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Measuring the dynamical critical exponent of an ordering alloy using x-ray photon
correlation spectroscopy
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The dynamics of the order fluctuations in the AuAgZn2 close to the critical point (Tc � 609 K) was observed
by coherent x-ray scattering. With the high beam intensity of the ID10 ESRF beamline and with the new pixel
detector, the dynamics was measured with a few tens of millisecond resolution. The intensity connected to the
diffuse scattering corresponding to fluctuations was unambiguously distinguished from the surface pretransitional
ordering occurring in this system close to Tc. The variations of the fluctuation time with temperature and wave
vectors were measured in this system belonging to the universality class of Ising second order transition with a
nonconserved order parameter. The direct observation of the critical slowing down in the vicinity of the second-
order transition led to an estimate of the dynamic exponent z � 1.96(11), in rough agreement with theory (model
“A” of Hohenberg and Halperin [Rev. Mod. Phys. 49, 435 (1977)]).
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I. INTRODUCTION

X-ray photon correlation spectroscopy (XPCS) has raised
considerable interest to probe equilibrium and nonequilibrium
fluctuations in soft and hard systems [1–4] at the nanoscale
and on timescales increasingly smaller [5,6]. In alloys, the
technique was used, e.g., to study domain formation [7–9] or
phason fluctuations [10]. In AuAgZn2, a second order transi-
tion occurs at 609 K [11,12]. Above this critical temperature
Tc, the alloy has a simple cubic B2 structure where Au and
Ag atoms share the same simple cubic atomic sites. Below Tc,
the alloy has a face centered cubic L21 structure, as shown
in Fig. 1. This transition (“Heusler”) is equivalent to a SC
antiferromagnetic Ising system [13]. In the vicinity of the
critical temperature, the fluctuation length ξ is observed to
increase to ξ � 500 Å, with the scaling law: ξ � 1.76 × ((T −
Tc)/Tc)−ν , with ξ in Angströms (Å) and ν = 0.63, the classical
Ising value.

As ordering requires only atomic jumps between neighbor-
ing sites, the AuAgZn2 alloy can be considered as a model
system to investigate second order transitions with “noncon-
served order” parameters, i.e., the “A” model of Hohenberg
and Halperin [1,14]. Experiments are carried out in a small q

range in the vicinity of the 1
2

1
2

1
2 superstructure peak.

Outside the critical region, the driving force of the dynamics
is the interface motion between ordered domains. The domain
size L increases according to the diffusion law L = √

Dt ,
which applies for nonconserved dynamics (see, e.g., Ref. [15]).
In a previous experiment [16], the diffusion coefficient D

in AuAgZn2 was estimated to be 5 × 105 Å
2

s−1 at T =
607 K. This led to an elementary diffusion time τ0 � 20 μs
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corresponding to atomic jumps between two sites of the Au-
Ag simple cubic sublattice [see Fig. 1(b)]. In a quenched
sample with antiphase domains, speckles are observed [16,17]
and changes in the speckle pattern close to Tc reflect the
microscopic time evolution of the fluctuations.

In the critical region, equilibrium fluctuations have a char-
acteristic relaxation time τ and, from the dynamic renormal-
ization model [1], τ is related to ξ and q by the following
expression:

τ (q,T ) ∝ ξz�(qξ ) ∝
{|(T − Tc)/Tc|−zν for qξ � 1
q−z for qξ � 1,

(1)

where the wave vector q corresponds to the distance in
the reciprocal lattice to the superstructure Bragg position.
Dynamic renormalization group calculations [14,18] yield
z � 2.02. The experimental characterization of the critical
fluctuation dynamics is a real challenge since in this system,
as explained in Ref. [16], heating devices providing high
temperature stability (a few mK) and very good accuracy

(�q � 10−4 Å
−1

) are requested.
Pioneering experiments on the dynamics of critical fluctua-

tions were attempted by Brauer et al. [19] in the Fe3Al binary
alloy which exhibits a B2-DO3 second order transition when
the temperature is close to 824 K. In our previous measure-
ments [16], only correlation functions at a fixed temperature
and in a narrow q range could be measured. The measurement
of reliable time correlation functions whose behavior can be
compared to renormalization group calculations or numerical
simulations is still missing. In this paper, some significant
improvements in the characterization of critical fluctuation dy-
namics in an ordering alloy are outlined and the measurement
of the related dynamical critical exponents z is reported.
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FIG. 1. (a) B2 and (b) L21 ordered structures of the AuAgZn2

alloy near T = 609 K. The lattice parameter a of the B2 phase is
close to 3.17 Å at 603 K.

