one with short-range hopping. Here, we
show that cooperative shielding, demonstrated previously for 1D lattices, extends to 3D lattices with isotropic
long-range r−α hopping, but not to 3D cubic lattices with anisotropic long-range hopping. The specific anisotropy
we consider corresponds to the interaction between dipoles aligned along one of the principal axes of the lattice.
We demonstrate the presence of localization in 3D lattices with uniform (α = 0) isotropic long-range hopping
and the absence of localization with uniform anisotropic long-range hopping by using the scaling behavior of
eigenstate participation ratios. We use the scaling behavior of participation ratios and energy-level statistics to
show that the existence of delocalized, extended nonergodic, or localized states in the presence of disorder depends
on both the exponents α and the anisotropy of the long-range hopping amplitudes.
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I. INTRODUCTION

There is increasing interest in disordered lattice models with
long-range hopping, defined as hopping with the amplitude
t ∝ 1/rα , where α � d and d is the dimension of the lattice.
The particular case of α = 3 is exhibited by excitons in
molecular crystals with topological disorder [1], organic semi-
conductors with impurities [2], diluted ensembles of atoms and
molecules trapped in optical lattices [3–8], J aggregates [9],
photosynthetic complexes [10,11], and ensembles of Rydberg
atoms [12–14].

The effect of long-range hopping on Anderson localization
was considered already in the original paper of Anderson [15].
Anderson concluded, via a locator expansion, that particles
with long-range hopping do not localize [15]. This problem
was later revisited by Levitov who examined the resonance
behavior of particles with dipolar hopping in three-dimensional
(3D) disordered lattices and concluded that they delocalize
because the number of resonances diverges with the lattice
size [16–18]. The arguments of Levitov have recently been
applied to study many-body localization of particles with long-
range interactions [19]. It has thus become widely accepted
that noninteracting particles with long-range hopping (e.g., t ∝
1/r in 1D lattices or t ∝ 1/r3 in 3D lattices) do not undergo
Anderson localization.

The generality of this conclusion has, however, been ques-
tioned by several recent authors. For example, Deng et al. [20]
have used exact diagonalization and analysis of the multifractal
spectrum to demonstrate algebraic localization for a particle
with long-range hopping in a 1D system with off-diagonal
disorder. Nandkishore and Sondhi have shown using field-
theory techniques that many-body systems with long-range
interactions in one and two dimensions can localize and
hypothesized that the same is true in three dimensions [21].
Nandkishore and Sondhi even go so far as to question the
validity of the locator expansion and resonance arguments for
systems with long-range hopping.

Furthermore, Santos et al. [22] and Celardo et al. [23] have
discovered a phenomenon, cooperative shielding, that causes
effective short-range behavior in a system with long-range
interactions or hopping. Cooperative shielding precludes the
resonance arguments used to demonstrate delocalization in
the presence of on-site disorder and allows localization to take
place. Celardo et al. [23] have in particular demonstrated local-
ization in one dimension for particles with long-range hopping.
Ossipov has also demonstrated localization of particles with
uniform hopping on a d simplex, via a similar mechanism [24].

In an earlier paper, Burin and Maksimov [25] predicted
the localization of particles with long-range hopping via a
renormalization procedure. The authors suggested that their
conclusion was different from that of Levitov [16] because of
the different symmetries of the hopping amplitudes considered:
Levitov explored the system with anisotropic dipolar hopping,
while Burin and Maksimov considered isotropic long-range
hopping. All of the more recent papers demonstrating the
localization of particles with long-range hopping mentioned
above have considered isotropic hopping. However, the effect
of anisotropy of long-range hopping in high-dimensional
lattices has not been explicitly examined.

Here, we show that the cooperative shielding demonstrated
previously for 1D lattices extends to particles with isotropic
long-range hopping in 3D cubic lattices. However, this cooper-
ative shielding does not extend to particles in 3D cubic lattices
with the anisotropic dipolar hopping that corresponds to the
dipole-dipole interaction between dipoles aligned along one
of the lattice axes. We also provide numerical and analytical
evidence for the localization of particles with long-range
isotropic hopping in 3D lattices.

The remainder of the article is organized as follows: Follow-
ing the description of the models, we discuss the phenomenon
of cooperative shielding in 3D systems. We analytically diago-
nalize the Hamiltonian with isotropic hopping t ∝ 1/rα for 3D
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cubic lattices for arbitrary α and illustrate that it exhibits the
same energy-level structure as that of a 1D system with coop-
erative shielding. We find this to be the case for both periodic
and open boundary conditions. The presence of cooperative
shielding suggests the presence of localization. Contrastingly,
we find no clear evidence for cooperative shielding at most
values of α for anisotropic hopping, for either periodic or open
boundary conditions.

We use the scaling behavior of participation ratios to demon-
strate the existence of localized states for isotropic hopping
when α = 0 (i.e., uniform infinite-range hopping), even for
weak disorder. We show that the anisotropic hopping case we
consider contains only nonergodic extended and delocalized
states, even for strong disorder. This provides further evidence
that cooperative shielding does not exist for the anisotropic
hopping considered here, as cooperative shielding is expected
to be strongest when α = 0.

We then examine finite α, and show that anisotropic
hopping again only supports delocalized and nonergodic
extended states for α = 1. Interestingly, for anisotropic
hopping with α = 3 (i.e., dipolar interactions), we observe
no delocalized states given sufficient disorder. Whether the
states are localized or nonergodic extended is indeterminate,
however. The isotropic hopping case supports delocalized
states and either nonergodic extended or localized states (or
both) for α = 1 and 3.

