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Motivated by neutral excitations in disordered electronic materials and systems of trapped ultracold particles
with long-range interactions, we study energy-level statistics of quasiparticles with the power-law hopping
Hamiltonian ∝1/rα in a strong random potential. In solid-state systems such quasiparticles, which are exemplified
by neutral dipolar excitations, lead to long-range correlations of local observables and may dominate energy
transport. Focusing on the excitations in disordered electronic systems, we compute the energy-level correlation
function R2(ω) in a finite system in the limit of sufficiently strong disorder. At small energy differences, the
correlations exhibit Wigner-Dyson statistics. In particular, in the limit of very strong disorder the energy-level
correlation function is given by R2(ω,V ) = A3

ω

ωV
for small frequencies ω � ωV and R2(ω,V ) = 1 − (α −

d)A1( ωV

ω
)

d
α − A2( ωV

ω
)2 for large frequencies ω � ωV , where ωV ∝ V − α

d is the characteristic matrix element
of excitation hopping in a system of volume V , and A1, A2, and A3 are coefficients of order unity which
depend on the shape of the system. The energy-level correlation function, which we study, allows for a direct
experimental observation, for example, by measuring the correlations of the ac conductance of the system at
different frequencies.
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In a strongly disordered electronic system, the properties of
charged excitations, such as electrons and holes, are correlated
on short length scales of order of the localization length
and decay exponentially with distance. By contrast, neutral
excitations, such as localized electron-hole pairs, allow for
long-range hops via virtual processes of annihilating a neutral
excitation at one location and creating it elsewhere. It has
been demonstrated [1], for example, that dipole excitations
in three dimensions (3D) can hop virtually with the distance
dependence ∝1/r3. Such power-law hops may lead to long-
range correlations between physical observables, such as ac
conductivity, even when charged excitations remain localized.
While neutral excitations do not carry charge, they are involved
in energy transport and, thus, may dominate heat conductivity.
Moreover, if certain neutral excitations are delocalized due
to the power-law hops they may serve as a bath for other
excitations [2,3] and thus lead to the variable-range hopping
of charged excitations.

The dynamics of neutral excitations, therefore, plays a
fundamental role in transport and phase diagrams of granulated
materials, superconducting films in the insulating state [4],
systems of defects in insulators [5] and other disordered
systems, which has motivated recent studies of conductivity
[6] and wave functions [6–9] in systems with power-law
hopping. Excitations with a generic power-law hopping ∝
1/rα with tunable α have also been realized recently in
one-dimensional (1D) [10–13] and two-dimensional (2D) [14]
arrays of trapped ultracold ions. Such systems may be used
to simulate disordered electronic materials, yet serve as a
platform for observing novel fundamental phenomena, for
example, many-body-localization transitions [15] or high-

dimensional disorder-driven effects [16]. In this paper we study
analytically the energy-level statistics (ELS) of excitations
with power-law hopping Hamiltonians in strongly disordered
systems.

Energy-level statistics in a disordered system reflects fun-
damental symmetries and is often used to diagnose conducting
and insulating phases at different disorder strengths. Abundant
numerical data (see Ref. [17] for a review) suggest also that
the ELS is linked to the chaotic properties of a system; systems
such as chaotic billiards and disordered metals display chaotic
or nonchaotic behavior depending on whether their statistics
is Wigner-Dyson [18] or Poisson. Recently, ELS has also
received much renewed attention in the context of many-body-
localization transitions [15]; interacting disordered systems
are expected [19] to display Poisson or Wigner-Dyson statis-
tics of the many-body levels of the system in many-body-
delocalized and many-body-localized states, respectively [19–
21]. Similarly, ELS has been demonstrated numerically [22]
to distinguish between chaotic and nonchaotic behavior in a
generalized Sachdev-Ye-Kitaev model [23], which is often
used as a toy model in the studies of quantum chaos. In
such studies, the many-body ELS at the transition is used as
a numerical tool for detecting a phase transition, although,
unlike the single-(quasi)particle level statistics, cannot be
straightforwardly measured in condensed-matter experiments.
It has also been conjectured recently [24] that the ELS of single
quasiparticles reflects an interaction-driven transition between
chaotic and nonchaotic behavior.

The relation between phase transitions and excitation statis-
tics can be explored further by analyzing the ELS in the
respective phases. Although the ELS of neutral excitations in
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insulating materials also determines the heat transport and cor-
relations between local ac responses, e.g., the ac conductivity,
it has largely avoided researchers’ attention, in contrast with
the statistics of charged excitations [17,25,26]. In this paper,
focusing on neutral excitations in disordered solids (α = 3), we
compute microscopically the correlation functions of energy
levels of excitations with the power-law hopping ∝1/rα .

This paper is organized as follows. Our main results for the
energy-level correlation functions are summarized in Sec. I.
In Sec. II we discuss the model of dipole excitations, the
simplest type of neutral excitations in a disordered system.
Section III deals with the statistics of dipole excitations in
strongly disordered systems in dimensions d < 3 and suffi-
ciently small disordered 3D systems. The case of a 3D system,
which requires a special consideration, is addressed in Sec. IV.
Section V is devoted to the energy-level correlation functions
in systems with a power-law hopping ∝1/rα with an arbitrary
power α, which have recently been realized in experiments
with trapped ultracold particles. We conclude in Sec. VI.

I. SUMMARY OF RESULTS

In this paper, we characterize the statistics of the energy
levels of excitation in a disordered system of a finite volume
V by the correlation function

R2(ω) =
〈
ν
(
E + ω

2

)
ν
(
E − ω

2

)〉
dis

/
〈ν(E)〉2

dis, (1.1)

where ν(E) is the density of states (DOS) of the excitations for
a specific disorder realization, and 〈. . .〉dis is our convention
for disorder averaging.

In the limit of very strong disorder, spatial and energy
correlations between observables in electronic systems are
dominated by dipole excitations, i.e., pairs of electron and
hole excitations located close to each other. Such dipoles allow
for long-range hops with the distance dependence [1] ∝1/r3.
In principle, the hopping of more complicated excitations,
consisting of multiple electrons and holes, has in general the
same distance dependence, but is suppressed due to smaller
matrix elements of recombination of those excitations at strong
disorder.

