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Topological interface modes in local resonant acoustic systems
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Topological phononic crystals are artificial periodic structures that can support nontrivial acoustic topological
bands, and their topological properties are linked to the existence of topological edge modes. Most previous
studies have been focused on the topological edge modes in Bragg gaps, which are induced by lattice scattering.
While local resonant gaps would be of great use in subwavelength control of acoustic waves, whether it is possible
to achieve topological interface states in local resonant gaps is a question. In this paper, we study the topological
properties of subwavelength bands in a local resonant acoustic system and elaborate the band-structure evolution
using a spring-mass model. Our acoustic structure can produce three band gaps in the subwavelength region: one
originates from the local resonance of unit cell and the other two stem from band folding. It is found that the
topological interface states can only exist in the band-folding-induced band gaps, but never appear in the local
resonant band gap. In addition, the numerical simulation in a practical system perfectly agrees with the theoretical
results. Our study provides an effective approach of producing robust acoustic topological interface states in the
subwavelength region.
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I. INTRODUCTION

Over the past decades, topological properties have attracted
extensive research interests in electronic materials [1,2], me-
chanical metamaterials [3–5], photonic systems [6–8], and
phononic systems [9–17]. Topological invariants, such as
the Chern number [1–17] and Zak phase [18–20], can be
used to characterize the topological properties of bands. The
most fascinating phenomenon in these topological systems is
the bulk-edge correspondence associated with topologically
protected edge modes, which are one-way propagation modes
along the surface or interface and are immune to lattice defects.
For one-dimensional (1D) periodic systems, the Su-Schrieffer-
Heeger (SSH) model was proposed to explain the existence
of topological edge modes in polyenes chain [21], and these
states have recently been observed experimentally [22]. The
SSH model has served as a paradigmatic example of a 1D
topological system and has been quickly extended to optical
systems [23–26] and mechanical systems [4]. Recently, Zhang
et al. proposed an acoustic SSH model consisting of a 1D array
of acoustic resonators, and revealed topological interface states
in the lowest Bragg-like gap [27,28]. Most of the previous
works focused on the topological properties in Bragg band gaps
due to Bragg scattering. In acoustic systems, another essential
mechanism to open band gaps is the local resonance, which
stems from the resonance of individual scattering unit [29].
The questions arise whether topological edge states can exist
in local resonant gaps. What are the topological invariants of
the local resonant bands? To answer these questions, in this
paper we build a spring-mass model to describe the bands of
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a 1D SSH chain hybridized with extra local resonances and
systematically demonstrate the evolution of band structure and
topological properties of all subwavelength bands. In addition,
we verify the theoretical results by performing a numerical
simulation of transmission spectra and field distribution in a
practical 1D SSH lattice.

II. SPRING-MASS MODEL

Before considering topological acoustic systems with lo-
cal resonances, we first begin with a simple infinitely long
monatomic chain consisting of mass-in-mass local resonant
unit cells, which is schematically presented in Fig. 1(a). Each
unit cell can be modeled as a spherical shell of mass M

connected to a mass m by two massless springs with equal
spring constants G. All of the neighboring units are connected
by massless springs with spring constants K with a nearest
center-to-center distance of a. The dispersion relation of such
a mass-in-mass monatomic chain is given by

Meff (ω)ω2 = 4Ksin2 qL

2
, (1)

where Meff (ω) = M + mω2
0

ω2
0−ω2 denotes the effective mass of the

local resonant unit cell, ω0 = √
2G/m is the local resonance

frequency, q is the Bloch wave number, and L = a is the
lattice constant. The dispersion relation in Eq. (1) is plotted in
Fig. 1(d) for M = 2.0, m = 0.5, K = 1.25, and ω0 = 1.0. A
typical local resonant band gap appears when the frequency ω

approaches ω0. At such local resonance frequency, Meff → ∞,
meaning that the oscillator is effectively too heavy and does not
have any response on the external applied force. Consequently,
q does not have a real solution in Eq. (1) and a local resonant
band gap is opened at ω ≈ ω0.
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FIG. 1. Schematics of the spring-mass model of a 1D array of local resonant unit cells in (a) monatomic chain, (b) a chain identical to that
in (a) except that the new unit cell consists of two unit cells in (a), and (c) diatomic chain with K1 �= K2. The dashed frames mark the unit cells
for these three distinct chains. L denotes the lattice constant. (d), (e), and (f) are the band structures for the systems depicted in (a), (b), and (c),
respectively. The cyan and magenta strips represent the local resonant gaps and band-folding-induced gaps, respectively. The three gaps in (f)
are indicated by Roman numerals I, II, and III. S1–S6 in (f) denotes the band edges of all gaps.