Finally, we use the scaling behavior of energy-level statistics
to investigate the physically important case of α = 3. Our
results indicate the presence of, at least, some localized states
near zero energy for isotropic hopping, while the anisotropic
case is inconclusive. For α = 1 and isotropic hopping, energy-
level statistics also indicate the presence of, at least, some
localized states near zero energy. To connect with currently
attainable experiments, we also examine the phase diagram
for both diagonal and binary off-diagonal disorder (as per the
quantum percolation model) when α = 3. This provides a basic
map that can guide experiments with relevant finite systems,
such as polar molecules on an optical lattice [7].

II. MODELS

We consider a single particle in a disordered and diluted
cubic lattice with N sites per dimension, with the hopping
amplitude ∝ 1/rα , where α sets the hopping range. The
angular dependence of the hopping amplitude is described
below. The Hamiltonian we consider has the following general
structure:

Ĥ =
∑

i

ωi ĉ
†
i ĉi +

∑
i

∑
j �=i

tij ĉ
†
i ĉj , (1)

where the operator ĉi removes the particle from site i, ωi is
the energy of the particle in site i, and tij is the amplitude for
particle tunneling from site j to site i. We introduce disorder by
randomizing both the values of ωi and tij , which makes Eq. (1)
relevant for both disordered lattices and amorphous systems.

We randomize the values ωi ∈ [−ω/2, ω/2] by drawing
them from a uniform distribution. We define the disorder
strength as

W ≡ ω

tmax
, (2)

where tmax ≡ max |tij |, in order to allow a direct comparison
between the isotropic and anisotropic models defined below
by normalizing the disorder amplitude to the largest hopping
amplitude present.

We randomize the values tij as in the site percolation model.
To do this, we define tij = dij τij , where dij is the dilution
parameter, and divide the lattice sites into two subsets P and
Q, with pN3 sites in the P subset and (1 − p)N3 in the Q

subset. For a given value p, the lattice sites are assigned to the
subsets at random. The dilution parameter is then defined as

dij =
{

1, i ∈ P and j ∈ P

0, i ∈ Q and/or j ∈ Q
(3)

With tij and dij thus defined, the Hamiltonian (1) describes
a generic particle in a disordered, diluted lattice with pN3

sites. The angular dependence of the hopping amplitude is
determined by the magnitudes of τij . We consider two types
of models for τij .

A. Isotropic hopping

For the case of isotropic hopping, we define

τ I
ij = γ

|r ij |α , (4)

where r ij = r i − rj is the distance between sites i and j in the
3D lattice. With α > 3 the hopping is short range, with α � 3,
long range. The value of γ is chosen such that τ I

ij ≡ t̃ = 1
for nearest-neighbor (NN) sites. Thus, tmax is 1 for isotropic
hopping.

B. Anisotropic hopping

We choose the tensorial form of the anisotropic hopping
to be the same as the dipole-dipole interaction between polar
molecules subjected to an electric field along the z direction;
see, for example, Ref. [26]:

τA
ij = γ (1 − 3 cos2 θij )

|r ij |α , (5)

where θij is the angle between r ij and the z axis. We choose
γ as defined above, which makes τA

ij = 1 for NN sites in the
x-y plane and τA

ij = −2 for NN sites along the z axis. Thus,
tmax = 2 for the anisotropic hopping considered here.

Note that, for the remainder of this paper, the term
anisotropic refers specifically to the form in Eq. (5), where
θij is the angle between r ij and the z axis, with the z axis
chosen to lie along one of the principal axes of the cubic lattice.
Changing the alignment of the dipoles to be along another
direction (i.e., changing the direction of the electric field) may
result in different localization behavior. Furthermore, many
other forms of anisotropy are possible (i.e., quadrupolarlike,
octopolarlike, etc.), but are beyond the scope of this paper.

In this paper, the system parameters of interest are p, W ,
N , α, and whether the hopping is iso- or anisotropic. For all
of the numerical results, we perform exact diagonalization
to obtain all of the eigenvalues and eigenstates of the dense
Hamiltonian matrix. These eigenvalues and eigenstates are
needed to perform the energy-level statistics without any
approximations and to examine the participation ratios across
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the entire spectrum. This restricts the size of the system to
be smaller than what can be achieved with state-of-the-art
Jacobi-Davidson algorithms, which only obtain a small subset
of the total number of eigenvalues and eigenstates [27,28].
However, we are still able to observe scaling behavior for some
properties.

III. COOPERATIVE SHIELDING IN THREE DIMENSIONS

Recent work has shown the presence of cooperative shield-
ing in 1D single- and many-body systems with long-range
hopping or interactions [22,23]. Cooperative shielding allows
the dynamics of a Hamiltonian with long-range features to be
described by an effective short-range Hamiltonian for a finite
time, i.e., the dynamics are effectively “shielded” from the
long-range components for a finite time.

This phenomenon occurs because of the formation of short-
and long-range subspaces in the Hilbert space, in turn caused
by the long-range terms in the Hamiltonian. In many instances,
the short-range subspaces have many more states than, and are
separated by an energy gap from, the long-range subspace.
When this gap increases with the system size, it increases the
“shielding” time and makes the shielding cooperative. In the
infinite size limit, the dynamics of a wave function initially
in the short-range subspace are then completely governed by
the effective short-range Hamiltonian. Cooperative shielding
allows for the localization of particles with long-range hop-
ping [23] and provides an explanation as to why localization
is observed in various systems with long-range hopping or
interactions [20,21,25].

Here, we show that the energy-level structure and gap
behavior conducive to cooperative shielding in one dimension
are also present in 3D cubic lattices, if the long-range hopping
is isotropic. If the hopping is of the anisotropic form (5), the
energy-level structure becomes different and does not exhibit
well-separated Hilbert subspaces, precluding the cooperative
shielding described in [23].