The density of states of dipole excitations is proportional
to the ac conductance [27] of the system. This allows one
to observe the correlation function (1.1) in experiment, e.g.,
by measuring the correlations of ac conductance G(ω̃) of
the system as a function of frequency ω̃ and computing the
correlator R2(ω) ∝ 〈G(�)G(� + ω)〉�, where 〈. . .〉� is the
averaging with respect to the frequency � in a sufficiently
large interval of energies.

Very strong disorder in an electronic system. In the case of
very strong disorder in a solid-state system, we find

R2(ω,V ) ≈
{

1 − (3 − d)C1
(

ωV

ω

) d
3 − C2

(
ωV

ω

)2
, ω � ωV

C3
ω
ωV

, ω � ωV

(1.2)

where the characteristic frequency ωV scales with the volume
V of the system as ωV ∝ V − 3

d ; and the coefficients C1, C2,
and C3 are independent of the volume V , but the coefficients
C2 and C3 depend on the shape of the system. This result

applies to all strongly disordered systems in dimensions d <

3 and to sufficiently small 3D systems. In such systems, the
correlations between energy levels come from rare resonances
between pairs of excitation states which are located far from
each other but have close energies.

3D systems. In 3D electronic systems, unlike the case
of lower dimensions, excitation states involve resonances on
multiple sites [28], which is why the 3D case requires a special
consideration. We find that in 3D systems the energy-level
correlation function R2(ω) is still given by Eq. (1.2) with the
coefficients Ci independent of volume V only in the limits of
small and large volumes. However, for a 3D system of arbitrary
size, these coefficients have an explicit V dependency and,
thus, the scaling of the correlation function with system size is
different.

Arbitrary power-law hopping. The results for the energy-
level correlations in a system of neutral electronic excitations
with the ∝1/r3 hopping may be generalized to the case of
an arbitrary power-law hopping ∝1/rα . Such hopping with
arbitrary α my be realized, for example, in arrays of trapped
ultracold ions [10–14] in optical or magnetic traps. For such
hopping we obtain

R2(ω,V ) ≈
{

1 − (α − d)A1
(

ωV

ω

) d
α − A2

(
ωV

ω

)2
, ω � ωV

A3
ω
ωV

, ω � ωV

(1.3)

where ωV ∝ V − α
d is the characteristic interaction energy of

dipoles on the system size. In some sense, the scale ωV is
similar to the Thouless energy of quasiparticles in a disor-
dered metal; this quantity gives the inverse characteristic time
required for a perturbation created in the middle of the system
to reach its boundary.

Comparison with the quasiparticle statistics in a metallic
grain. For small frequencies ω, the correlation functions (1.2)
and (1.3) are linear in the energy differenceω, i.e., are described
by the Wigner-Dyson statistics [18] in the orthogonal symme-
try class, similarly to, e.g., quasiparticles in sufficiently small
metallic grains. In the latter system, the correlation function
R2(ω) is universal [17,29], with the mean level spacing δ

in the grain being the characteristic energy scale, so long as
δ � ETh, where ETh = DV − 2

d is the Thouless energy and D

is the diffusion coefficient. In the opposite case, δ � ETh, the
correlations become nonuniversal for energy differences ω �
ETh. In contrast to the case of quasiparticles, the correlations
of neutral excitations have the characteristic scale ωV , the
interaction energy on the size of the system, and are described
by functions (1.2) and (1.3) with nonuniversal coefficients. The
power-law dependency of the correlation function R2(ω) on the
energy difference ω may signal a possible chaotic behavior of
the dynamics of the excitations (as we discuss in Sec. VI),
which may be defined and probed, e.g., via out-of-time-order
correlators [30] of operators characterizing transport of neutral
excitations.

II. MODEL FOR NEUTRAL EXCITATIONS IN SOLIDS

In what immediately follows, we describe the effective
Hamiltonian of electron-hole dipoles, the simplest type of
neutral excitations in an electronic system. The Hamiltonian
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of the dipole excitations in a disordered medium is given by

Ĥ0 =
∑
r,d

Erdb̂
†
rdb̂rd −

∑
r,d

Jrd(b̂†rd + b̂rd)

+
∑

rd,r ′d ′
Eint(rd,r′d′)b̂†rdb̂

†
r′d′ b̂r′d′ b̂rd, (2.1)

where b̂
(†)
rd is the annihilation (creation) operator of a dipole

with polarization d at location r (e.g., the location of the
positive charge in the dipole);Erd is the energy of the respective
dipole state, which strongly fluctuates from site to site due to
the presence of quenched disorder; Jrd is the matrix element
of the recombination of the dipole (electron hopping to the
location of the hole or vice versa), which may be assumed
real without loss of generality; we have also introduced the
interaction energy

Eint(rd,r′d′) = Q(d̂,d̂′,n)
|d||d′|

|r − r ′|3 , (2.2)

Q(d̂,d̂′,n) = d̂ · d̂′ − 3(d̂ · n)(d̂′ · n) (2.3)

between dipoles at locations r and r′ with polarizations d and
d′, respectively, where n = (r − r′)/|r − r′| and d̂ = d/|d| are
unit vectors parallel, respectively, to r − r′ and d.

Long-range hopping. While strong disorder prevents dipole
hopping on short distances, dipole excitations allow for long-
range virtual hops [1] between remote sites with close energies
via annihilating a dipole at the initial location and then creating
it at the final location or vice versa. The amplitude of such a
hop is given, to the leading order in the recombination elements
Jrd, by

Trd,r′d′ ≈ JrdJr′d′

E2
rd

|d||d′|Q(d̂,d̂′,n)

|r − r′|3 . (2.4)

Thus, in the limit of a strongly disordered system (small re-
combination elements Jrd compared to the typical fluctuations
of the energies Erd), the dynamics of the dipoles is effectively
a single-particle problem.

