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Nonperturbative renormalization group for the Landau–de Gennes model
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We study the nematic isotropic phase transition by applying the functional renormalization group to the Landau–
de Gennes model. We derive the flow equations for the effective potential as well as the “couplings” constants
and the anomalous dimension. We then solve the coupled flow equations on a grid using the Newton-Raphson
method. A first-order phase transition is observed. We also investigate the nematic isotropic puzzle (the NI puzzle)
in this paper. We obtain the NI transition temperature difference Tc − T ∗ = 5.85 K.
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I. INTRODUCTION

The nematic isotropic (NI) phase transition has been an
important topic of research over the past few decades [1–3].
In uniaxial nematic liquid crystals the centers of gravity of
the molecules have no long-range order while all their axes
point in roughly the same direction, described by the director,
around which there exists complete rotational symmetry. When
raising temperature, its order parameter abruptly drops to zero
and becomes an isotropic phase. Thus the NI phase transition is
of first order in nature. It can be described phenomenologically
by the mean-field Landau scalar model with a cubic term [1].
But it is relatively weak because only orientational order is
lost and the latent heat is small [3]. This also leads to large
pretransition anomalies such as specific heat, which indicates
that the transition is close to being second order. In the isotropic
phase, although the order parameter vanishes on average, the
molecules are still parallel to each other over a characteristic
distance (the correlation length) which describes the average
size of the range of correlations between the molecules. This
means that fluctuation effects should play a role in the physics
of liquid crystals.

Drozd-Rzoska et al. found that the temperature behavior of
dielectric permittivity in the isotropic phase of nematogens
could be described in the same way as in critical binary
solutions. This fluidlike analogy was also applied to the non-
linear dielectric effect, which describes changes of dielectric
permittivity induced by a strong electric field [4]. They also
found evidence for the equivalence of temperature and pressure
paths on approaching the NI phase transition through high-
pressure, isothermal studies of the low-frequency nonlinear
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dielectric effect in the isotropic phase of nematogens, which
makes it possible to investigate the pretransitional effects
under high pressure from temperature measurements carried
out under atmospheric pressure [5]. Rzoska et al. studied
the singular behavior of the static dielectric permittivity of
nematogens below and above NI phase-transition temperature.
The derivative of experimental data (e.g., the mean value
of the nematic permittivity) with respect to temperature shows
the specific-heat-like behavior with universal exponents. They
confirmed the hypothesis of the fluidlike, pseudospinodal,
and tricritical behavior of the NI phase transition [6]. Syed
et al. also found evidence for tricritical behavior of a cyclic
liquid crystalline trimer [7]. Simões et al. showed that the
nematic order parameter presents a singular universal behavior
that is not restricted to the neighborhoods of the NI phase
transition, but encompasses the entire range of the nematic
phase independent of what is the actual phase or mesophase
bordering the nematic phase at low temperatures [8,9].

Since fluctuation effects play such an important role,
many attempts had been made to take them into account. de
Gennes proposed a tensor order-parameter model, denoted the
Landau–de Gennes model [1,10]. Wang et al. investigated the
influence of fluctuations on critical and multicritical behavior
of nematic liquid crystals in this model, but their treatment
is limited to the harmonic approximation [11]. This model
also gains insight into the long-standing puzzle about the
low value of Tc−T ∗

T ∗ ≈ 0.1%, where Tc is the nematic-isotropic
phase-transition temperature and T ∗ is interpreted as the
temperature at which the light-scattering intensity diverges in
the supercooled isotropic phase. In experiments, it is shown
that Tc − T ∗ ≈ 1K ( Tc−T ∗

T ∗ ≈ 0.3%) in the case of nematic
liquid crystal 8CB, which is much smaller than the usual
theoretical model predictions. For instance the mean-field
result givesTc − T ∗ = 24 K. Tao et al. extended the mean-field
theory by including the isotropic, density dependent com-
ponent of the molecular interaction, and their result showed
accordance with the experimental values. However, they
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neglected the influence of fluctuations [12]. By including fluc-
tuations and using Wilson’s renormalization-group analysis,
Mukherjee et al. got the result Tc − T ∗ = 7.47 K and further
obtained Tc − T ∗ = 3 K, which remains the best result today
in those works that have considered the effects of fluctuations
[10,13–15].