Next in Fig. 1(b), the unit-cell size is doubled compared
to that in Fig. 1(a), i.e., L = 2a, and the other parameters
remain unchanged. The Brillouin zone for the new choice
of unit cell in Fig. 1(b) is thus reduced to a half of that for
the unit cell in Fig. 1(a). The band structure of this diatomic
chain in Fig. 1(b) can be obtained by folding the band structure
along the midline of the Brillouin zone in Fig. 1(d), as shown
in Fig. 1(e). Further, based on the structure in Fig. 1(b), we
make the left and right springs of each oscillator have different
spring constants K1 and K2, as depicted in Fig. 1(c), forming a
so-called SSH chain [21]. Instead of writing a 4 × 4 matrix
problem, the motion equations can be transformed into an
eigenvalue problem involving a 2 × 2 matrix:(

0 K1 + K2e
−iqL

K1 + K2e
iqL 0

)(
ui

uj

)
= λ

(
ui

uj

)
, (2)

where ui and uj are the displacements of M in one unit cell. The
frequency dependence appears only in the eigenvalues λ(ω) =
[K1 + K2 − Meff (ω)ω2] and the eigenvectors. The eigenvalue
λ(ω) is a monotonic function of ω except at the jump at ω0.
Therefore, the eigenvalue problem in Eq. (2) forms a two-to-
one mapping to that of the SSH model without resonance. For
example, the zero-energy eigenvalue in the SSH model without
resonance is mapped to the two positive-frequency solutions
ωn satisfying the quartic (fourth-order power) equation K1 +
K2 − Meff (ωn)ωn

2 = 0.
By searching for the nontrivial solutions of Eq. (2), the

following dispersion relation for a SSH chain can be obtained:

cos qL = 1 − Meffω
2(2K1 + 2K2 − Meffω

2)

2K1K2
. (3)

The detailed derivation of Eqs. (1), (2), and (3) can be found
in Appendix A, the corresponding band structure calculated by
Eq. (3) is plotted in Fig. 1(f) with K1 = 1.0, K2 = 1.5, and all
of the other parameters are identical to that in Fig. 1(e). As is
well known, the patterns of local resonant band gap and Bragg
band gap are very different. Generally speaking, for a local
resonant band gap, its lower band terminates at the boundary
of the Brillouin zone and its upper band emerges at the center
of the Brillouin zone [see Fig. 1(d)]. However for a Bragg
band gap, the termination of the lower band and emergence
of the upper band will both occur at the boundary or center
of the Brillouin zone. By simply observing the band-structure
patterns, all three band gaps in Fig. 1(f) seem to be Bragg band
gaps. However, the band-structure evolution [from Figs. 1(d)
to 1(f)] suggests that band gap II essentially originates from the
local resonance of the individual scattering unit. It is evident
that this band gap survives in all three structures. When K1 =
K2 = K , the first and second bands, third and fourth bands will
meet at the folding points [see Fig. 1(e)], which can be regarded
as the topological phase-transition points [19,27,28]. When
K1 �= K2, these two band-crossing points open to become gaps
I and III (see Appendix B), which can be regarded as the band-
folding-induced gaps.

We now investigate the topology of all of the bulk bands
in Fig. 1(f) by evaluating the Zak phase [18]. Combining
Eqs. (A3) and (A9) in Appendix A, the eigenvector of a SSH
chain can be obtained:

(ui, vi, uj , vj )T=
(

±eiφ(q ),± ω2
0

ω2
0 − ω2

eiφ(q ), 1,
ω2

0

ω2
0 − ω2

)T

,

(4)
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TABLE I. Sign of ς (n) for SSH chains with K1 < K2 and K1 > K2.