In this paper, we do not consider many-dipole processes,
such as one dipole decomposing into two dipoles of the
same total energy. For the case of sufficiently strong disorder,
considered in Sec. III, we assume that such processes are
suppressed either by a small size of the system or by the
suppressed density of states of the dipoles into which an
excitation may decompose (the dipole density of states may,
e.g., have a gap at sufficiently low energies). As discussed
in Sec. IV, in very large systems it may be assumed that
effective excitations are already renormalized by many-dipole
processes.

Cotunneling through excitation states with high energies.
When computing energy-level correlations, we assume that
the energies of all sites Erd lie sufficiently close to each
other and do not consider sites with high excitation ener-
gies Erd � ω. In principle, cotunneling through such high-
energy sites in a disordered system may lead to ultraviolet
divergencies in physical observables [31]. These divergen-
cies may be treated by means of the renormalization-group
(RG) procedure described in Ref. [31], which repeatedly
removes highest-energy excitation states from the system while

renormalizing transition amplitudes between all other states,
with energies closer to ω. In this paper, we assume that the
system we consider is already renormalized following this
procedure and the recombination elements Jrd already include
virtual cotunneling through excitation states with energies far
from E.

III. STRONG DISORDER IN SOLIDS

In this section we consider the correlations of dipole energy
levels and ac conductances in a strongly disordered system,
in which most dipole states are localized almost entirely on
single sites (r,d) (with given polarizations) and are weakly
perturbed by the tunneling to other sites. A dipole is localized
almost entirely on one site (r,d) if there are no other “resonant”
sites around it [1,28,32,33] with close energies |Erd − Er′d′ | �
|Trd,r′d′ |.

The number of resonant sites around a given site r may
be estimated as Nrd ∼ ν0n

∑
d′

∫
r′ |Trd,r′d′ |dr′, where n is the

concentration of sites and ν0 is the density of dipole states at
an isolated site. For the hopping element |Trd,r′d′ | ∝ 1/|r −
r′|3, given by Eq. (2.4) and for strong disorder, the average
number of resonant sites is significantly smaller than unity
near each given site in dimensions d < 3. In this regime,
most of the dipoles are strongly localized and their states
may be considered unaffected by the resonant sites. In 3D,
however, the number of resonant sites diverges [1,28,32,33]
∝nν0〈d2〉J 2E−2

rd ln (Ln
1
3 ) in the limit of an infinite system

L → ∞, where J is the characteristic recombination matrix
element.

In this section, we assume that the disorder is strong and
that most dipoles are strongly localized, either due to a low
spatial dimension d < 3 or due to a sufficiently small size in
3D, L � n− 1

3 exp ( E2

nν0J 2d2 ).

Generic expressions for dipolar energy-level correlations

In what immediately follows, we derive a generic expression
for the correlator R2(ω,r,r′) of the energy levels of a dipole
excitation on two sites and then, using it, compute the correlator
R2(ω) of the energy levels in a strongly disordered system of
volume V .

While most dipoles are strongly localized on single sites,
there exist rare pairs of sites with close energies, on which
dipole states get strongly hybridized due to the tunneling. This
hybridization of pairs of sites leads to correlations between
dipole states on arbitrarily long distances, which lead to
correlations between energy levels and various observables.
In the limit of strong disorder (small system size) under
consideration, one may neglect resonances between clusters
of three or more sites.

Correlation function in a system of two sites. The hybridiza-
tion of two dipole states with close energies Erd and Er ′d ′ at
locations r and r′ and with polarizations d and d′ leads to the
creation of two hybridized states with energies

E± = 1

2
(Er ′d ′ + Erd) ± 1

2
[(Erd − Er′d′)2 + 4|Trd,r′d′ |2]

1
2 ,

(3.1)
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where the hopping amplitude Trd,r′d′ is given by Eq. (2.4).
The density of states on such a pair of sites is given by ν(E) =
δ(E − E+) + δ(E − E−). The correlation function R2(ω,r,r′)
of dipole states on two sites r and r′ is given by

R2(ω,r,r′) = 1

4ν2
0

∫
dd1dd2f (d1)f (d2)

×
〈[

δ
(
E + ω

2
− E+

)
+ δ

(
E + ω

2
− E−

)]
×

[
δ
(
E − ω

2
− E+

)
+ δ

(
E − ω

2
− E−

)]〉
dis

,

(3.2)

where f (d) is the distribution function of the dipole moments,
assumed independent of the onsite energy fluctuations; 〈. . .〉dis

is the averaging with respect to the realizations of disorder,
which affects both the energies Erd and Er′d ′ and the hopping
Trdr′d ′ via the recombination elements Jrd; we have also used
that the density of dipole states ν0 at each site may be consid-
ered constant close to the energy E under considerations, so
long as ω � E,ν−1

0 .
To make further progress, we assume that the recombination

elements Jrd and the onsite energies Erd fluctuate indepen-
dently. Introducing a variable τ , such that 2Trd,r′d′τ = Erd −
Er ′d ′ , and the distribution function P (Jrd) of the recombination
elements Jrd, the two-site correlator (3.2) is reduced to

R2(ω,r,r′) = 1

2

∫
dJrd dJr′d′P (Jrd)P (Jr′d′)

×
∫

dd1dd2f (d1)f (d2)
∫

dτ |Trd,r′d′ |

× δ(ω − 2|Trd,r′d′ |
√

τ 2 + 1). (3.3)

Correlation function on multiple sites. Equation (3.3) de-
scribes dipole energy correlations in a system of two sites.
In what immediately follows, we derive the energy-level
correlation function for a system of N � 1 sites.

In the absence of dipole tunneling between sites (Trd,r′d′ =
0), it is given by

Runcorr
2 (ω)

=
∑

rd,r′d′
∫

dErddEr′d′ν2
0δ(E − Erd)δ(E + ω − Er′d′)

(ν0N )2

= N (N − 1)

N2

N→∞−→ 1. (3.4)

For finite tunneling, dipole states on different sites get hy-
bridized, and the correlation function R2(ω) deviates from
unity. In the limit of strong disorder, which we consider in this
section, pairs of resonant sites are rare, only a small fraction
of dipole states get hybridized due to dipole hopping and
resonances of three or more sites may be neglected.