A. Isotropic hopping

To illustrate cooperative shielding in three dimensions, we
first diagonalize analytically the Hamiltonian for an ideal
lattice with hopping of arbitrary range. The model with the
isotropic hopping (4) can be written, in the absence of disorder
and with periodic boundary conditions, as

Ĥ I
α =

N−1
2∑

i,j,h,l,m,n=−(N−1)/2

ζ

rα
(1 − δilδjmδhn)ĉ†lmnĉijh, (6)

where ζ > 0 is the hopping parameter, the lattice side length N

is assumed odd for simplicity, ĉijh is the annihilation operator

on site (i, j, h), r =
√

(l − i)2 + (m − j )2 + (n − h)2 is the
unitless distance between sites, and the term (1−δil δjmδhn )

rα is
understood to be zero when i = l, j = m, and h = n (i.e.,
the particle can hop anywhere except to its original site). Note
that ζ > 0 implies a negative effective mass, such as is seen
for holes in a semiconductor. Given that we examine only
noninteracting particles, whether the effective mass is positive
or negative does not change the final results, except for where
one would expect to find the relevant shielding gap (i.e., at the
top or bottom of the spectrum).

The case of α = 0 produces the uniform, isotropic Hamil-
tonian Ĥ I

0 , which can be diagonalized in the momentum basis
to yield

Ĥ I
0 = ζN3ĉ

†
000k

ĉ000k
− ζ

∑
k1k2k3

ĉ
†
k1k2k3

ĉk1k2k3 , (7)

where the subscript of ĉ000k
means k1 = k2 = k3 = 0. The

energy gap between this specific state |000k〉 and the (N3 − 1)-
fold degenerate states |k1k2k3〉, with one or more of k1, k2, k3

not equal to zero, is thus � = ζN3 for the uniform, isotropic
Hamiltonian. This is the energy gap responsible for cooperative
shielding. In the 1D case [23], this gap is � = ζN , which
allows us to surmise that in the 2D case, � = ζN2, and that for
any lattice geometry or dimension, � = ζM , where M is the
total number of sites. This occurs because the Hamiltonian (6)
with α = 0 for an arbitrary lattice with M sites is proportional
to the adjacency matrix of a complete graph with M nodes. The
spectrum of this adjacency matrix is known [29] to contain one
(M − 1)-fold degenerate eigenvalue and one nondegenerate
eigenvalue, which are separated by a gap proportional to M .
This further implies that all lattice dimensions and geometries
are equivalent for a particle with uniform isotropic hopping. In
agreement with this, the above energy-level structure (7) has
been observed by Ossipov, who studied the Anderson model
on the d simplex [24].

The limiting case of α → ∞ produces the tight-binding
model, also diagonal in momentum space. Given that the
eigenstates of these two limits are momentum states and that
the 1

rα factor does not break any additional symmetries, the
eigenstates of Ĥ I

α with finite α must also be momentum states.
Evaluating the matrix elements of Ĥ I

α in momentum space,
we find

EI
k1,k2,k3

(α) = 〈k1k2k3|Ĥ I
α |k1k2k3〉

= 2ζ

N−1∑
l=1

(
1 − l

N

)
cos

( 2πk1l
N

) + cos
( 2πk2l

N

) + cos
( 2πk3l

N

)
lα

+ 4ζ

N−1∑
l=1

N−1∑
m=1

(
1 − l

N

)(
1 − m

N

)cos
( 2πk1l

N

)
cos

( 2πk2m
N

)+cos
( 2πk2l

N

)
cos

( 2πk3m
N

)+cos
( 2πk3l

N

)
cos

( 2πk1m
N

)
(l2 + m2)α/2

+ 8ζ

N−1∑
l=1

N−1∑
m=1

N−1∑
n=1

(
1 − l

N

)(
1 − m

N

)(
1 − n

N

)cos
( 2πk1l

N

)
cos

( 2πk2m
N

)
cos

( 2πk3n
N

)
(l2 + m2 + n2)α/2

, (8)

014204-3



J. T. CANTIN, T. XU, AND R. V. KREMS PHYSICAL REVIEW B 98, 014204 (2018)

where ki ∈ {k|k ∈ Z ∧ k ∈ [−N−1
2 , N−1

2 ]} refers to the com-
ponent of the reciprocal-lattice vector in the direction i, such
that the crystal momentum is 2πki/Na,a is the lattice constant,
and |k1k2k3〉 is a momentum eigenstate.

It can be shown that Eq. (8) reduces to 〈k1k2k3|Ĥ I
0 |k1k2k3〉,

see Eq. (7), in the limit where α → 0 and to the tight-binding
model result in the limit where α → ∞ and N → ∞.

The gap for generic α can be defined as

�α = EI
0,0,0(α) − EI

0,0,1(α). (9)

Given Eq. (8) and ζ > 0, it is clear that EI
0,0,0(α) is the largest

eigenvalue and that the next highest energy level has states
with a single unit of momentum. This energy level is sixfold
degenerate (i.e., EI

0,0,±1 = EI
0,±1,0 = EI

±1,0,0,∀α), as can be
seen from the symmetries of EI

k1,k2,k3
(α) in ki ; the choice of

EI
0,0,1(α) in the definition of �α is arbitrary. Also, since ζ > 0,

EI
0,0,0 � EI

0,0,1, and �α � 0.
For comparison, in one dimension, the Hamiltonian is given

by

Ĥ I,1D
α =

N−1
2∑

i,j=− N−1
2

ζ

|i − j |α (1 − δij )ĉ†i ĉj . (10)

The corresponding eigenvalues are

E
I,1D
k (α) = 〈k|Ĥ I,1D

α |k〉 = 2ζ

N−1∑
l=1

(
1 − l

N

)
cos

(
2πkl
N

)
lα

,

(11)

where k ∈ {k|k ∈ Z ∧ k ∈ [−N−1
2 , N−1

2 ]} is the component
of the reciprocal-lattice vector. A corresponding gap can be
defined as �1D

α = E
I,1D
0 (α) − E

I,1D
1 (α) and is shown in Fig. 1

(A). This 1D Hamiltonian (10) has been shown to exhibit
cooperative shielding in Ref. [23].