The nonperturbative renormalization group (NPRG, also
called the functional renormalization group, or FRG) [16]
has been proven to be an extremely versatile and efficient
tool to deal with fluctuations in recent years [17–29]; see
[25–29] for an excellent introduction. With this method one
can systematically extract quantitative reliable results about
long-distance physics from short-distance ansatz. As opposed
to the usual functional integral approach in field theory, its
conceptual framework is relatively simple and unified, and
essentially takes the form of functional differential equations
which are more convenient for numerical computations. So
the goal of this paper is to solve the Landau–de Gennes model
using the methods of nonperturbative renormalization group
and investigate the NI puzzle in this framework.

The paper is organized as follows. In Sec. II, we define the
model and notations. Then we give a quick overview of the
FRG formalism and apply it to the model. The concrete flow
equations are derived, including the anomalous dimension.
In Sec. III, we show our numerical results about effective
potential. We also give our analysis of the nematic-isotropic
puzzle. In Sec. IV we give our concluding remarks and outlook
for future work.

II. APPLICATION OF NONPERTURBATIVE
RENORMALIZATION GROUP TO THE LANDAU–DE

GENNES MODEL

The Lagrangian density of the Landau-de Gennes model
can be written as [10,13]

L = 1
2A Tr[Q2] + 1

3B Tr[Q3] + 1
4C Tr[Q4] + Tr(∇Q)2 .

(1)

In the most general sense Q is a symmetric traceless second
rank tensor, which vanishes in the symmetric isotropic phase,
and presents a finite value in the ordered nematic phase. In this
paper, we parametrize Q as

Q = 1√
2

⎛
⎜⎝

− ψ1√
3

− ψ2 ψ3 ψ4

ψ3 ψ2 − ψ1√
3

ψ5

ψ4 ψ5
2ψ1√

3

⎞
⎟⎠ , (2)

where ψ1, . . . ,ψ5 are scalar fields.
The central concept of the NPRG formalism is the scale

dependent effective average action �k . The evolution of �k

with respect to the scale obeys an exact flow equation, the
Wetterich equation:

∂k�k[ψ1, . . . ,ψ5] = 1

2
Tr

∫
dDq∂kRk(q2)

{
�

(2)
k [q,

− q,ψ1, . . . ,ψ5] + Rk(q2)
}−1

, (3)

where �
(2)
k [q,−q,ψ1 . . . ψ5] is the Fourier transform of the

second functional derivatives of �k:

�
(2)
k,mn[x,y,ψ1, . . . ,ψ5] = δ�k[ψ1, . . . ,ψ5]

δψm(x)δψn(y)
. (4)

where m,n = 1, . . . ,5. The initial condition �k=k0 at the scale
k0 is given by the classical action.

Rk(q2) is the Litim regulator [30]:

Rk(q2) = Zk(k2 − q2)�(k2 − q2) , (5)

where Zk is the running wave function renormalization and �

is the usual step function.
The Lagrangian density can be expanded in terms of two

basic invariants:

ρ = Tr[Q2] = ψ2
1 + ψ2

2 + ψ2
3 + ψ2

4 + ψ2
5 ,

τ = Tr[Q3] = 1

6
√

2

(
2
√

3ψ3
1 −9ψ2ψ

2
4 +9ψ2ψ

2
5 +18ψ3ψ4ψ5

+ 3
√

3ψ1
(−2ψ2

2 − 2ψ2
3 + ψ2

4 + ψ2
5

))
. (6)

There exists an interesting property for these two invariants,
which will be quite useful in the following calculations:

6τ 2 − ρ3 = −(
ψ3

2 − 3ψ2
1 ψ2

)2 � 0. (7)

For the Landau–de Gennes model we consider the following
simplified effective average action:

�k =
∫

dDx{Uk(ρ,τ ) + Zk[(∂ψ1)2 + · · · + (∂ψ5)2]}. (8)

The flow equation for the effective average potential follows
from its definition:

Uk(ρ,τ ) = 1

	
�k[
], (9)

where 	 is the volume of the system and 
 is a constant field
configuration, which is obtained by setting the fluctuating field
Q matrix elements as constants. Since 
 is symmetric, we can
always find a frame of reference to diagonalize it. We denote
the diagonal form of the physical equilibrium configuration 


simply as 
diag,


diag = 1√
2

⎛
⎜⎝

− φ1√
3

− φ2 0 0

0 φ2 − φ1√
3

0

0 0 2φ1√
3

⎞
⎟⎠ , (10)

where φ1 and φ2 are constants.
There also exists a microscopic description of the liquid

crystals, the simplest of which are rigid rods. Taking the z axis
of laboratory frame as the axis of ordering, the order parameter
reads