The correlation function in such a system of multiple sites
may be found by hybridizing dipole states on all pairs of
sites with close energies and computing (see Appendix A for
details) the modification of the correlation function similarly
to Eq. (3.3). The full correlation function in a system of many

sites with rare resonances is given by

R2(ω) = 1

V 2

∫
dJrddJr′d′P (Jrd)P (Jr′d′ )

∫
dr dr′

×
∫

dd dd′ f (d)f (d′) �[1 − (2Trd,r′d′/ω)2]/[1

− (2Trd,r′d′/ω)2]
1
2 , (3.5)

where the hopping element Trd,r′d′ is given by Eq. (2.4) and
�(. . .) is the theta function.

A rigorous evaluation of the correlation function R2(ω),
given by Eq. (3.5), requires making an assumption about the
distribution P (Jrd) of the electron-hole recombination matrix
elements Jrd. Since the exact form of the distribution will affect
only numerical coefficient, we assume, for simplicity, that they
are sharply peaked near certain value J :

P (Jrd) = δ(J − Jrd). (3.6)

We will also assume a uniformly random orientation of the
dipole moments in the d-dimensional space

f (d) = δ(|d| − d0)/
(
�dd

d−1
0

)
, (3.7)

where �d = 2π
d
2


( d
2 )

is the area of a unit sphere in d dimensions.

We note that in general the recombination elements Jrd may
have arbitrary signs, in contrast to our choice of their distri-
bution (3.6). Indeed, in a system of electrons in a disordered
system such elements are determined by overlap integrals of
oscillating wave functions. However, such fluctuations of the
sign do not affect qualitatively the correlation function R2(ω)
in the limit of strong disorder considered in this section.

By switching to the integration with respect to the center of
mass r+r′

2 and relative r̃ = r − r′ coordinates, Eq. (3.5) may
be simplified as

R2(ω) = 1

V

∫
dd dd′f (d)f (d′)

×
∫

r̃>r̃ω

d r̃

[
1 −

(
r̃ω(d1,d2,r̃/r̃)

r̃

)6
]− 1

2

, (3.8)

where we have introduced r̃ω(d1,d2,n) = [ 2J 2d2
0

E2 ( |Q(d1,d2,n)|
ω

)]
1
3
,

the characteristic distance at which the dipole interaction
energy is of order ω. The integral in Eq. (3.8) cannot
be evaluated exactly for arbitrary parameters. Below, we com-
pute the asymptotic behavior of the correlation function R2(ω)
in the limit of large ω � ωV and small ω � ωV frequencies,
where

ωV = 2J 2d2
0

E2V
3
d

(3.9)

is the characteristic interaction energy between dipoles on the
length of the system L ∼ V − 1

d .

1. Large-frequency limit

For ω � ωV , the value of the integral (3.8) in dimensions
d < 3 comes from distances r̃ of order r̃ω, which in this limit
are significantly shorter than the characteristic system size V

1
d .

The upper limit of integration with respect to r̃ in Eq. (3.8) may
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be extended to infinity, giving

R2(ω � ωV ) ≈ 1 − 2π
d+1

2 

(
1 − d

6

)



(
d
2

)



(
1
2 − d

6

)
d

〈|Q| d
3
〉
d

(ωV

ω

) d
3
,

(3.10)

where 〈|Q| d
3 〉d = ∫

dd̂1dd̂2dn|Q(d̂1,d̂2,n)|
d
3 is our conven-

tion for the function |Q| d
3 averaged with respect to the direc-

tions d̂1 and d̂2 of the dipole moments d1 and d2 and of the
vector n, where Q describes the angular dependence of the
dipolar interactions [cf. Eq. (2.3)].

Equation (3.10) is our main result for the energy-level
correlation function in a generic strongly disordered system
in d spatial dimensions in the limit of large frequencies energy
differences ω. For d = 2 it gives

Rd=2
2 (ω � ωV ) = 1 − 1.28

(ωV

ω

) 2
3
, (3.11)

where we used 〈|Q| 2
3 〉 ≈ 0.95 in two dimensions. Let us note

that for d = 3 the coefficient before the last term in Eq. (3.10)
vanishes, and, in order to obtain the frequency dependency of
R2(ω), it is necessary to evaluate a correction of higher order
in 1/ω. Direct integration in Eq. (3.8) yields

Rd=3
2 (ω � ωV ) = 1 − C2

(ωV

ω

)2
, (3.12)

where C2 is a coefficient of order unity which depends on the
shape of the sample.

Equation (3.10), which accurately describes the large-
frequency behavior of correlation function in dimensions d �=
3, and Eq. (3.12), which applies for d = 3, may be combined
into the interpolation formula

R2(ω) ≈ 1 − (3 − d)C1

(ωV

ω

) d
3 − C2

(ωV

ω

)2
. (3.13)

We emphasize that in general in dimensions d �= 3 the correla-
tion function R2(ω) contains contributions ∝1/ωβ with d/3 <

β < 2, which exceed the last term in Eq. (3.13). However, in
these dimensions the leading-order large-frequency behavior
of the energy-level correlations is determined by the first term
in the right-hand side of Eq. (3.13). In 3D, the leading-order
correlations are described by the last term of (3.13). Thus,
Eq. (3.13) accurately describes the large-frequency asymp-
totics of the of the correlation function R2(ω) in all dimensions.

2. Small-frequency limit

In the limit ω � ωV , Eq. (3.8) may be rewritten as

R2(ω) = C3
ω

ωV

, (3.14)

where the coefficient C3 is given by C3 =
π

V
1+ 3

d

∫
d r̃ r̃3

∫
dd1dd2f (d1)f (d2)δ(Q).

Equation (3.14) is our main result for the dipole energy-level
correlation function in a strongly disordered electronic system
in arbitrary dimensions in the limit of small frequencies. It
demonstrates that the correlation function is linear in frequency
ω for such strongly disordered systems, similarly to the case
of a weakly disordered metal in the orthogonal symmetry
class [17]. Such a linear dependency may also be expected

FIG. 1. The correlation function R2(ω) of the dipole energy levels
in an electronic system as a function of frequency ω (in units ωV ),
obtained from a numerical integration of Eq. (3.8). The small- and
large-frequency asymptotic behaviors given by Eqs. (3.11), (3.12),
and 3.14 are shown in red.

from a phenomenological random-matrix-theory argument
[25], based on considering a two-level system with a random
Hamiltonian.