Figure 1 shows �α as a function of α for various system
sizes. Fig. 1(a) plots the results for the 1D lattice. Panel
(b) shows that, for a 3D lattice with isotropic hopping, the
dependence of the gap separating the long-range and short-
range subspaces on α is qualitatively the same as in one
dimension, except that the gap becomes independent of the
system size at α = 3, instead of α = 1. We have confirmed
by numerical calculations that this behavior is the same for
even and odd N and with open boundary conditions. Based
on the 1D and 3D results of Fig. 1, it should be expected that
a 2D system with isotropic hopping likely has a similar gap
behavior, exhibiting the transition at α = 2.

The Anderson transition is known to exist in three dimen-
sions for α > 3 [15], but questions arise for the case with
α � 3. Figure 1(b) shows that cooperative shielding can be
expected for isotropic hopping with α < 3, suggesting that
the Anderson transition could also occur in this region. As
a side note, the localization may not be exponential, as seen
in [20].

Note that the curves in Fig. 1(b) corresponding to different
lattice sizes all converge at the transition point. Thus, as in
one dimension [23], the gap is independent of lattice size
when α equals the dimension (in our case, 3). If the disorder
strength is smaller than the gap, then the gap between the
long- and short-range subspaces remains open. A finite gap

would seemingly indicate a finite shielding time, perhaps
precluding localization at infinite times for α = 3. However,
consider a quantum particle placed at an individual lattice site.
The contribution of the delocalized state |000k〉 to the wave
packet of this particle is proportional to 1

N
, indicating a zero

contribution in the infinite lattice size limit. This leaves the
possibility of cooperative shielding and localization open in the
infinite size limit, but does not confirm them. In the following
sections, we examine the effect of cooperative shielding on
localization in 3D lattices.

B. Anisotropic hopping

The dependence of the gap separating the short- and long-
range subspace is markedly different for the model with
anisotropic hopping [see Figs. 1(c) and 1(d)]. It is more
difficult to obtain the analytical results for the model with
anisotropic hopping because of the cos2 θ term, even if the
eigenstates of the system with periodic boundary conditions
are still momentum states (rotational symmetry is broken, but
not translational). Here, we study the behavior of the gap at
the top of the spectrum as a function of α numerically, using
open boundary conditions. The results shown in Fig. 1(c)
illustrate the qualitative difference from the isotropic case.
In particular, for the anisotropic model, there are several
values of α < 3 where the gap becomes zero. At these values
of α, cooperative shielding may not occur, thus precluding
localization.

From examining the energy-level structure, it can be con-
cluded that the zero-gap points arise from level crossings. It is
thus clear that there is no separation of subspaces at the top of
the spectrum, in contrast to the case of isotropic hopping. While
there is a gap that grows with the system size for α � 2, the
state at the top of the spectrum is not an equal superposition
of all sites, as it is when cooperative shielding is known to
occur. Furthermore, the top energy level is shown to be a
doublet under periodic boundary conditions, indicating that
this particular gap actually disappears in the infinite-size limit
when translational invariance is restored.

There is, however, a gap between the highest-energy doublet
and the next doublet. We examine this gap for N = 11 and
periodic boundary conditions. The curve (not shown) appears
similar to those in Figs. 1(c) and 1(d), though the number of
zero-gap points is reduced. This is likely because the higher
symmetry permits the formation of doublets, which produce
fewer level crossings (i.e., one for each doublet instead of
one for each state). Given these level crossings, the same
conclusions can be reached for the periodic boundary case
as for the open boundary case: there is no clear separation
of subspaces at the top of the spectrum and no evidence for
cooperative shielding. While there is a gap at small values of α,
the states at the top of the spectrum are not equal superpositions
of all sites and not necessarily fundamentally different from
the rest of the eigenstates. Cooperative shielding, of the form
discussed in [23], thus appears precluded. This is investigated
more fully below by examining the scaling behavior of the
participation ratios.

In addition to the gap behavior, the overall energy-level
structure appears different between the two cases, as exem-
plified in Fig. 2 for ideal lattices of side length N = 30.
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(a) (b)

(c) (d)

FIG. 1. The energy gap at the top of the spectrum as a function of the hopping range exponent α. Panel (a) is for long-range hopping in a 1D
lattice with periodic boundary conditions. Panel (b) is for a 3D lattice with isotropic hopping, determined analytically under periodic boundary
conditions; see Eq. (9). Panels (c) and (d) show the energy gap for the Hamiltonian with anisotropic hopping, determined numerically and under
open boundary conditions. Panel (d) is an expanded view of panel (c). N is the system side length (total of N3 sites in the 3D case). In all plots,
p = 1 and W = 0. Note that we examine the top of the spectrum as the effective mass is negative.