QM = S

⎛
⎝− 1

3 0 0
0 − 1

3 0
0 0 2

3

⎞
⎠ , (11)

while in an arbitrary frame of reference:

QM
αβ = S

(
nαnβ − 1

3δαβ

)
, (12)

where S = 3
2 〈cos2 θ〉 − 1

2 , n̂ describes the average direction of
the alignment of molecules (i.e., the direction of the nematic
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axis). QM is equal to Eq. (10) provided φ2 = 0, φ1 =
√

2
3S.

Since by definition S and Q are dimensionless, the coefficient

before the kinetic term in Eqs. (1) and (8) has dimension kD−2,
and A,B,C have dimension kD .

In the field configuration 
diag the two basic invariants ρ and τ read

φ2
1 + φ2

2 = ρ , (13)

φ1
(
φ2

1 − 3φ2
2

)
√

6
= τ . (14)

We can then solve the field in terms of the invariants

φ1 = −1

2

⎛
⎝ 3

√√
36τ 2 − 6ρ3 − 6τ

6
√

6
+

6
√

6ρ

3

√√
36τ 2 − 6ρ3 − 6τ

⎞
⎠ , (15)

φ2 = − 1

2
√

6

√
−(6

√
36τ 2 − 6ρ3 − 36τ )2/3 − 6 3

√
6ρ2

(
√

36τ 2 − 6ρ3 − 6τ )2/3
+ 12ρ . (16)

There are also five other solutions, but each of them leads to the same final flow equations. Note that the property Eq. (7) can be
used to transform the solution into complex functions. For example√

36τ 2 − 6ρ3 − 6τ = −
√

6ρ
3
2 exp

[
−i tan−1

(√
ρ3 − 6τ 2

√
6τ

)]
. (17)

When we substitute the complex function back to the solutions, the imaginary parts all exactly cancel out, leaving the real part,
as it should be, for example,

φ1 = −√
ρ sin

[
1

3
tan−1

(√
ρ3 − 6τ 2

√
6τ

)
+ π

6

]
, φ2 = − 1√

2

√√√√ρ sin

[
π

6
− 2

3
tan−1

(√
ρ3 − 6τ 2

√
6τ

)]
+ ρ . (18)

Then we can calculate all the two-point vertices (and the propagator matrix as its inverse) and three-point vertices term by term.
The flow equation for the potential reads

∂Uk(ρ,τ )

∂k
= kD−1KD

D
Zkk

2

(
1 − ηk

D + 2

)(
�5

i=1
1

Zkk2 + M2
i

)
, (19)

where KD = 1
2D−1πD/2�(D/2) ; the running anomalous dimension is defined by

ηk = − k

Zk

∂Zk

∂k
(20)

and the mass eigenvalues are given by

M2
1 = 1

2

[
√

ρ

(
3

√
cos

(
α

3

)
+ 1 −

√
6 sin

(
α

6

))
Uk

(0,1)(ρ,τ ) + 4Uk
(1,0)(ρ,τ )

]
, (21)

M2
2 = 1

2

[
−√

ρ

(
3

√
cos

(
α

3

)
+ 1 +

√
6 sin

(
α

6

))
Uk

(0,1)(ρ,τ ) + 4Uk
(1,0)(ρ,τ )

]
, (22)

M2
3 =

√
6ρ sin

(
α

6

)
Uk

(0,1)(ρ,τ ) + 2Uk
(1,0)(ρ,τ ), (23)

M2
4 = p −

√
q

4
, M2

5 = p +
√

q

4
, (24)

where α = 2 tan−1 (
√

ρ3−6τ 2
√

6τ
) + π , and

p = 3
4ρ2Uk

(0,2)(ρ,τ ) + 2ρUk
(2,0)(ρ,τ ) + 2Uk

(1,0)(ρ,τ ) + 6τUk
(1,1)(ρ,τ ), (25)

q = 96ρUk
(0,1)(ρ,τ )2 + 48

[
4ρ2Uk

(1,1)(ρ,τ ) + 3ρτUk
(0,2)(ρ,τ ) + 8τUk

(2,0)(ρ,τ )
]
Uk

(0,1)(ρ,τ )

+ ρ

(
48ρUk

(0,2)(ρ,τ )