The whole frequency dependency of the correlation func-
tion R2(ω) for dimensions d = 2 and 3, obtained from numer-
ical integration of Eq. (3.8), is shown in Fig. 1. The dashed
lines in Fig. 1 show the low-frequency behavior described by
the linear dependence (3.14); the dotted lines show the high-
frequency asymptotics described by Eqs. (3.11) and (3.12).

IV. ARBITRARY DISORDER STRENGTH
IN A 3D ELECTRONIC SYSTEM

In Sec. III we considered energy-level correlations in a
system, which is either sufficiently strongly disordered or
sufficiently small, and only sparse resonances between pairs
of dipole sites are essential for correlations of energy levels,
while higher-order resonances may be neglected. As discussed
in Sec. III and as first pointed out in Refs. [28,32,33], excita-
tions with the hopping amplitude ∝1/r3 have infinitely many
resonances in 3D systems at arbitrarily strong disorder, unlike
systems in lower dimensions d < 3. Therefore, sufficiently
large 3D electronic systems may host rather complicated dipole
states, which involve resonances on multiple sites.

The correlation functions may then be still found by replac-
ing the dipole states by effective hybridized states (which may
effectively be many-dipole states) on the scale of the volume
V of interest and investigating the hopping matrix elements for
such states. The energies of the effective hybridized states may
be assumed to have a uniform probability distribution due to
the uniform energy distributions of dipoles on constituent sites
and their independence of the hopping elements. Assuming that
the hybridized states have dipole moments, one may expect
the results of Sec. III for the frequency dependency of the
correlator R2(ω) to carry over directly to the case of weaker
disorder, which allows for complicated hybridized states.
Namely, one may expect that at low frequencies R2(ω) ∝ ω,
while for ω → ∞R2(ω) = 1 − const

ω2 . We emphasize, however,
that the dependencies on the system size (volume V ) may be
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different from those found in Sec. III because the effective
dipole moments of hybridized states of multiple sites in general
depend on the volume V .

Three decades ago, a renormalization procedure was devel-
oped in Ref. [28] for constructing hybridized dipolelike states
in 3D by repeatedly hybridizing pairs of dipolelike states with
closest energies within a given distance while increasing the
system size or the interaction radius. A more rigorous recent
study [6] for a similar 2D problem with ∝1/r2 dipole hopping
established the existence of fixed points in a system on the
orthogonal symmetry class (which is also the focus of this
paper) with critical wave functions of the dipole states.

In what immediately follows, we construct a renormal-
ization procedure at sufficiently strong disorder, similar to
that of Ref. [28], to explore qualitatively the correlations
of complex multisite excitations with effective renormalized
dipole moments and recombination matrix elements Jrd ≡
〈0| Ĥ0 |rd〉 (the matrix elements of the Hamiltonian between
the excitation state and the ground state of a noninteracting
system).

When two dipole states (rd) and (r′d′) are hybridized, they
are being replaced by two other states with the annihilation
operators b̂r+d+ and b̂r−d− :

(
b̂r+d+
b̂r−d−

)
=

(
cos θ sin θ

− sin θ cos θ

)(
b̂rd

b̂r′d′

)
, (4.1)

where cot(2θ ) ≡ τ = (Erd − Er′d′)/2Trd,r′d′ . The recombina-
tion matrix elements of the hybridized states and the elements
of hopping to remote sites r̃d̃ with |r̃ − r|,|r̃ − r′| � |r − r′|
are given by

(Jr+d+ ,Jr−d− )T = U (Jrd,Jr′d′)T , (4.2)

(Tr̃d̃,r+d+ ,Tr̃d̃,r−d− )T = U (Tr̃d̃,rd,Tr̃d̃,r′d′)T . (4.3)

Because the hopping of dipole excitations depends on the
product Jrd ≡ prdd of its recombination element Jrd and the
dipole moment d, it is convenient to introduce a new variable

prd ≡ Jrdd (4.4)

and describe the evolution of its distribution function F (prd)
when repeatedly hybridizing dipole states. Assuming that
the initial distributions of the dipole moments d and the
recombination elements are isotropic, the distribution F (prd)
also remains isotropic under renormalization and depends only
on the absolute value of prd.

The renormalization procedure involves repeated hybridiza-
tion of pairs of dipole states with close energies. When
increasing the system size L (or the interaction radius), new
states are formed out of previously hybridized states. In the
spirit of Ref. [28], we neglect resonances of three or more
sites, which is justified in the limit of sufficiently strong
disorder under consideration, with ν0〈d2〉J 2E−2

rd n � 1, where
n = N/V is the density of the dipoles. Introducing variable
 = log L, where L is the system size (or the interaction cutoff
radius), we arrive at the RG flow equation for the distribution

function F (prd):

∂F (prd)

∂
= nν0

E2

∫
dn

∫
dpr1d1dpr2d2F

(
pr1d1

)
F

(
pr2d2

)
×

∫
dτ |Q(pr1d1 ,pr2d2 ,n)|[δ(p − p+)

+ δ(p − p−) − δ(p − pr1d1 ) − δ(p − pr2d2 )].

(4.5)

Similarly, when increasing the size of the system (or the
interaction cutoff radius), the energy-level correlation func-
tion R2(ω) gets renormalized according to the equation (see
Appendix for details)

∂R2(ω,)

∂
= 1

V

∫
dn

∫
dpr1d1dpr2d2F

(
pr1d1

)
×F

(
pr2d2

) ∫
dτ |Q(pr1d1 ,pr2d2 ,n)|/E2

× [δ(ω − 2|Tr1d1,r2d2 |
√

τ 2 + 1)

− 2δ(ω − 2Tr1d1,r2d2τ )]. (4.6)

The solutions of the RG equations (4.5) and (4.6) describe the
distributions of the parameters of dipole states and energy-level
correlation functions in a 3D system of arbitrary size.