Here, the top several eigenstates are shown for both isotropic
(top panel) and anisotropic (bottom panel) hopping with open
boundary conditions. The values are obtained numerically.
Both the degeneracies of the levels and the overall behavior as
a function of α are very different. The energy-level crossings
in the anisotropic hopping case are in the region 2 � α � 3.
Their exact locations are best observed as the zero-gap points
in Fig. 1(d). Note that the differences between Fig. 2 (top
panel) and Eq. (8), particularly in terms of the degeneracy
layout, are due to the differing boundary conditions (open vs
periodic).

IV. PARTICIPATION RATIOS

We have established the presence of cooperative shielding in
3D systems with isotropic long-range hopping, which suggests
the possibility of localization. We now examine this possibility,
for both isotropic (4) and anisotropic (5) hopping with open
boundary conditions andα = 0, 1, and 3, from a participation
ratio point of view. In a later section, we examine the energy-
level statistics for α = 3.

The participation ratio (PR) is an effective count of
the number of sites occupied by a wave function. It is
defined as

PR = 1∑
i |ψ (xi )|4 , (12)

where the sum is over all lattice sites, ψ is a normalized wave
function, and xi is the position of lattice site i.

Typically, PR ∝ Nβ [30–32]. This scaling behavior gives
information on the nature of the eigenstates. In particular, if
β = 0, the eigenstates are localized, if β = 3, delocalized,
and, if 0 < β < 3, the states can be labeled as extended
nonergodic [30–32]. Formally, extended nonergodic states
are states where PR−1 �→ 〈PR−1〉 as N → ∞, where 〈· · · 〉
indicates the average over disorder realizations. Informally
and in the context of this paper, extended nonergodic states
span the system, but do not fill the entirety of the accessible
space. Extended nonergodic states are typically multifractal,
though this property is definitively identified by examining
the generalized participation ratios [31–33]. We focus on the
scaling behavior of the PR (12), rather than the generalized
participation ratios, as the limited system sizes accessible when
obtaining the entire spectrum via exact diagonalization makes
a full quantitative analysis difficult.

We analyze the scaling behavior of the PR of the eigenstates
via two approaches. The first obtains a quantitative estimate of
β(E) by fitting the above scaling equation to the behavior of
〈PR〉, where 〈PR〉 is the PR averaged within a particular energy
window and over multiple disorder realizations. The second
approach obtains a qualitative understanding of the system by
examining the scaling behavior of the distributions of both PR
and PR/N3 at all energies. Three cases are discerned:

(i) If the PR does not change with the system size, but
PR/N3 does, then β = 0.
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FIG. 2. Energy of several top eigenstates as a function of α

for isotropic hopping and anisotropic hopping with open boundary
conditions (top and bottom panels, respectively). For the top panel,
the red dashed line is triply degenerate; the other is nondegenerate. For
the bottom panel, the orange line is doubly degenerate for α � 1; the
rest are nondegenerate. In both plots, N3 = 303, p = 1, and W = 0.

(ii) If the PR scales with the system size, but PR/N3 does
not, then β = 3.

(iii) If both PR and PR/N3 change with the system size,
then 0 < β < 3.
No other cases arise as β ∈ [0, 3].

We note that the spectra of the systems we examine have
an interesting dual-scale behavior: there is a large density of
states near zero energy, but also many states at energies very
far away from zero. Thus, the spectra typically have one or
more “wings.” To capture the behavior of the PR across all
of these energy scales, a symmetric logarithmic scale is used
for the abscissa, where the portion of the axis near zero is
scaled linearly, while the portions far from zero are scaled
logarithmically. The size of the linear portion is denoted on
the abscissa of the graph and in the captions.

A. α = 0

1. Isotropic hopping

Figure 3 (upper panel) shows the PR of every eigenstate, for
multiple disorder realizations, plotted against the energy of the
eigenstate for W = 16.5. The band at low energy is of width
16.5t̃ and arises from the (N3 − 1)-fold degenerate ground
state of the ideal lattice. The points at the top of the spectrum
arise from the |000k〉 state of the ideal system. Figure 3 (lower
panel) shows the average PR as a function of energy for the
band at low energies. There is clearly no scaling of 〈PR〉 with
the system size. The fit to the 〈PR〉 of the high-energy |000k〉

FIG. 3. Participation ratio (PR) as a function of energy for the
eigenstate of a 3D system with isotropic hopping, W = 16.5, p = 1,
and α = 0. The number of disorders included ranges from 148 to
2100, as required to obtain sufficiently small error bars. Top panel:
Plot of the PR of each eigenstate vs its eigenvalue for several disorder
realizations for N = 11, 21, and 31 (green , orange , and blue ,
respectively). Note the symmetric logarithmic scaling of the abscissa,
where the linear portion is within ±10t̃ . Large black circles merely
highlight the location of the states at the top of the band. Lower panel:
PR averaged within energy bins and over disorder realizations. The
plot is focused on the band near zero energy. Note the linear scale
of the abscissa. Error bars for the average PR are 95% confidence
intervals and smaller than the marker size where not seen.

state shows the scaling exponent to be 3. Identical behavior
has been observed for W = 1 and 35.

Evidently, the band at low energy is composed of localized
states, while the |000k〉 state remains delocalized, even in the
presence of strong disorder. Such behavior is easily understood
from the energy-level structure of the ideal system (described
in Sec. III A). The extreme degeneracy of the ground state
allows any small amount of disorder to strongly couple the
states, leading to localization [24]. The |000k〉 state remains
delocalized, however, as the shielding gap is significantly larger
than the disorder strength, minimizing coupling. Given that the
shielding gap diverges with the system size, the |000k〉 state
must remain delocalized in the thermodynamic limit for any
finite disorder strength, while the low-energy states remain
localized. The same behavior is observed for particles with
isotropic uniform hopping on the d simplex [24].
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FIG. 4. Participation ratio (PR) as a function of energy for the eigenstate of a 3D system with anisotropic hopping; W = 1 and 16.5; p = 1;
α = 0; and N = 11, 21, and 31 (green , orange , and blue , respectively). The number of disorders included ranges from 50 to 2350, as
required to obtain sufficiently small error bars. Note the symmetric logarithmic scaling of the abscissa, where the linear portion is within ±1t̃

or within ±16t̃ . Top panels: Plot of the PR of each eigenstate vs its eigenvalue for several disorder realizations. Lower panels: PR averaged
within energy bins and over disorder realizations for W = 1 and 16.5. Error bars for the average PR are 95% confidence intervals and smaller
than the marker size where not seen.