K1 < K2 K1 > K2

sgn[ς (I)] + −
sgn[ς (II)] + +
sgn[ς (III)] + −

where φ(q ) = arg(K1 + K2e
−iqL). The superscript T denotes

the transpose operation. The ± signs in Eq. (4) are determined
by the signs of the eigenvalues of Eq. (2) (see Appendix C). The
Zak phase [19,23] can thus be obtained from the eigenvectors
as

θ = i

∫ π/L

−π/L
dq〈�|∂q |�〉 = −φ

(
π
L

) − φ
(−π

L

)
2

=
{
π, K1 < K2

0, K1 > K2
, (5)

where |�〉 is the eigenvector normalized by the kinetic energy.
The definition of |�〉 and the detailed Zak-phase calculations
can be found in Appendix D. Equation (5) indicates that all
four bulk bands in Fig. 1(f) have the same quantized Zak phase,
either 0 or π . The lattice in Fig. 1(c) has only one definite band
structure, but a different unit-cell choice (K1 < K2 or K1 >

K2) would lead to different topological properties of bands. If
two semi-infinite SSH chains with K1 < K2 and K1 > K2 are
combined to form a whole block, the existence of topological
edge states in the nth band gaps can be determined by the
bulk-edge correspondence. It is only necessary to know the
sign of ς (n), which is defined as [19]

sgn[ς (n)] = (−1)n exp

(
i

n−1∑
m=0

θ (m)

)
. (6)

For the nth band gaps, if the K1 < K2 and K1 > K2 chains
have different sgn[ς (n)], topological edge states will definitely
exist in the band gaps. Conversely, if they have the same
sgn[ς (n)], topological edge states cannot exist. Table I lists
sgn[ς (n)] as calculated for all three band gaps. From Table I, it
can be seen that for two distinct SSH chains, sgn[ς (n)] differs
in band gaps I and III, but is the same in band gap II. Thus, topo-
logical edge states can only exist in band gaps I and III, but not
in band gap II. In other words the original local resonant band
gap will not support any topological edge states, which are pro-
duced simultaneously in two band-folding-induced band gaps.

Another criterion to determine the existence of topolog-
ical edge states is the switching of the field distribution of
eigenstates at the two band-edge points [marked by S1,S2, …,
S6 in Fig. 1(f)] of each isolated band gap for two different
SSH chains, which is known as “band inversion” transition
[2,19]. Since the two different SSH chains have identical
band structures, it is only necessary to calculate the sign of
the eigenvector components ui, vi, uj , vj , which are listed in
Table II. The detailed calculations can be found in Appendix C.
For the band-folding-induced gaps, viz., band gap I and III, the
states of the lower and upper band edges indeed switch upon
changing K1 < K2 to K1 > K2. However, the states do not
undergo any changes in band gap II, viz., the local resonant
band gap. Thus, the topological edge states will definitely only

TABLE II. Signs of eigenstates at band edges.

K1 < K2 K1 > K2

S1 (−, −, +, +)T (+, +, +, +)T
Band gap I

S2 (+, +, +, +)T (−, −, +, +)T

S3 (−, −, +, +)T (−, −, +, +)T
Band gap II

S4 (+, −, +, −)T (+, −, +, −)T

S5 (−, +, +, −)T (+, −, +, −)T
Band gap III

S6 (+, −, +, −)T (−,+, +, −)T

exist in band gaps I and III, but not in band gap II. This result
is consistent with Zak-phase analysis.