{
ρUk

(2,0)(ρ,τ ) cos

[
2 tan−1

(√
ρ3 − 6τ 2

√
6τ

)]
+ 3τUk

(1,1)(ρ,τ )

}

+ 9ρ3Uk
(0,2)(ρ,τ )2 + 32

(
3ρ2Uk

(1,1)(ρ,τ )2 + 12τUk
(2,0)(ρ,τ )Uk

(1,1)(ρ,τ ) + 2ρUk
(2,0)(ρ,τ )2

))
. (26)
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It is often convenient to work with dimensionless renormalized quantities that are defined by

ρ̃ = Zkk
2−Dρ, τ̃ = (Zkk

2−D)3/2τ, Ũt (ρ̃,τ̃ ) = k−DUk(ρ,τ ). (27)

We define a new scale t = −ln k
k0

(following the convention of [25]), which is called the RG time. The flow equation for the
dimensionless potential reads

∂Ũt (ρ̃,τ̃ )

∂t
= ρ̃(−D − ηt ρ̃ + 2)

∂Ũt (ρ̃,τ̃ )

∂ρ̃
+ 3

2
τ̃ (−D − ηt τ̃ + 2)

∂Ũt (ρ̃,τ̃ )

∂τ̃
+ DŨt (ρ̃,τ̃ )

− KD

D

(
1 − ηt

D + 2

)(
1

m2
1 + 1

+ 1

m2
2 + 1

+ 1

m2
3 + 1

+ 1

m2
4 + 1

+ 1

m2
5 + 1

)
, (28)

where m2
i are the dimensionless counterparts of M2

i .
This is the full equation for the potential. But it is extremely difficult to solve directly due to its complexity. In order to extract

useful physics from it, we make the following approximations. To simplify the notation we introduce

ε(ρ̃) = Ũt [ρ̃,τ̃ = 0], (29)

ε′(ρ̃) = Ũt
(1,0)[ρ̃,τ̃ = 0], (30)

λ(ρ̃) = 3Ũt
(0,1)[ρ̃,τ̃ = 0]. (31)

For n � 2, we set Ũt
(0,n)[ρ̃,τ̃ = 0] = 0, then Ũt (ρ̃,τ̃ ) can be expressed as

Ũt (ρ̃,τ̃ ) = 1
3 τ̃ λ(ρ̃) + ε(ρ̃). (32)

The scale dependence of ε is given by

∂ε

∂t
= Dε − Dρ̃ε′ − ρ̃ηt ε

′ + 2ρ̃ε′ − KD

D

(
1 − ηt

D + 2

)(
1

2ε′ + 1
+ 8ε′ + 4

−λ2ρ̃ + 8ε′2 + 8ε′ + 2

+ 6(2ρ̃ε′′ + 2ε′ + 1)

−2λ2ρ̃ − 2ρ̃3λ′2 − 4λρ̃2λ′ + 12ρ̃ε′′ + 12ε′(2ρ̃ε′′ + 1) + 12ε′2 + 3

)
. (33)

Similarly for λ one finds

∂λ

∂t
= Dλ − 3ρ̃λ′(D + ηt − 2) − 3

2
λ(D + ηt − 2) − KD

D

(
1 − ηt

D + 2

)(
4(λ − 6ρ̃λ′)(λ2ρ̃ + 8ε′2 + 8ε′ + 2)

ρ̃(−λ2ρ̃ + 8ε′2 + 8ε′ + 2)2

+ 4(ρ̃λ′′ + 4λ′)
−2λ2ρ̃ − 2ρ̃3λ′2 − 4λρ̃2λ′ + 12ρ̃ε′′ + 12ε′(2ρ̃ε′′ + 1) + 12ε′2 + 3

− 2(3ρ̃λ′ + λ)

ρ̃(2ε′ + 1)2

− 12(
√

2ρ̃3/2λ′ + λ
√

2ρ̃ − 2ρ̃ε′′)[ε′′(2ρ̃λ′ − 6λ) + (2ε′ + 1)(ρ̃λ′′ + 4λ′)]
[−2λ2ρ̃ − 2ρ̃3λ′2 − 4λρ̃2λ′ + 12ρ̃ε′′ + 12ε′(2ρ̃ε′′ + 1) + 12ε′2 + 3]2

)
. (34)

The evolution equation for its derivative ε′(ρ̃) can also be calculated analogously:

∂ε′

∂t
= Dε′ − ρ̃ε′′(D + ηt − 2) − ε′(D + ηt − 2) − KD

D

(
1 − ηt

D + 2

)(
4λ(2ε′ + 1)(2ρ̃λ′ + λ) − 8ε′′(λ2ρ̃ + 2(2ε′ + 1)2)

[λ2ρ̃ − 2(2ε′ + 1)2]2

+ 12(ρ̃ε′′′ + 2ε′′)
−2λ2ρ̃ − 2ρ̃3λ′2 − 4λρ̃2λ′ + 12ρ̃ε′′ + 12ε′(2ρ̃ε′′ + 1) + 12ε′2 + 3

− 2ε′′

(2ε′ + 1)2

− 12(2ρ̃ε′′ + 2ε′ + 1){−2λρ̃(ρ̃λ′′ + 3λ′) + 12ρ̃ε′′2 + ρ̃[6(2ε′ + 1)ε′′′ − ρ̃λ′(2ρ̃λ′′ + 5λ′)] − λ2 + 12(2ε′ + 1)ε′′}
[−2λ2ρ̃ − 2ρ̃3λ′2 − 4λρ̃2λ′ + 12ρ̃ε′′ + 12ε′(2ρ̃ε′′ + 1) + 12ε′2 + 3]2

)
.

(35)

It is worth noting that if our only objective is to get the above simplified equations rather than the full machinery, we can also
circumvent the substitution technique, and set τ̃ = 0 directly at last. We have verified that these two approaches indeed lead to
the same equations.

Zk can be extracted from the flow equation through

Zk = (2π )D

δ(0)
lim

p2→0

d

dp2

(
∂2�k

δψm(p)δψn(−p)

)
. (36)

Without loss of generality we take m = 4 and n = 4 in this paper.
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It can be shown that

ηk = kD+2KD

DZk

�[ZkδabGbc�cdnGdiZkδijGje�ef mGf a],

where Gbc is the propagator matrix element, and the propagator matrix is defined by the inverse of the two-point vertex. �cdn is
the three-point vertex.

We then express ηk in terms of dimensionless variables and finally get

ηt = KD

D

(
4λ2

(λ2ρ̃ − 8ε′2 − 8ε′ − 2)2
+ 24(2λρ̃λ′ + ρ̃2λ′2 + λ2 − 3ε′′ − 6ε′ε′′)

(2λ2ρ̃ + 2ρ̃3λ′2 + 4λρ̃2λ′ − 12ρ̃ε′′ − 24ρ̃ε′ε′′ − 12ε′2 − 12ε′ − 3)2

− 4(−2λρ̃λ′ − ρ̃2λ′2 − λ2 + 6ε′′ + 12ε′ε′′)
(2ε′ + 1)2(2λ2ρ̃ + 2ρ̃3λ′2 + 4λρ̃2λ′ − 12ρ̃ε′′ − 24ρ̃ε′ε′′ − 12ε′2 − 12ε′ − 3)

)
. (37)

When λ = 0 and evaluated at the minimum ρ̃0 [i.e., ε′(ρ̃0) = 0]
this reduces to

ηt = 32ρ̃0KDε′′2

D(4ρ̃0ε′′ + 1)2
, (38)

which is identical to the usual O(5) model expression, if
considering the different definition of ρ.

III. NUMERICAL RESULTS

We solve the combined equations (34) and (36) together
[31] by discretizing the differential equations in this form:

ui(t ′) − ui(t)

�t
= F

(
ui(t

′),u(1)
i (t ′),u(2)

i (t ′)
)
, (39)

where t ′ = t + �t , ui(t) (i from 1 to n) denotes ε′(ρ̃), ui(t)
(i from n + 1 to 2n) denotes λ(ρ̃), and F is the discretized
right-hand side of the combined equations. To evaluate the
derivatives on the right-hand side six-point formulas are used.
We take 60 points for the discretization of the variable (i.e.,
n = 60) and solve these nonlinear algebraic equations using
the Newton-Raphson algorithm. The basic idea is to set the
previous solution as the trial solution and search for the next
step solution with the aid of Jacobian many times until the
necessary accuracy is achieved.