Level correlations at intermediate lengths. Because the
hybridized states are very close in structure to large-size
dipoles, it is possible to apply immediately the results of Sec. III
to their energy-level corrections, which gives

R2(ω) =
{
C̃3(V )ω, ω → 0
1 − C̃2(V )/ω2, ω → ∞.

(4.7)

We note, however, that the dependencies of the coefficients
C̃3(V ) and C̃2(V ) on the system of volume V are in general
different from the dependencies C̃3(V ) ∝ V and C̃2(V ) ∝
1/V 2 in the case of strong disorder [cf. Eqs. (3.14) and (3.12)]
because the parameters of the hybridized composite dipoles
depend on the system size. These dependencies will depend
on the details of the initial dipole distributions.

Fixed point. The procedure of the hybridization described
above leaves invariant the quantities J 2

r1d1
+ J 2

r2d2
and p2

r1d1
+

p2
r2d2

for pairs of states. As a result, the quantity prd and
the dipole states remain bounded for the typical renormalized
composite dipole states. It is natural to assume then that the
distributions of the parameters prd of the renormalized dipole
states approach a fixed point F ∗(prd). Such type of a fixed point
has been obtained, under certain approximations, in Ref. [28]
for a similar model for dipoles with the power-law hopping
∝1/r3 in 3D. Assuming a similar fixed point exists here, the
typical value of the parameter prd saturates to a constant value
in sufficiently large sample, and the results of Sec. III for both
the energy and size dependencies of the energy-level correlator
R2(ω) may be carried over directly. Thus, the energy-level
statistics in very large 3D systems are given by Eq. (4.7) with
C̃3(V ) ∝ V and C̃2(V ) ∝ 1/V 2.

V. GENERIC POWER-LAW HOPPING

Excitations with power-law hopping are often simulated
by means of ultracold particles in magnetic or optical traps.
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Recently, excitations with power-law hopping ∝1/rα with
tunable α = 0 . . . 3 have been realized in 1D [10–13] and
2D [14] arrays of trapped ultracold ions. Excitations with
power-law hopping also exist in systems of Rydberg atoms
[34] (α = 6 or 3) and polar molecules [35,36] (α = 3).

In what follows, we compute energy-level statistics in a
strongly disordered system with a generic power-law hopping
described by the Hamiltonian

H =
∑
r,λ

Erλ′ b̂
†
rλb̂rλ′ −

∑
r,r′,λ,λ′

Trλ,r′λ′ b̂
†
rλb̂r′λ′ , (5.1)

where the operators b̂rλ and b̂
†
rλ annihilate and create exci-

tations at location r; λ labels discrete degrees of freedom of
excitations at a given location, e.g., the spatial orientation of the
excitations; and we have also introduced the hopping element

Trλ,r′λ′ = 2Qα(λ,λ′)
|r − r′|α (5.2)

with the kernel Qα(λ,λ′) which is independent of the distance
but depends on the excitation states λ.

Correlations at strong disorder. In what follows, we com-
pute the energy-level correlation function in the case of very
strong disorder, when correlations come from rare resonances
on pairs of sites. Following the same steps as when deriving
Eq. (3.8), we arrive at

R2(ω) = 1

V

∫
dλ

∫
dλ′P (λ)P (λ′)

×
∫

r̃>r̃ω

d r̃

[
1 −

(
2Qα(λ,λ′,r̃/r̃)

ωr̃α

)2
]− 1

2

, (5.3)

where r̃ω = (2Qα/ω)
1
α and P (λ) is the probability distribution

of the excitation states λ.
The typical splitting between neighboring energy levels

is given by the characteristic matrix element of quasiparticle
hopping

ωV = 2V − α
d 〈|Q(λ,λ′)|〉λ,λ′ , (5.4)

where 〈. . . 〉λ = ∫
dλ P (λ) . . . . For sufficiently smooth prob-

ability distributions of the function Q(λ,λ′) and its moments
Q(λ,λ′)β , the coefficients

Aβ = 2β〈|Q(λ,λ′)|β〉λ,λ′

V
αβ

d ω
β

V

(5.5)

are of order unity, and ωV is the only energy scale in the
problem. In the limit ω � ωV the correlation function is given
by

R2(ω � ωV ) ≈ 1 −
2π

d+1
2 


(
1 − d

2α

)
A d

α



(

d
2

)



(
1
2 − d

2α

)
d

(ωV

ω

) d
α

. (5.6)

Due to the divergence of the gamma function 
( 1
2 − d

2α
) ∼

2α
α−d

when the dimension d approaches α, the coefficient in
the last term in Eq. (5.6) vanishes for d = α. Therefore, the
energy-level correlations in the dimensions d = α at ω = ωV

are described by the next-leading term in 1/ω:

Rd=α
2 (ω � ωV ) ≈ 1 − A2

(ωV

ω

)2
, (5.7)

where A2 is a coefficient of order unity which depends on
the shape of the system. Equations (5.6) and (5.7) may be
combined into one interpolation formula

R2(ω) ≈ 1 − (α − d)A1

(ωV

ω

) d
α − A2

(ωV

ω

)2
. (5.8)

Small-frequency limit. In the limit ω � ωV we obtain,
similarly to Eq. (3.14),

R2(ω) = A3
ω

ωV

, (5.9)

where the dimensionless coefficient A3 = π〈|Q(λ,λ′)|〉λ,λ′

V
1+ α

d∫
d r̃ r̃α

∫
dλ dλ′P (λ)P (λ′)δ(Qα) depends on the shape of the

system.
Behavior in high and low dimensions. Equations (5.8)

and (5.9) describe energy-level correlations accurately in low
dimensions d < α or in sufficiently small systems in higher
dimensions d � α. In that case, the correlations come from
rare resonances between excitation states on pairs of sites.
In higher dimensions, d � α, the number of resonances is
infinite in the limit of an infinite system, which may lead to
a strong renormalization of the excitation states. Based on
the arguments similar to those of Sec. IV, we expect that
in higher-dimensional systems the frequency dependency of
the correlation function is still given by Eqs. (5.8) and (5.9),
however, the volume dependence is in general different.