To verify the analytical derivations, we construct a supercell
spring-mass system to calculate the dispersion relation of
interface states. The supercell is composed of a SSH chain
with K1 < K2 on the left connected to another SSH chain with
K1 > K2 on the right. The band structure of the connected
chain system is shown in Fig. 2(a). It distinctly exhibits two
extra flat bands, i.e., topological interface states appearing only
in the first and third band gaps, which agree with analytical
predictions. To demonstrate the evolution of the topological in-
terface states, we keep the left chain unchanged, and investigate
the dependence of the band structure on the ratio of the spring
constants K1/K2 of the right chain. The results are presented in
Fig. 2(b). When K1/K2 < 1, all of the bulk bands of the left and
right chains, although they have different frequency regions,
have the same topological properties. Based on the bulk-edge
correspondence, the topological interface states certainly will
not appear in common band gaps. However, when K1/K2 > 1,
the topology of all of the bulk bands of the right chain is
converted, and topological interface states obviously emerge
in the first and third band gaps. Thus these interface states are
topologically protected and robust at the same frequency.

III. SUBWAVELENGTH TOPOLOGICAL INTERFACE
STATES IN A PRACTICAL SYSTEM

In this section we describe a practical structure that yields
topological interface states in the subwavelength region. The
system is a 1D array of “core-shell” cylinders, as depicted in
Fig. 3(a). Each cylinder consists of an epoxy core (mass density
ρ = 1180 kg/m3, longitudinal wave velocity cl = 2540 m/s,
and transverse wave velocity ct = 1160 m/s) coated by soft
rubber (mass density ρ = 1300 kg/m3, longitudinal wave ve-
locity cl = 50 m/s, and transverse wave velocity ct = 20 m/s),
and they are immersed in water background (mass density
ρ = 1000 kg/m3, longitudinal wave velocity c = 1490 m/s).
We adjust the separation of the two cylinders in one unit
cell to mimic the different spring constants K1 and K2 in
the spring-mass model. The separation of the left lattice is
dL(<L/2) and that of the right lattice is dR (>L/2), and
for simplicity we set dL + dR = L to guarantee that the left
and right lattices would have identical band structures. We
perform the numerical simulation by using the commercial
finite-element software COMSOL MULTIPHYSICS.

The lowest four bulk bands of the left or right lattice
individually are plotted in Fig. 3(b). All three band gaps are in
the subwavelength region with normalized frequencies lower
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FIG. 2. (a) Topological interface states (red lines) of a supercell system composed of a SSH chain with K1 < K2 on the left side and a SSH
chain with K1 > K2 on the right side. The periods of both chains in one supercell unit are 20. (b) Dependence of the interface states (red lines)
on K1/K2 for the right SSH chain, while the left SSH chain (K1 < K2) remains unchanged. For simplicity, K1 + K2 is held constant in the
calculations. The gray-shaded regions in both (a) and (b) denote the projection bulk bands.

than 0.08. According to the spring-mass model analysis, gaps
I and III can be identified as the band-folding-induced gaps,
while gap II is the original local resonant band gap. The
pressure-field distribution of the eigenstate in one unit cell at
the band edges of all three gaps is plotted in Fig. 3(c). For
the left lattice, in gaps I and III, the lower band edges, viz.,

S1 and S5, are even modes since their field distributions are
symmetric with respect to the central plane of the unit cell.
Meanwhile, the upper band edges, viz., S2 and S6, are odd
modes since their field distributions are antisymmetric with
respect to the central plane of the unit cell. However, these
symmetry properties are exactly reversed for the right lattice.

FIG. 3. (a) Configuration of a practical structural model of the connected SSH chain with local resonant unit cells. Each scatterer is a
cylinder with an epoxy core wrapped in soft rubber, and all cylinders are immersed in water. The dashed black frames denote the unit cell. The
separation between two individual cylinders in a unit cell is dL for the left lattice and dR for the right lattice. L is the lattice constant. The inner
and outer radii of the cylinders are 0.165L and 0.2L. The red dashed line denotes the interface between the two lattices. (b) Band structure of
the left or right lattice. The frequencies are in units of 2πc/L, where c is the acoustic wave velocity in water. All of the symbols have the same
meanings as in Fig. 1(f). (c) Pressure-field distributions of band edges for the left and right lattices, where only the pressure fields in the water
are shown.
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FIG. 4. (a) Transmission spectrum of a finite-size lattice shown in Fig. 3(a), where both the left and right lattices have eight periods. A and
B denote the transmission peaks in the band gaps. (b) Absolute values of the pressure-field distributions (only in the background) of peaks A
and B.