II. EXPERIMENTAL DETAILS

Measurements were carried out at the ID10 beamline of
the ESRF (France). Undulators were tuned to produce 8 keV
photons and a Si(111) monochromator was used to select a
wavelength of 1.55 Å with an intrinsic energy resolution
�E/E � 1.4 × 10−4. The incident beam was focused with
Beryllium lenses to have a 3.5 μm (v) ×20 μm (h) section at
the sample position and a partially coherent flux of �2.0 ×
1010 photons per second. The (111) oriented sample surface
was tilted by about 12◦ to observe the scattering intensities
relative to the 1

2
1
2

1
2 superstructure reflection of the B2 structure,

with a vertical diffraction plane. The gauge volume probed by
the x-ray beam was thus close to 17 μm × 20 μm × 1 μm;
the latter value being the x-ray penetration depth into the
tilted AuAgZn2 sample. A 2D pixel detector [20] with 516 ×
516 pixels of 55 μm × 55 μm (2 × 2 Medipix2 chips) was
placed at a distance of 1.73 m from the sample position.

The q resolution of one pixel was thus 1.29 × 10−4 Å
−1

.
Measurements were performed in the vertical diffraction plane
with a detector angle 2θB close to 24◦. The results described
in the following were obtained by recording sets of 40 000
frames with a maximum time spacing between frames of 0.02 s.
The temperature control of the sample was performed with a
Lakeshore controller and a small furnace in vacuum developed
to have a maximum deviation of a few mK from a fixed temper-
ature between 553 K and 638 K. The AuAgZn2 samples were
cylinders with a diameter of 8 mm and a height of �1–2 mm.
Two 70 Å thick aluminum layers were deposited on the sample
surfaces to prevent losses of zinc during heating (see detail in
Ref. [16]). The coherence contrast β of this setup was estimated
from the observation of speckles in a quenched sample [16,21]
to 3.5%.

Well above Tc an isotropic diffuse intensity was recorded
at the ordering reflection position. Close to Tc, some pretran-
sitional scattering (PTS) was observed, as shown in Fig. 2(a).
This scattering is cross-shaped: In the qx direction (horizontal
in the figure), some scattering corresponding to surface mo-
saicity is observed and in the qy direction, the scattering is
elongated perpendicular to the surface, corresponding to the
small thickness of the surface ordering.

PTS was strongly temperature dependent even when only
a few mK variations of the temperature did occur. For large
scattering vectors, the intensity appeared isotropic, but the

FIG. 2. (a) Measured scattering at 609.35 K (Tc + 0.188 K) and
(b) the mask used and the typical circular rings where the dynamics
was observed. Both figures show the same 100 × 100 pixel area; each

pixel is 1.29 × 10−4 Å
−1

.

fluctuation dynamics was too fast and the intensity too low
to obtain reliable results. For all these reasons, only a part of
the recorded intensities was utilized for data processing. This
was done by using masks like the one represented in Fig. 2(b),
where data in black were discarded. After an angular average,
the intensity profile of each diffraction pattern was separated
into two contributions using [16]:

I (q) = S(q = 0)

1 + (qξ )1.97
+ B

(1 + (qL)2)2
. (2)

The first term in Eq. (2) is a very good approximation of the
static critical scattering S(q) and the second term roughly fits
to PTS. PTS is strongly peaking and exhibits some anisotropy

even after masking for the smallest q values (q < 0.0008 Å
−1

)
where the fit is poor. This second term is introduced because for
intermediate q values the scattering has a q−4 behavior, which
means that PTS corresponds to small well defined ordered
domains.

As shown in Fig. 3, the analysis of the temperature behavior
of S(q = 0) and ξ in the vicinity of Tc led to a reliable estimate
of the critical temperature. Tc was estimated to 609.162(15) K
(or 336.012 ◦C), and its variations were less than 0.02 K during
the 48 hours of the measurements. Our results were in a good
agreement with the theoretical values γ = 1.241 and ν = 0.63
[22].

FIG. 3. Determination of the critical temperature by fitting inten-
sity profiles to Eq. (2). (a) from the variation of S−1/γ (q = 0) with
γ = 1.241. (b) from the variation of ξ−1/ν with ν = 0.63.
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FIG. 4. Time correlations obtained for various q vectors at T =
Tc + 0.113 K. Curves are shifted vertically for sake of visibility.
Symbols correspond to values of the g2(q,t) function and solid lines
to a least-square fits with Eq. (3).

The dynamics was characterized from the intensity auto-
correlation function g2(q,t) calculated by a time average and
an angular average [16] over circular domains of thickness �q

around the Bragg position as shown in Fig. 2(b). A dedicated
program for XPCS written with python by one of us (Y.C.) was
used for calculating g2.