We solve the above equation for the first few steps, and then
switch to the following equation to improve its accuracy:

1

12�t
{25ui(t

′) − 48ui(t) + 36ui(t − �t) − 16ui(t − 2�t)

+ 3ui(t − 3�t)} = F
(
ui(t

′),u(1)
i (t ′),u(2)

i (t ′)
)
. (40)

It is convenient to define κ = −A
C

and rewrite the initial
potential as

U (ρ,τ ) = Bτ

3
+ 1

4
C(ρ − κ)2 = Bτ

3
+ Cκ2

4

− Cκρ

2
+ Cρ2

4
, (41)

differing by an irrelevant constant term. For specific values
of the parameters, we first get the evolution result for ε′(ρ̃)
[ε(ρ̃) can be calculated through direct integration] and λ(ρ̃).
We then transform back to the original unscaled variables. To
get the physical effective potential, we project our solution to

the branch φ2 = 0, then ρ = φ2
1 , τ = φ3

1√
6
, i.e., τ = ρ3/2√

6
, which

can be used to eliminate τ . Combining with Eqs. (32) and
(27), we can obtain Uk as a function of ρ and define φ = √

ρ

to denote the resulting effective average potential as

Wt (φ) = kD

3
(Zkk

2−D)3/2 φ3

√
6
λ(Zkk

2−Dφ2)

+ kDε(Zkk
2−Dφ2). (42)

When B = 0, the Landau–de Gennes model reduces to the
O(5) model, as can be clearly seen from the Lagrangian
density Eq. (1). This can also be verified numerically. When
B is initially zero, it is observed that for arbitrary values of
C and κ the cubic “coupling” λ always stays zero in the
flow process and ε exhibits the same behavior as in the O(5)
model. Then we turn on the explicit symmetry breaking term.
Since Landau–de Gennes model is a purely phenomenological
theory, it is quite difficult to determine the coefficients using
experimental results. Our choice of the value of C = 0.5 lies
in the range of parameter values usually used in the literature
[2,10]. We take B = −0.625 in Figs. 1–6 to display the
behavior of the effective average potential Wt (φ) and the whole
first-order phase transition process. The concrete values of B

do not change the qualitative behavior of the first order phase
transition. Part of the results are shown in the figures. We stop
the flow when the renormalized mass term m2 approaches a
constant (Fig. 1). The stopping RG time t is roughly the same

FIG. 1. Evolution of the renormalized mass and anomalous di-
mension with respect to RG time t .
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FIG. 2. Evolution of the effective average potential with respect
to the field variable at different RG time t . We can see that at the end
of the flow, the effective potential has two minima, one at the origin
and the other at a finite value. It is clear that the one on the right-hand
side stands for the physical vacuum configuration. This means that
the chosen parameter κ = 0.01 corresponds to the broken symmetry
phase, i.e., the nematic phase.

for the different initial κ . The running anomalous dimension
(Fig. 1) is evaluated at the minimum φ0 of Wt (φ). In Fig. 2 we
show a typical flow of the running effective average potential.
The effective potential at the end of the flow lies in the nematic
phase, while the potential for a smaller κ (Fig. 3) flows into
a symmetric isotropic phase. Between these two κ we can
find a critical κ value that corresponds exactly to the point
where the first-order phase transition happens (Fig. 4; see
Fig. 5 for an enlarged portion of the end part of the flow).
This is achieved through a bisection algorithm. From Fig. 5
we can read off the jump of the order parameter. We denote
the effective potential at the end of the flow of Wt (φ) as
W (φ). From Fig. 6 we can see clearly the whole first-order
phase transition process. We have also taken a series of other
parameter values of B and mapped out the order parameter

FIG. 3. Evolution of the effective average potential with respect
to the field variable at different RG time t . We can see that at the
end of the flow, the minimum of the effective potential that lies at the
origin stands for the physical vacuum configuration. This means that
the chosen parameter κ = 0.001 corresponds to the symmetric phase,
i.e., the isotropic phase.

FIG. 4. From the evolution of the effective average potential
for κ = 0.01 and κ = 0.001, we conclude that there must exist an
intermediate value of κ that corresponds to the expected first-order
phase-transition point. We find this critical value κ = 0.004 019 27
by using a bisection algorithm and get the evolution of the effective
average potential at different RG time t for this critical κ . For an
enlarged portion of the end part of the flow, see Fig. 5.

jumps following the above procedures. From Fig. 7 we can see
that the order parameter jump decreases with increasing values
of B. For different parameters of C we can get similar results.
Given the experimental value of the order-parameter jump, we
can easily extrapolate the corresponding value of B from the
data in Fig. 7.