Given that cooperative shielding allows the system to be
described by an effective short-range Hamiltonian [23], one
could expect to see the localization transition near W = 16.5,
the critical disorder strength of the Anderson transition for
nearest-neighbor hopping in 3D lattices. Indeed, the dynamics
of the system studied by Celardo et al. [23] is governed by
an effective nearest-neighbor hopping Hamiltonian. However,
they explicitly include a nearest-neighbor hopping term in their
Hamiltonian, in addition to the long-range term. As it would
be inconsistent with our generalization of the dipolar hopping
amplitude to arbitrary α, we do not include an additional
nearest-neighbor hopping term in our Hamiltonian (1). Thus,
the ground state of our system when α = 0 is extremely
degenerate (essentially flat band) and localizes given any finite
disorder strength.

2. Anisotropic hopping

The upper panels of Fig. 4 show the PR vs energy for W =
1 and 16.5 (left and right, respectively), while the lower panels
show the averaged PR at the same disorder strengths. One
can clearly see scaling with the system size for both disorder
strengths. Given that the bandwidth of the system is a function

of the system size, the scaling behavior cannot be quantitatively
determined for all band energies. Clearly acceptable choices of
energies for comparison include the top and bottom states of the
band and the states near the center. The wing regions, however,
do not overlap well enough for a quantitative analysis. Fits to
the scaling equation reveal that the top and bottom states at both
disorders scale as N3. The states in the energy region [−1, 1]
for the system with W = 1 also scale as N3. Interestingly, the
states in the center portion of the system with W = 16.5 have
energy-dependent scaling exponents that vary from 2.6 to 2.8.
We also examine the system W = 35, but find it qualitatively
identical to the W = 16.5 case: the scaling exponents of the
top and bottom states are 3, while those of the states near the
band center vary from 2.4 to 2.7.

We note that the errors on the scaling exponents can be as
large as 0.2. We obtain this upper bound on the error from one
fit to the scaling equation that resulted in a value of 3.2, while β

cannot be larger than 3. Given that we only have three system
sizes that span a relatively small range of sizes, our scaling
exponents have low, but not negligible, precision.

Qualitatively, an examination of PR/N3 (not shown) shows
that the wings, for both disorder strengths, scale as N3. The
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FIG. 5. Top panels: Plot of the participation ratio (PR) of each
eigenstate vs its eigenvalue for several disorder realizations. Lower
panels: Plot of the PR/N3 of each eigenstate vs its eigenvalue
for several disorder realizations. Plots are for a 3D system with
isotropic and anisotropic hopping; W = 16.5; p = 1; α = 1; and
N = 11, 21, and 31 (green , orange , and blue , respectively).
The number of disorders included ranges from 100 to 350, as required
to obtain well-formed distributions. Note the symmetric logarithmic
scaling of the abscissa, where the linear portion is within ±10t̃ or
within ±16t̃ .

central states also scale as N3 for W = 1, while they scale
with 0 < β < 3 for the central states at W = 16.5. These
qualitative results support the accuracy of the quantitative
results discussed above, despite their low precision.

The above results show that the states in the wings are
delocalized, even for strong disorder. Furthermore, the states
near the center of the band become extended nonergodic for
sufficient disorder strength. We also see that there are no
localized states in this system, in great contrast to the isotropic
case.

B. α = 1, 3

We examine the scaling behavior of the PR for isotropic
and anisotropic hopping with α = 1 and α = 3 by examining
the qualitative scaling behavior of PR and PR/N3. We do not
examine the quantitative behavior as the limited system sizes
accessible cause fits to the scaling equation to be even less
reliable than when α = 0.

Figure 5 demonstrates that, for α = 1 and W = 16.5, there
is a single wing for the isotropic case, while there are two
for the anisotropic case. These wings contain PR values that
increase with the system size, while the PR/N3 values are
constant: the values scale as N3 and the states are delocalized.

In the isotropic case near zero energy, however, the behavior
of the PR is not as clear. A portion of the PR values in this
energy range do scale with the system size, but the distribution
asymmetrically increases in width instead of shifting vertically.
This obfuscates the interpretation. However, given that the

FIG. 6. Top panels: Plot of the participation ratio (PR) of each
eigenstate vs its eigenvalue for several disorder realizations. Lower
panels: Plot of the PR/N3 of each eigenstate vs its eigenvalue
for several disorder realizations. Plots are for a 3D system with
isotropic and anisotropic hopping; W = 16.5; p = 1; α = 3; and
N = 11, 21, and 31 (green , orange , and blue , respectively).
The number of disorders included ranges from 99 to 350, as required
to obtain well-formed distributions. Note the linear scaling of the
abscissa.

PR/N3 values all reduce in magnitude as the system size
increases, it can be concluded that none of these central states
are delocalized. Whether the states are extended nonergodic or
localized is not clear, however.

In the anisotropic case with α = 1, the states near zero
energy are clearly extended nonergodic. This is seen as both the
PR and the PR/N3 distributions shift vertically as the system
size increases, in the appropriate directions.

