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Recipe for creating an arbitrary number of Floquet chiral edge states
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Floquet states of periodically driven systems could exhibit rich topological properties. Many of them are
absent in their static counterparts. One such example is the chiral edge states in anomalous Floquet topological
insulators, whose description requires a different topological invariant and type of bulk-edge correspondence.
In this work, we propose a prototypical quenched lattice model, whose two Floquet bands could exchange their
Chern numbers periodically and alternatively via touching at quasienergies 0 and π under the change of a single
system parameter. This process in principle allows the generation of as many Floquet chiral edge states as possible
in a highly controllable manner. The quantized transmission of these edge states are extracted from the Floquet
scattering matrix of the system. The flexibility in controlling the number of topological edge channels provided
by our scheme could serve as a starting point for the engineering of robust Floquet transport devices.
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I. INTRODUCTION

Floquet states of matter emerge from systems that are
modulated periodically in time [1–7]. They possess intriguing
transport and topological properties [8–26], many of which
are characterized by topological invariants different from
their static counterparts, with their classification schemes and
bulk-edge correspondence going beyond any time-independent
descriptions [27–43].

One example is the anomalous chiral edge states in Flo-
quet topological insulators [34]. These states could traverse
the Floquet gap at π quasienergy, connecting the top of the
highest and the bottom of the lowest bulk bands in the
Floquet quasienergy Brillouin zone. They are characterized by
a topological winding number defined at a given quasienergy
within the gap. In the presence of anomalous edge states, the
difference of winding numbers in the gaps above and below a
Floquet band [44] gives its Chern number, but the summation
of Chern numbers below [44] a Floquet gap cannot tell the
number of chiral edge states traversing it from its bottom to
top. This leads to the identification of a bulk-edge relation
unique to Floquet systems [34,35]. The anomalous chiral edge
states have also been used to achieve quantized nonadiabatic
pumping in both clean and disordered samples [34,39].

To date, anomalous Floquet chiral edge states have been
observed in photonic [5] and acoustic [7] systems. However,
the experimentally realized models support only a single pair
of chiral edge states in each gap, limiting its potential in
the study of possible Floquet phases with many chiral edge
states and large winding numbers. Indeed, Floquet topological
phases with many chiral edge states could not only admit
rich topological structures [13,19,22,24], but also be useful
in realizing Floquet transport devices with a large number
of topologically protected channels along the edge [37,38].
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In this work, we propose a simple scheme to generate any
given number of chiral edge states in a Floquet system, and
demonstrate our scheme in a prototypical quenched lattice
model. The two-terminal transport of the model is also studied
using the Floquet scattering matrix approach.

II. RECIPE FOR CREATING MANY
CHIRAL EDGE STATES

In this section, we introduce our Floquet engineering
scheme, which in principle allows the generation of arbitrarily
many chiral edge states in a well-controlled manner. An
illustration of the process is shown in Fig. 1. For simplicity,
we consider a two-band insulator with band Chern numbers
±1, and assume that under the increase of a system parameter,
the two bands exchange their Chern numbers every time they
touch with each other and reseparate.

It is instructive to compare the situations in a static and
a Floquet system under the assumption made in the previous
paragraph. In a static system, the two bands (shaded areas in
Fig. 1) can only touch by closing the gap around energy E = 0,
as shown in Fig. 1(b). Due to the bulk-edge correspondence,
the two chiral edge bands denoted by blue solid and red
dashed lines in Fig. 1(a) will exchange their chiralities after
the gap reopens around E = 0 as shown in Fig. 1(c), whereas
the net number of chiral edge states in the gap, which is
determined by the absolute value of the Chern numbers above
and below the gap, will not change during this process, and
therefore the number of chiral edge states does not change
during the transition. After a second topological phase tran-
sition, in which the two bands exchange their Chern numbers
again [Fig. 1(d)], the system will go back to its initial topologi-
cal phase with the same number of chiral edge states [Fig. 1(e)],
and the story ends here.

The situation in a Floquet system, however, can be much
richer. Due to the periodicity of Floquet quasienergy E, a two-
band Floquet insulator has two gaps at 0 and π quasienergies.
Therefore, the two Floquet bands can exchange their Chern

2469-9950/2018/97(24)/245430(10) 245430-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.97.245430&domain=pdf&date_stamp=2018-06-29
https://doi.org/10.1103/PhysRevB.97.245430


LONGWEN ZHOU AND JIANGBIN GONG PHYSICAL REVIEW B 97, 245430 (2018)

⋯

⋯

⋯

⋯

Sta�c

Floquet

(b)(a) (c) (d) (e)

(f) (g) (h) (i) (j)

FIG. 1. The scheme of generating many chiral edge states by periodically exchanging Floquet band Chern numbers, alternatively via band
touchings at 0 and π quasienergies under the change of a system parameter (from left to right in each case). For demonstration purposes, a
two-band Floquet system is presented, whereas the scheme is also applicable to multiple-band systems. In both cases, shaded regions represent
bulk bands, and blue solid (red dashed) lines denote states localized around the left (right) edge of the lattice. Panels (a)–(e) represent the
process in a static system: after two permutations of Chern numbers via band touchings, the system goes back to its initial topological phase
and no new chiral edge states appear. Panels (f)–(j) illustrate the process in a Floquet system: after two permutations of band Chern numbers,
alternatively at π and 0 quasienergies via band touchings, the system reaches a new topological phase with the same Chern number as before
but possessing more chiral edge states traversing both Floquet gaps around 0 and π quasienergies.

numbers by touching at either quasienergy 0 or π . Now if
the increase of a system parameter could result in the closure
of Floquet gaps at quasienergies 0 and π periodically and
alternatively, more and more chiral edge states should emerge
in both gaps in order to compensate for the exchange of Floquet
band Chern numbers during each topological phase transition.