We also calculate the NI transition temperature difference
to shed some light on the NI puzzle [10,13–15,32]. We follow
similar techniques used in [10,13–15]. Since the first-order
NI phase transition is weak and quite close to the hypothetical
critical point (if there were no cubic term), as a first approxima-
tion it is reasonable to treat t0

φ1/β and B
φω as two scaling variables

to get the equation of state [10,13–15,33,34]. The basic idea
is that we first calculate the equation of state at B = 0 [i.e.,
the O(5) model], then add a correction term that includes the
effects of the symmetry-breaking term directly in the equation
of state. This is also the case in Mukherjee’s works [10,13–15].
According to the definition of equation of state H

φδ = f (x),

FIG. 5. Enlarged portion of the end part of the flow in Fig. 4.

014102-6



NONPERTURBATIVE RENORMALIZATION GROUP FOR THE … PHYSICAL REVIEW B 98, 014102 (2018)

FIG. 6. Evolution of the effective potential through the first-order
phase-transition point. We can see clearly the order-parameter jump.
The middle touching curve corresponds to the touching curve in Fig. 5.

where H is the external field, x = t0
φ1/β , t0 = T −T ∗

T ∗ , δ = D−η+2
D+η−2 ,

β = 1
2ν(D + η − 2), we follow the procedures in [26,34] and

get ν = 0.8377, η = 0.0377, β = 0.4347, δ = 4.781 and the
scaling function (Fig. 8).

f (x) = a(x + 1)b(c(x + 1) + d
√

x + 1 + 1), (43)

where a = 0.253, b = 1.076, c = 0.221, d = 2.748. We have
taken the fit form of f (x) used in the O(N ) model [26,34] and
verified the above scaling relations to high accuracy. For a more
detailed treatment of the equation of state of O(N ) model, see
[26,34] and references therein. As a preliminary treatment we
then add the correction term and get the approximate equation
of state for Landau–de Gennes model [10,13–15]:

H

φδ
+ gB

φω
= f (x), (44)

where andB ∼ �Sω and�S is the jump of the order parameter.
From the data in Fig. 7 we have determined the exponent ω =
1.10 (for a similar result see [33]). g is to be determined later.

From thermodynamic arguments we can obtain the free
energy by integrating the equation of state with respect to

FIG. 7. The relationship between order-parameter jump �S and
the symmetry-breaking cubic term B for C = 0.5.

FIG. 8. Scaling function for the equation of state without the cubic
term.

φ. Then we can express the conditions that the free energy
be equal for the isotropic and nematic states and that the
free energies be a local minimum with respect to φ as
follows:

∫ φc

0
H (φ′) dφ′ = 0, (45a)

H (φc) = 0, (45b)

where φc =
√

2
3�S, the experimental value �S = 0.4 [10,13–

15]. From the data in Fig. 7 we can easily extrapolate the value
of B that corresponds to this experimental value. H can be
easily solved from Eq. (44) and substituted into Eq. (45). Then
we can solve the above two equations Eq. (45) for the two
unknown variables t0 and g. We get g = 0.67 and t0c = 0.0195,
which corresponds to the temperature difference Tc − T ∗ =
5.85 K. Although still far from the result of the experiment,
our result is much smaller than the mean-field value, and about
1.5 K smaller than Mukherjee’s result in [10] and about 3 K
bigger than his result in [14]. This indicates that we may be on
the right track to finally resolve the NI puzzle.

IV. CONCLUSION

In this paper we investigate the Landau–de Gennes model
in the framework of functional renormalization group. The
Lagrangian density can be expanded in terms of two basic
invariant combinations of the elements of the order-parameter
tensor. We then solve the field variables of the order parameter
in terms of the two invariants. When transformed into complex
variables, the imaginary parts exactly cancel out. With the
aid of Litim regulator the full analytic flow equation for the
potential and its dimensionless counterpart are derived. A
truncation is made to simplify the computations and we get
two coupled partial differential equations for the cubic and
quartic “couplings.” We also derive the flow equation for the
anomalous dimension. The two coupled equations are solved
on a grid with the Newton-Raphson method. A large parameter
space of the model is mapped and first-order phase transitions
are observed.
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With the experimental value of the order-parameter jump
as an input, we also obtain the NI transition temperature
difference. Much more interesting work can be done. For
instance, we expect that a more refined and accurate analysis
of the equation of state could give a better improvement.
Further, our formalism can be extended to other similar models
including the explicit symmetry-breaking term [35]. We leave
these for future work.
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