Thus, band inversion occurs in gaps I and III. However, for gap
II of both the left and right lattices, the state at the lower band
edge S3 is an even mode, while that at the upper band edge S4
is an odd mode. There is no band inversion in gap II.

Next we calculate the transmission spectrum of a finite-
size lattice to examine the existence of topological interface
states. The sample is composed of an eight-period left lattice
with dL(<L/2) connected with an eight-period right lattice
with dR (>L/2). From the transmission spectrum plotted in
Fig. 4(a), two topological interface states, appearing as two
sharp transmission peaks marked A and B, emerge in gaps I and
III, respectively, while no transmission peak exists in gap II.
The pressure-field distributions of these two peaks are plotted
in Fig. 4(b). Both of them exhibit the typical field-distribution
pattern of interface states: the field intensity is the strongest on
the interface and rapidly decays away from the surface.

IV. CONCLUSION AND DISCUSSION

In this study, we apply the spring-mass model to demon-
strate the band evolution and topological properties of 1D
acoustic SSH chain systems with local resonant unit cells.
Owing to band folding, two Bragg-like gaps can be produced in
the subwavelength region. According to the Zak-phase calcu-
lations and band-inversion analysis, the topological interface
states can only exist in the band-folding-induced gaps, and
never in the original local resonant band gap. We further
propose a practical structure that can yield topological inter-
face states in the subwavelength region. Physically, the local
resonant band gap is due to the singularity of effective mass
of oscillators. When the frequency ω approaches the resonant
frequency ω0, the effective mass tends to infinity and the
oscillators have no response to incident acoustic wave. In other
words, near the resonant frequency, the band gap will definitely
be opened. The lower and upper bands of local resonant band

gap cannot meet each other to become a topological phase-
transition point. Thus the essential condition to produce the
“open-close-reopen,” viz., band-inversion process, is absent.
Obviously, the original local resonant band gap cannot support
any topological interface states. However, that does not mean
the topological interface states cannot be obtained in the
subwavelength region. As shown in this paper, we can firstly
produce pass bands in the subwavelength frequency region, and
then the band-folding mechanism is utilized to open new gaps.
Essentially these gaps are created by the different interactions
between an oscillator and the oscillators neighboring it to the
left and right. In practice, it is easy to achieve band inversion
by adjusting the separation of two oscillators in a unit cell of
a SSH chain and finally to obtain subwavelength topological
interface states in a connected SSH chain system. We note that
our spring-mass model can be described as a nearest-neighbor
tight-binding model as each oscillator only interacts with its
nearest-neighbor oscillators. However, for a general system
with a more complex form of interaction (say for example,
long-range hopping), the local resonant gap may get mixed
with other band gaps. The topological property of the local
resonant gap in that case will be considered and discussed in
future works. In fact, a similar band-folding mechanism has
been applied in the Bragg gaps in two-dimensional systems by
other authors [17,30]. The technique proposed in this paper can
be treated as a general method of obtaining topological edge
states in the subwavelength region. It can be readily expanded
to negative effective modulus systems, such as Helmholtz
resonator chains [31], as well as two- and three-dimensional
optical, mechanical, acoustic, and elastic systems.
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APPENDIX A: EIGENVALUE EQUATION

For the monatomic chain schematically depicted in
Fig. 1(a), the equations of motion for the nth unit cell are

M
d2un

dt2
= K (un−1 + un+1 − 2un) + 2G(vn − un), (A1)

m
d2vn

dt2
= 2G(un − vn), (A2)

where un and vn denote the displacements of masses M and
m with respect to their equilibrium positions in the unit cell,
respectively. The displacement of an infinite atomic chain
has harmonic solution u(v) = Au(v)e

i(kx−ωt ), where A, k, and
ω are the amplitude, wave number, and angular frequency,
respectively. By substituting the harmonic solution, Eq. (A2)
becomes

vn = 2G

2G − mω2
un. (A3)

Substituting Eq. (A3) into Eq. (A1) to eliminate vn, we obtain

−Meffω
2un = K (un−1 + un+1 − 2un), (A4)

where

Meff = M + mω2
0

ω2
0 − ω2

, ω2
0 = 2G

m
. (A5)