Additionally, note that the rate of scaling with the system
size near zero energy is different between the isotropic and
anisotropic cases. The isotropic case has PR distributions that
scale slowly, while the PR/N3 distributions scale quickly. The
reverse is true for the anisotropic case. We can thus conclude
that the isotropic hopping scaling exponent is smaller than the
anisotropic hopping scaling exponent for the states near zero
energy.

Figure 6 demonstrates that, for α = 3 and W = 16.5, there
is a single wing for the isotropic case, while there are none for
the anisotropic case. Also note that the bandwidths are much
smaller, allowing for a linear scaling of the x axis. The behavior
of the isotropic case is similar to that seen for α = 1 and points
to the same conclusion: the wing contains delocalized states,
while the energy region near zero contains states that are not
delocalized.

At this level of disorder, the spectrum of the anisotropic
case is dominated by the disorder, producing a rather uniform
distribution without wings. Interestingly, the scaling behavior
is similar to the near-zero-energy portion of the isotropic case:
the PR distributions widen asymmetrically but do not shift in
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location as the size increases, while the PR/N3 distributions
shift downward as the system size increases. There are thus
no delocalized states, though there may be a combination of
localized and extended nonergodic states. This is not neces-
sarily in contrast with the prior work of Levitov [16–18] as
the extended nonergodic states still span the system, allowing
weak transport.

The above analysis of the participation ratios for various val-
ues of α and for different isotropies shows that single-particle
systems with long-range hopping display a rich landscape of
states, from delocalized to extended nonergodic to localized.
We expect that the extended nonergodic states we typically
find near zero energy in this work are likely multifractal. To
find and quantify the multifractal dimensions and multifractal
spectra [31] of these states, however, will require more sophis-
ticated numerical or analytical techniques capable of accessing
larger system sizes. There are algorithms that can reach system
sizes of N ≈ 300 for targeted energy ranges [27,28], but it is
not clear whether even these would be enough to properly study
the scaling behavior of the eigenstates.

V. ENERGY-LEVEL STATISTICS

Given the ambiguity observed in the scaling behavior of
the participation ratios for the physically important case of
α = 3, we now examine the system for both isotropic (4) and
anisotropic (5) hopping and open boundary conditions from an
energy-level statistics point of view.

We use the mean level spacing ratio, defined by Oganesyan
and Huse [34] as

〈r〉 =
〈
min

(
r ′
n,

1

r ′
n

)〉
, (13)

where

r ′
n = En+1 − En

En − En−1
,

En is the nth eigenvalue, sorted in order of increasing mag-
nitude, and 〈·〉 denotes the average over all eigenvalues and
over many instances of disorder. For a system whose energy-
level spacing distribution is Poissonian, 〈r〉 = 2 ln 2 − 1 ≈
0.386 29. If, however, the system belongs to the Gaussian
orthogonal ensemble (GOE), 〈r〉 = 4 − 2

√
3 ≈ 0.535 90 [35].

As discussed in Refs. [34,36], Poissonian level statistics are
characteristic of localization and GOE statistics are character-
istic of diffusion.

Figure 7 presents 〈r〉 vs W for the isotropic and dipolar
Hamiltonians with α = 3 and open boundary conditions. It can
be seen in both cases that 〈r〉 drops as W increases, though not
completely to the Poissonian value. However, in the isotropic
case, 〈r〉 drops with the increasing lattice size towards the
Poissonian limit. As illustrated in Fig. 7 (top panel), we observe
a significant change with the system size. In contrast, in the
anisotropic case, the curves display no discernible scaling with
the system size, even in the case of extremely strong disorder.
There is thus no indication that the Poissonian limit will be
attained.

It is noteworthy that the scaling behavior in the isotropic
case begins at W ≈ 15, which is the expected location,
given cooperative shielding. Cooperative shielding causes the

Full Spectrum

FIG. 7. Mean energy-level spacing ratio 〈r〉 as a function of
disorder strength W = ω

tmax
for the isotropic and anisotropic hopping

Hamiltonians with open boundary conditions. The hopping range
exponent is α = 3 and the filling fraction is p = 1 in both cases. N

denotes the lattice side length (N3 sites). The horizontal dashed lines
denote the values of 〈r〉 for the Poisson distribution (∼0.386 29) and
the GOE (∼0.535 90). The error bars are 95% confidence intervals
based on 96 disorders and are smaller than the marker size where not
seen.

Hamiltonian to be effectively short ranged, such as the tight-
binding model. For the tight-binding model, the diffusion-to-
localization transition occurs at W ≈ 16.5 [37]. At disorder
strengths between 5 and 15, the curves in the isotropic case
collapse onto one another, preventing the possibility of scaling
to the infinite-size limit. At W = 1, it is clear that the system
is approaching the GOE value as the system size increases.

Given that the scaling behavior of the PRs reveals two
clear regimes in the isotropic case, one where the states are
delocalized and one where they are localized or extended
nonergodic (see Fig. 6), it is useful to focus on the region
near zero energy. Figure 8 (top panel) demonstrates that the
scaling behavior observed previously is enhanced when the
energy-level spacing ratio is averaged only over the energy
region −t̃ � E � t̃ . Figure 8 (bottom panel) demonstrates that
the same scaling behavior also occurs when α = 1.