VI. CONCLUSION AND OUTLOOK

Motivated by neutral excitations in disordered electronic
systems and trapped ultracold particles with power-law in-
teractions, we have computed the energy-level correlation
functions for particles with the power-law hopping ∝rα . Our
main results for the correlation functions for systems in various
dimensions and various energy intervals are summarized by
Eqs. (3.10), (3.12), (3.14), (5.6), (5.7), and (5.9). In a disordered
electronic system, the correlation function may be observed as
a correlator of ac conductances R2(ω) ∝ 〈G(�)G(� + ω)〉�,
where 〈. . .〉� is the averaging with respect to frequency � in a
sufficiently large energy window.

At small energy differences, the energy-level correlations
displays Wigner-Dyson statistics [18] which hints at the
possibility of chaotic dynamics of the excitations involved.
This chaotic behavior could be identified, for example, via
out-of-time-order correlators [30] of, e.g., local voltages or
charges in a system with excitations which allow for power-law
hopping. We do not present such analysis here and leave them
for future studies. Also, although we do not expect many-body
processes to change the form of the correlation function in
very large samples, the role of such processes also deserves a
separate investigation.

Another question, which deserves a study, is the relation
between the disorder strength and the level statistics in systems
with the power-law hopping ∝1/rα for sufficiently small α.
Indeed, those system support excitations with the dispersion
εk ∝ kα−d . In dimensions d > 3α

2 they display plenty of uncon-
ventional disorder-driven phenomena, such as disorder-driven
transitions or sharp crossovers in non-Anderson universality
classes, unconventional Lifshitz tails, etc. (see Ref. [16] for a
review) and possibly transitions in the energy-level statistics.
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While we have obtained the strong-disorder asymptotics of the
respective level statistics in this paper, we leave further studies
of the possibility of such transitions for future work.
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APPENDIX A: CHANGE TO THE LEVEL CORRELATION
FUNCTION WHEN ADDING HOPPING BETWEEN

TWO SITES

In this Appendix, we derive the modification of the corre-
lation function R2(ω), defined by Eq. (1.1), when two dipole
states hybridize. We consider a system of N sites, where two

sites (r1,d1) and (r2,d2) are initially isolated from each other
and from the rest of the system and compute the change of
R2(ω) when adding hopping Tr1d1,r2d2 between the two sites.
The model under consideration applies to the case of very
strong disorder, when resonant pairs of sites are rare, as well as
to dipole hybridization during one step of the strong-disorder
RG, when composite dipole states may be considered, and the
hybridization between two dipole states being merged and the
rest of the system may be neglected.

The modified density of dipole states after adding the
hopping

ν̃(E) =
(

δ(E − E+) + δ(E − E−) +
∑

λ

δ(E − Eλ)

)
(A1)

consists of the contribution of the hybridized states’ energies
E+ and E− and that of the rest of the system [the sum in
Eq. (A1)]. Because the hopping is small, and the hopping
and the onsite dipole energies fluctuate independently, the
average density of states is unaltered by the hybridization
〈ν̃〉dis = 〈ν〉dis = Nν0. The change of to the disorder-averaged
correlation function R2(ω), defined by Eq. (1.1), is given by

δR2(ω) = 1

N2ν2
0

∫
dJr1d1P (Jr1d1 )

∫
dJr2d2P (Jr2d2 )

∫
dd1dd2f (d1)f (d2)

∫
ν0dEr1d1ν0dEr2d2

×
〈
ν̃
(
E + ω

2

)
ν̃
(
E − ω

2

)
− ν

(
E + ω

2

)
ν
(
E − ω

2

)〉
λ
,0 (A2)

where 〈. . .〉λ is the averaging with respect to the disorder in the rest of the system, independent of the parameters on sites (r1,d1)
and (r2,d2).
We note that, according to Eq. (A1), products of the modified densities of states ν̃(E + ω

2 )ν̃(E − ω
2 ) in Eq. (A2) contain three types

of terms involving products of δ functions: (i) δ(E − E± + ω/2)δ(E − E∓ − ω/2), (ii) δ(E − E± + ω/2)δ(E − Eλ − ω/2),
and (iii) δ(E − Eλ + ω/2)δ(E − Eλ′ − ω/2). Terms (iii) are canceled by equivalent contributions from ν(E + ω

2 )ν(E − ω
2 ).

Contributions of type (ii) also vanish, due to the identity∫
dEr1d1 dEr2d2

[
δ(E − E+) + δ(E − E−) − δ(E − Er1d1 ) − δ(E − Er2d2 )

] = 0. (A3)

Equation (A2) may therefore be simplified to include only the averaging with respect to the dipole parameters on sites (r1,d1)
and (r2,d2):

δR2(ω) = 1

N2

∫
dJr1d1P (Jr1d1 )

∫
dJr2d2P (Jr2d2 )

∫
dd1dd2f (d1)f (d2)

∫
dEr1d1

∫
dEr2d2

×
{[

δ
(
E + ω

2
− E+

)
+ δ

(
E + ω

2
− E−

)][
δ
(
E − ω

2
− E+

)
+ δ

(
E − ω

2
− E−

)]
−

[
δ
(
E + ω

2
− Er1d1

)
+ δ

(
E + ω

2
− Er2d2

)][
δ
(
E − ω

2
− Er1d1

)
+ δ

(
E − ω

2
− Er2d2

)]}
. (A4)

Changing variables to τ = 1
2Tr,d,r′d′ (Erd − Er ′d ′ ) and integrating out 1

2 (Erd + Er ′d ′ ) gives

δR2(ω) = 2

N2

∫
dJr1d1P (Jr1d1 )

∫
dJr2d2P (Jr2d2 )

∫
dd dd2f (d1)f (d2)

×
∫

dτ
∣∣Tr1d1,r2d2

∣∣[δ(ω − 2
∣∣Tr1d1,r2d2

∣∣√τ 2 + 1
) − 2δ

(
ω − 2τTr1d1,r2d2

)]
. (A5)

So far, we have obtained the expression for the correction to the level correlation, following the hybridization of a single pair
of dipoles. It is straightforward to obtain the expression for the level correlation given in Eq. (3.5) which takes into account all
resonances in a given volume V by integrating over 1

2
N2

V 2 dr1dr2 and then integrating out the variable τ .
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Application to the strong-disorder renormalization procedure

The modification of the correlation function R2(ω) when hybridizing dipole states may be considered as a step of an RG
procedure, discussed in Sec. IV and applied in Refs. [28,32,33] (see also Ref. [37]). During this procedure, pairs of resonant
dipole states are being repeatedly hybridized while increasing the hopping distance r = |r1 − r2| = e or the system size.