Equation (A4) is the standard vibration equation of a periodic
monatomic chain, and Eqs. (A4) and (A5) indicate that a
local resonant unit cell can be regarded as an effective single
oscillator with an effective mass Meff [32–34]. Applying
Bloch’s theorem un±1 = e±iqLun (where q is the Bloch wave
number and L = a is the lattice constant) in Eq. (A4), the
dispersion relation for a monatomic chain can be obtained:

Meffω
2 = 4Ksin2 qL

2
. (A6)

For the diatomic chain schematically depicted in Fig. 1(c),
the equations of motion become

−Meffω
2ui = K1(uj − ui ) + K2(uj−1 − ui ), (A7)

−Meffω
2uj = K2(ui+1 − uj ) + K1(ui − uj ). (A8)

Applying Bloch’s theorem ui+1 = eiqLui , uj−1 = e−iqLuj ,
the above equations can be written in matrix form as(

0 K1 + K2e
−iqL

K1 + K2e
iqL 0

)(
ui

uj

)

= (K1 + K2 − Meffω
2)

(
ui

uj

)
, (A9)

which is the eigenvalue equation of a diatomic chain.

FIG. 5. Solutions of x in Eq. (B1) at all of the band edges.

APPENDIX B: DISPERSION RELATION SOLUTIONS
AT THE BAND EDGES

Letting x = Meffω
2 simplifies the dispersion relation in

Eq. (3) in the main text to

cos qL = 1 − x(2K1 + 2K2 − x)

2K1K2
. (B1)

For the pass bands, the Bloch wave number q should be real,
yielding the inequality∣∣∣∣1 − x(2K1 + 2K2 − x)

2K1K2

∣∣∣∣ � 1. (B2)

Without loss of generality, it can be assumed that K1 < K2,
making the solution of Eq. (B2)

0 � x � 2K1 or 2K2 � x � 2K1 + 2K2. (B3)

At the band edges, i.e., q = 0 and q = π/L, the exact solutions
of x can be obtained [using the equality sign in Eq. (B3)],
which are marked in Fig. 5. It clearly reveals that the first
and third band gaps are opened because K1 �= K2. In addition,
the second band gap is opened due to the singularity of Meff ,
since ω0 = 1.0 is its central frequency. When K1 = K2 = K ,
x has a double root 2K at q = π/L, which corresponds to the
band-crossing points.

APPENDIX C: SIGNS OF EIGENVECTORS
AT THE BAND EDGES

The eigenvalue of Eq. (2) in the main text can be written as

λ = K1 + K2 − Meffω
2 = ±|K1 + K2e

−iqL|. (C1)

The sign of the eigenvector in Eq. (4) in the main text is
equivalent to the sign of λ, which is determined by the sign
of K1 + K2 − Meffω

2. Setting

λ(ω) = 2K1 + 2K2 − Meffω
2 = 2K1 + 2K2

−
(

M + mω2
0

ω2
0 − ω2

)
ω2, (C2)
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FIG. 6. (a) Band structure of SSH chain. All bands are distinguished by different colors. (b) Eigenvalues for all of the bands. The colors
have one-to-one correspondence to those in (a).

then

dλ

dω
= −2ωM − 2mωω4

0(
ω2

0 − ω2
)2 < 0. (C3)

Thus, λ(ω) is a monotonic decreasing function except at the
jump at ω0. Then, all of the four bulk bands in Fig. 1(f) in the
main text can be divided into two sections: the first and second
bulk bands are in the ω < ω0 region, while the third and fourth
bulk bands are in the ω > ω0 region. Since λ(ω) is a decreasing
function, in each section the lower (first and third) bands have
positive eigenvalues and the upper (second and fourth) bands
have negative eigenvalues, as clearly shown in Fig. 6. Then the
signs of the eigenstates at all of the band edges can be calculated
for K1 < K2 and K1 > K2. For example, when K1 < K2, at
state S1 [marked in Fig. 1(c) in the main text],

φ(q ) = arg(K1 + K2e
−iqL)|qL=π = π. (C4)