III. RESULTS

A. The correlation functions g2(q,t)

Figure 4 represents the values of the time correlation
functions g2(q,t) obtained for a set of q vectors at a fixed
temperature Tc + 0.113. The g2(q,t) functions calculated for
a given temperature were fitted by the following expression:

g2(q,t) = 1 + a0 + b0 e−2t/τ (q), (3)

where τ (q) is the characteristic relaxation time of the critical
fluctuations, a0 is essentially due to the anisotropy of the
PTS (see Fig. 2), and b0 � βx2 is connected to the coherence
β � 0.035 and to x, the ratio of the critical to PTS intensities.
Equation 3 assumes that heterodyne interferences between
the two scattering in Eq. (2) were negligible. b0 increases
with increasing values of q: In Fig. 4, its value is in the
0.02–0.004 range. The results of the least-square fitting using
Eq. (3) correspond to the solid lines in Fig. 4. Owing to
the high experimental stability of the beamline, a reasonable

accuracy was obtained for q � 10−3 Å
−1

. For lower q values,
b0 was too small (b0 < 10−3) and some experimental issues
prevented us from obtaining reliable results. For measurements
performed at T − Tc < 0.2 K, oscillations of the g2(q,t)

correlation functions for q < 0.0008 Å
−1

were caused by the
high sensibility of the PTS to small temperature instabilities
(fluctuations of ±2 mK). Long term (t > 100 s) instabilities
of the experiment were also observed.

B. Critical fluctuation relaxation times τ (q,T ) and τ0(T )

The characteristic relaxation times τ (q,T ) in Eq. (3) de-
duced from the intensity autocorrelation calculated at different
temperatures T and q vectors are plotted in Fig. 5(a). The
temperature dependent fluctuation time τ0(T ) (for q = 0)

FIG. 5. (a) Fluctuation times τ (q,T ) for various temperatures and
the Lorentzian fits. (b) Temperature variations of τ0(T ). An estimate
of the exponent yielded zν = 1.235(70).

was determined using least-squares fits with the following
equation:

τ (q,T ) = τ0(T )/(1 + (q/q0)2). (4)

Equation (4) assumes a Lorentzian q dependence of τ (q) and
also of the function �(x) in Eq. (1), compatible with mean-field
approximations in the statics and in the dynamics of critical
fluctuations (i.e., z = γ /ν = 2).

The results of the fits with Eq. (4) are shown in Fig. 5(a).
In this figure, one observes that for temperatures the closest to
Tc (i.e., 336.075 ◦C and 336.125 ◦C), the asymptotic behavior
of the Lorentzian fit is roughly observed (i.e., �(qξ ) ∝ q−2

for qξ � 1), but τ0 is difficult to extrapolate, due to the large
PTS contribution. Reversely, values of τ (q) close to 0.2 s were
measured with a low accuracy for temperatures well above Tc

(i.e., Tc + 0.7 K and Tc + 0.5 K), but, as the variations of τ (q)
vs q were limited, a relatively precise determination of τ0 could
be obtained from the fits. In all cases, the determination of q0

in Eq. (4) was of a poor precision.
Figure 5(b) shows the variations of τ0 vs the estimate of

T − Tc. In this figure, a double logarithmic plot is carried out
in order to examine the scaling law:

τ0(T ) = ((T − Tc)/Tc)νz. (5)

Fitting results of Fig. 5(b) with this equation yields an estimate
of νz = 1.235(70) (see plotted line). From ν = 0.630 [22], z �
1.96(11). This value is in agreement with the best theoretical
value of 2.017 [18], but with a poor accuracy.

IV. DISCUSSION

The AuAgZn2 alloy is an example for the study of the
“model A” dynamics of phase transitions, where the order
parameter is changed without long range diffusion, analogous
to a local spin flip in the Ising model. In order to carry out an
XPCS study at large angle, a short x-ray penetration depth
is mandatory and the strong contrast between Au and Ag
atoms provides a reasonable intensity close to the ordering
Bragg peak. This penetration depth (μ−1 � 10 μm) leads
to small path length differences of the beam in the sample
(L � 2.0 μ−1sin2(θB) � 0.9 μm is nevertheless significantly
larger than the longitudinal coherence length of the experiment

L = λ2/(2.δλ) � 0.5 μm).

The main difficulty is in dealing with PTS, which makes
results in the close vicinity of Tc (in Fig. 4, temperatures
T < Tc + 0.07 K were discarded) and for very small angles
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(q < 1.0 × 10−3 Å
−1

) unreliable. PTS is connected to the two
70 Å thick surface layers which were deposited in order to
prevent zinc evaporation. While these layers are an excellent
chemical barrier, they probably add some constraints that favor
surface ordering. As a result, better results in the dynamical
study were obtained for regions where the scattering is small.
As PTS is connected to surface defects, its interferences with
the critical scattering from the inside of the sample is here
assumed negligible. For this reason, heterodyning has been
neglected, contrary to our previous paper (see Ref. [16]).

A measurement of the dynamical critical exponent z �
1.96(11) of a 3D Ising system was performed using the XPCS
method. The precision of the result does not allow a distinction

from mean-field theory (which yields z = 2), and this makes
valid the approximations used here: an exponential in Eq. (3)
and a Lorentzian for �(x) in Eq. (4).

Obviously, these experiments will be significantly eased
with the next ESRF upgrade, where the source brilliance should
be increased more than one order of magnitude. This will
bring a large improvement in the measurement of the dynamic
exponent z.
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