These results provide numerical evidence for localization
in the infinite-size limit for the case with isotropic long-range
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Near Zero Energy

FIG. 8. Upper panel: Same as Fig. 7 (upper panel), but with the
mean energy-level spacing ratio 〈r〉 including only the eigenvalues in
the energy range −t̃ � E � t̃ . The results are averaged over 1071
disorders for N3 = 113 and 213, and 96 disorders for N3 = 313.
Lower panel: Same as upper panel, but for α = 1. The results are
averaged over 1100 disorders for N3 = 113 and 213, and 100 disorders
for N 3 = 313.

hopping and α = 1 and 3. This, combined with the likely
presence of cooperative shielding and the observed scaling
behavior of the participation ratios, strongly suggests that some
to many of the states at low energy are localized.

To connect with realistic experimental conditions, we also
examine the effect of a diluted lattice. This is relevant for
experiments with polar molecules in an optical lattice [6,7]
or for amorphous molecular solids [2]. A diagram of the mean
level spacing ratio, 〈r〉, as a function of both p and W for both
isotropic and dipolar hopping with α = 3 and open boundary
conditions is presented in Fig. 9.

While the two plots are qualitatively similar, 〈r〉 falls off
more quickly with the disorder strength and filling fraction in
the isotropic case. This can be seen by comparing the areas of
the two diagrams where 〈r〉 > 0.49. The value of 〈r〉 remains
high along the p axis, which is in agreement with the results
of Deng et al. [30], who studied the case of dipolar hopping in
a diluted lattice.

FIG. 9. Mean energy-level spacing ratio 〈r〉 as a function of
disorder strength W = ω

tmax
and filling fraction p for the isotropic and

anisotropic hopping Hamiltonians with open boundary conditions.
The hopping range exponent is α = 3 and the lattice size is N3 = 313

in both cases. The color varies from the value of 〈r〉 for the Poisson
distribution (∼0.386 29) to that for the GOE (∼0.535 90). The white
circles denote the values obtained via exact diagonalization of the
Hamiltonian; piecewise cubic interpolation is used for the rest of
the plot. The black lines indicate where 〈r〉 = 0.49. The results are
averaged over 96 realizations of disorder, giving 95% confidence
intervals that are at most ±0.002. The green data points mark the
location of the Anderson transition for the 3D tight-binding model in
the infinite-size limit, as determined by Root and Skinner [37].

Figure 9 (bottom panel) shows that in experiments with
polar molecules in optical lattices one should not expect to see
localization of single rotational excitations due to the dilution
alone, if it exists at all. Additional on-site disorder, such as from
an optical speckle potential, is required. Exploring this phase
diagram is within reach of current experiments. For example,
Fig. 9 (bottom panel) shows that for molecules on an optical
lattice with N ≈ 30 and a lattice population of 30% [7] (a
typical filling fraction aimed at in current experiments), the
region where 〈r〉 drops significantly can be explored by varying
the optical speckle potential from below to above W = 5.
Scaling behavior of 〈r〉 can also be investigated as optical
lattices can have N up to 60 (a typical size of an optical lattice).

VI. CONCLUSION

We have illustrated that the cooperative shielding discov-
ered for 1D lattices with long-range hopping [22,23] also
occurs in 3D lattice models with isotropic long-range hopping.
This suggests the possibility of Anderson localization in 3D
systems with long-range hopping (i.e., α � 3). Given the form
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of the results in three dimensions, the same is likely to be true
of a 2D system with isotropic long-range hopping (α � 2). We
have also presented evidence indicating the lack of cooperative
shielding in models with anisotropic hopping. The specific
form of the anisotropy we consider here has the angular
dependence of the dipole-dipole interaction between dipoles
aligned along one of the principal axes of the lattice.

We have demonstrated that there are fundamental differ-
ences between disordered lattice systems with isotropic long-
range hopping and those with anisotropic long-range hopping,
particularly with regard to the impact of disorder. In addition to
the difference in cooperative shielding, we have shown that the
energy-level structures of systems with isotropic hopping are
qualitatively and quantitatively different from those of systems
with dipolar anisotropic hopping (whether with periodic or
open boundary conditions).

We have used the scaling behavior of the eigenstate par-
ticipation ratios to demonstrate the presence of localized
states in the isotropic case with uniform hopping (α = 0) and
the absence of localized states in the anisotropic case with
uniform hopping (α = 0). We have also demonstrated that
energy-level statistics support the presence of localized states
in 3D cubic lattices with isotropic hopping that varies as r−3,
while they are inconclusive for systems with the anisotropic
dipolar hopping considered here. We have further shown that
energy-level statistics indicate the presence of localized states
for Coulomblike (α = 1) isotropic hopping, while the scaling
behavior of the eigenstate participation ratios illustrates the
absence of localized states when α = 1 and the hopping is of
the anisotropic form (5).

We have shown that the localization properties (or lack
thereof) found for systems with dipolar hopping [16–19]
cannot be assumed to apply to systems with isotropic hopping,
in accordance with the suggestion of Burin and Maksimov [25].
More generally, we have demonstrated that the presence or
absence of delocalized, extended nonergodic, or localized
states depends on both the hopping exponent α and the
anisotropy of the hopping amplitudes.

Future studies that can access significantly larger system
sizes are required to fully characterize the shape of the localized
states, to determine whether the extended nonergodic states
are truly multifractal, and to determine how the multifrac-
tal dimensions and spectra change with hopping range and
isotropy. Future theoretical and experimental studies can also
probe the dependence of localization on the direction of the
quantization axis (as defined by the direction of an external
field) relative to the principal axes of the underlying cubic
lattice. Indeed, it would be interesting to investigate whether
cooperative shielding in 3D lattices can be induced by tilting
the quantization axis. Additionally, it would be interesting
to explore the effect of the lattice geometry on cooperative
shielding. Finally, this work opens up the question of how
different types of anisotropy, such as quadrupolarlike, can
impact localization behavior.
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