Substituting Eq. (C4) into Eq. (4) in the main text, and noticing
that the signs before the first two eigenvector components are
positive since λ > 0,

sgn(ui, vi, uj , vj )T

= sgn

(
eiφ(q ),

ω2
0

ω2
0 − ω2

eiφ(q ), 1,
ω2

0

ω2
0 − ω2

)T

= (−,−,+,+)T . (C5)

Meanwhile, at state S2, φ(q ) still equals π since it located on
the Brillouin-zone boundary as well. However, λ < 0 now, so

the eigenvector signs become

sgn(ui, vi, uj , vj )T

= sgn

(
−eiφ(q ),− ω2

0

ω2
0 − ω2

eiφ(q ), 1,
ω2

0

ω2
0 − ω2

)T

= (+,+,+,+)T . (C6)

When K1 > K2, at both states S1 and S2,

φ(q ) = arg(K1 + K2e
−iqL)

∣∣
qL=π

= 0. (C7)

The eigenvector signs at S1 are

sgn(ui, vi, uj , vj )T

= sgn

(
eiφ(q ),

ω2
0

ω2
0 − ω2

eiφ(q ), 1,
ω2

0

ω2
0 − ω2

)T

= (+,+,+,+)T , (C8)

and the eigenvector signs at S2 are

sgn(ui, vi, uj , vj )T

= sgn

(
−eiφ(q ),− ω2

0

ω2
0 − ω2

eiφ(q ), 1,
ω2

0

ω2
0 − ω2

)T

= (−,−,+,+)T . (C9)

Equations (C5), (C6), (C8), and (C9) distinctly exhibit a band
inversion. The signs of the eigenstates at all of the other band
edges can be obtained similarly.

APPENDIX D: CALCULATION OF ZAK PHASE

Since our eigenvalue problem [Eq. (2) in the main text] is not written as Hamiltonian form, the eigenvector [Eq. (4) in the
main text] cannot be directly used in calculating Zak phase. The eigenvector should be normalized by the energy, so that it will
definitely correspond to a Hamiltonian, even though its exact expression is unknown. At first, the displacement is converted into
velocity

d

dt
(ui, vi, uj , vj )T =

(
±iωeiφ(q ),±iω

ω2
0

ω2
0 − ω2

eiφ(q ),−iω,−iω
ω2

0

ω2
0 − ω2

)T

. (D1)

014110-7



ZHAO, XIAO, LING, CHAN, AND FUNG PHYSICAL REVIEW B 98, 014110 (2018)

It should be noted that ω is also a function of q. Normalize the eigenvector as

|�〉 = 1√
M + m

( ω2
0

ω2
0−ω2

)2

(
±

√
M

2
eiφ(q ),±

√
m

2

ω2
0

ω2
0 − ω2

eiφ(q ),−
√

M

2
,−

√
m

2

ω2
0

ω2
0 − ω2

)T

= (±A(q )eiφ(q ),±B(q )eiφ(q ), A(q ), B(q ))T , (D2)

where 2(A2 + B2) = 1. Then the inner product of the eigenvector with itself gives the kinetic energy. Substituting |�〉 into Eq. (5)
in the main text,

θ = i

∫ π/L

−π/L

[
(±A(q )eiφ(q ) )

∗ ∂ (±A(q )eiφ(q ) )

∂q
+ (±B(q )eiφ(q ) )

∗ ∂ (±B(q )eiφ(q ) )

∂q
+ A(q )

∂A(q )

∂q
+ B(q )

∂B(q )

∂q

]
dq

= i

∫ π/L

−π/L

[
2A(q )

∂A(q )

∂q
+ iA2(q )

∂φ(q )

∂q
+ 2B(q )

∂B(q )

∂q
+ iB2(q )

∂φ(q )

∂q

]
dq

= i

∫ π/L

−π/L

[
∂ (A2(q ) + B2(q ))

∂q
+ i(A2(q ) + B2(q ))

∂φ(q )

∂q

]
dq

= −1

2

∫ π/L

−π/L

∂φ(q )

∂q
dq

= −1

2

[
φ
(π

L

)
− φ

(
−π

L

)]
(D3)
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