As discussed in Sec. IV, the hopping of dipoles depends only on the product prd = Jrdd, which is why it is convenient
to introduce the distribution function F (prd) of variable prd, which flows under the renormalization procedure. We can now
obtain the modification to R2(ω) as a result of hybridizing dipoles in the volume element. The number of dipole pairs separated
by vectors r in an infinitesimal element of space, confined by the radii r and r + dr and the spatial angle d�, is given by
1
2 r2dr

∫
d�

∫
N
V

dr1
N
V

dr2δ[r − (r1 − r2)]. Utilizing the expression in Eq. (A5) for hybridization of a single pair of dipoles and
multiplying by the number of dipoles in the volume element, we obtain the modification of the energy-level correlation function

δR2(ω,) = r2dr

∫
d�

∫
1

2

N

V
dr1

N

V
dr2δ[r − (r1 − r2)] · 1

N2

∫
dpr1d1dpr2d2F

(
pr1d1

)
F

(
pr2d2

)
× 2

∫
dτ

∣∣Tr1d1,r2d2

∣∣[δ(ω − 2
∣∣Tr1d1,r2d2

∣∣√τ 2 + 1
) − 2δ

(
ω − 2τTr1d1,r2d2

)]
, (A6)

where the factor of 1
2 in the right-hand side prevents double counting of dipoles.

To make further progress, we note that the contribution to Eq. (A6), which comes from the second δ function, may be simplified
as ∫

dr
2

∫
dr1 dr2

V 2
δ[r − (r1 − r2)]

∫
dpr1d1dpr2d2F

(
pr1d1

)
F

(
pr2d2

) ∫
dτ 2

∣∣Tr1d1,r2d2

∣∣[ − 2δ
(
ω − 2τTr1d1,r2d2

)] = −1. (A7)

The correlation function R2(ω) is obtained by integrating Eq. (A6) with respect to  from  = 0 to  = log L, where L is the
size of the system or the interaction cutoff radius. Performing also integration with respect to (r1 − r2) and 1

2 (r1 + r2) over the
volume V , we arrive at∫ =ln L

=0

∂R2(ω,)

∂
d = −1 + 1

V

∫
d3r

∫
dpr1d1dpr2d2F

(
pr1d1

)
F

(
pr2d2

) ∫
dτ

∣∣Tr1d1,r2d2

∣∣δ(ω − 2
∣∣Tr1d1,r2d2

∣∣√τ 2 + 1
)
. (A8)

Equation (A8) together with the initial condition R2(ω, = 0) = 1 gives

R2(ω, ln L) = 1

V

∫ ln L

0
d

∫
d�

∫
dpr1d1dpr2d2F

(
pr1d1

)
F

(
pr2d2

) ∫
dτ

|Q(pr1d1 ,pr2d2 )|
E2

δ
(
ω − 2

∣∣Tr1d1,r2d2

∣∣√τ 2 + 1
)
. (A9)

Equation (A9) may also be rewritten in the form of the RG flow equation

∂R2(ω,)

∂
= 1

V

∫
d�

∫
dpr1d1dpr2d2F

(
pr1d1

)
F

(
pr2d2

) ∫
dτ

∣∣Q(
pr1d1 ,pr2d2 ,�

)∣∣
E2

× [
δ
(
ω − 2

∣∣Tr1d1,r2d2

∣∣√τ 2 + 1
) − 2δ

(
ω − 2Tr1d1,r2d2τ

)]
. (A10)

APPENDIX B: CHANGE TO THE DISTRIBUTION FUNCTION OF DIPOLES WHEN HYBRIDIzING TWO SITES

In this Appendix, we derive the RG flow equation for the distribution function F (prd) of the dipole parameter prd = Jrdd,
the product of the dipole moment d and the recombination matrix element Jrd, discussed in Sec. IV. When two dipoles with
parameters pr1d1 and pr2d2 are hybridized, they get replaced by two other dipole states with parameters p+ and p−, and the
distribution function gets modified according to

δF (prd)=
∫

dpr1d1dpr2d2F
(
pr1d1

)
F

(
pr2d2

) ∫
ν0dEr1d1ν0dEr2d2

[
δ(p−p+)+δ(p−p−)−δ

(
p−pr1d1

)−δ
(
p−pr2d2

)]
. (B1)

Changing variables to τ = (Er1d1 − Er2d2 )/(2Tr1d1,r2d2 ), and considering the effects of all resonances in a spherical shell of radius
r → r + dr , with r = |r1 − r2|, gives

δF (prd) = N

V
r2dr

∫
d�

∫
dpr1d1dpr2d2F

(
pr1d1

)
F

(
pr2d2

) ∫
ν0

∣∣Tr1d1,r2d2

∣∣dτ

× [
δ(p − p+) + δ(p − p−) − δ

(
p − pr1d1

) − δ
(
p − pr2d2

)]
. (B2)

Introducing the RG parameter  = log r and using that Tr1d1,r2d2 = Q(pr1d1 ,pr2d2 )/(E2r3), we obtain the RG flow equation for
the distribution function F (prd):

∂F (prd)

∂
= nν0

E2

∫
d�

∫
dpr1d1dpr2d2F

(
pr1d1

)
F

(
pr2d2

) ∫
dτ

∣∣Q(
pr1d1 ,pr2d2

)∣∣
× [

δ(p − p+) + δ(p − p−) − δ
(
p − pr1d1

) − δ
(
p − pr2d2

)]
. (B3)
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