One example of such a process is sketched in Figs. 1(f)–1(j)
(with the increase of a system parameter from left to right
panels). At the starting point [Fig. 1(f)], we have a Floquet in-
sulator with bulk Chern numbers ±1 and two chiral edge bands
crossing the Floquet gap at quasienergy 0. With the increase
of a system parameter, the two bulk bands gradually shift (or
just deform) upward and downward in the first quasienergy
Brillouin zone, respectively, until exchanging their Chern
numbers upon touching at quasienergy π [Fig. 1(g)]. But
since the number of chiral edge states at quasienergy 0 cannot
change during this process, two extra pairs of anomalous
chiral edge bands crossing the π -quasienergy gap must appear
after the transition. The resulting band structure is shown
in Fig. 1(h), where we have one pair (two pairs) of normal
(anomalous) chiral edge bands in the 0- (π -) quasienergy gap.
With further increase of the system parameter, the two bands
“kiss” again and exchange their Chern numbers at quasienergy
0 [Fig. 1(i)]. This time, the number of anomalous chiral
edge states at quasienergy π cannot change, and therefore
the number of chiral edge bands crossing quasienergy 0 must
increase by 2 after the transition. The resulting Floquet band
structure is shown in Fig. 1(j). Though sharing the same Chern
numbers with the initial topological phase [Fig. 1(f)], the final
system possesses two more pairs of chiral edge bands in both 0-
and π -quasienergy gaps, and therefore should be characterized
by larger topological winding numbers [34,45]. It is not hard

to imagine that if this process can continue forever with the
increase of the system parameter, we would in principle reach
a topological phase with arbitrarily large winding numbers,
therefore admitting as many chiral edge states as possible in
both Floquet gaps.

The question is how complicated a system should be to
realize such an intriguing process. In the following section, we
will introduce a periodically quenched two-dimensional (2D)
lattice model with only nearest-neighbor hoppings. It will be
shown that this simple model realizes exactly the sequence of
topological phase transitions described in this section, which is
accompanied by a monotonic increase of the number of Floquet
chiral edge states under the increase of just a single hopping
parameter of the lattice.

III. PROTOTYPICAL MODEL: A PERIODICALLY
QUENCHED LATTICE

Our model contains noninteracting particles in a 2D square
lattice, with two degrees of freedom (sublattice or spin) in
each unit cell. The nearest neighbor (NN) hopping amplitude
and on-site potential of the lattice are periodically modulated
in time. In each driving period, the system is subjected to
a sequence of three quenches, as sketched in Fig. 2. The
dynamics of the system following each quench is described
by the Schrodinger equation i d

dt
|ψ(t)〉 = Ĥ|ψ(t)〉, with the

Hamiltonian

Ĥ = Ĥ1 = 3J1

2i

∑
nx,ny

(|nx,ny〉〈nx + 1,ny | − H.c.) ⊗ σx (1)
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FIG. 2. A sketch of the quenched lattice model in the �’s driving
period. The same sequence of quenches is applied to the lattice for
every driving period � ∈ Z. Each shaded dot represents a unit cell
with two internal degrees of freedom (sublattice or spin). At t = �,
the system Hamiltonian is quenched to Ĥ1, for which there are only
NN hoppings (red dashed lines) along x (horizontal) direction of the
lattice. At t = � + 1

3 , the system Hamiltonian is switched to Ĥ2, for
which there are only NN hoppings (blue solid lines) along y (vertical)
direction of the lattice. At t = � + 2

3 , the system’s Hamiltonian is
quenched to Ĥ3, for which NN hoppings along both x and y directions
of the lattice are switched on, and an energy bias between two internal
degrees of freedom is applied within each unit cell.

for t ∈ [�,� + 1
3 ),

Ĥ = Ĥ2 = 3J2

2i

∑
nx,ny

(|nx,ny〉〈nx,ny + 1| − H.c.) ⊗ σy (2)

for t ∈ [� + 1
3 ,� + 2

3 ), and

Ĥ = Ĥ3 = 3J3

2

∑
nx,ny

(M|nx,ny〉〈nx,ny | + |nx,ny〉〈nx + 1,ny |

+ |nx,ny〉〈nx,ny + 1| + H.c.) ⊗ σz (3)

for t ∈ [� + 2
3 ,� + 1), where nx,ny,� are integers and σx,y,z are

Pauli matrices. In this paper we set the Planck constant, driving
period, and lattice constant all equal to 1.

In the first one-third of a driving period, the system is
described by the Hamiltonian Ĥ1, where there are only NN
hoppings along the x direction of the lattice with a hopping
amplitude 3J1

2 . In the second third of a driving period, the
system Hamiltonian is switched to Ĥ2, where there are only
NN hoppings along the y direction of the lattice with a hopping
amplitude 3J2

2 . Finally, in the last third of a driving period,
the system Hamiltonian is quenched to Ĥ3, where there are
NN hoppings along both the x and y directions with equal
hopping amplitudes 3J3

2 , together with an on-site potential
3J3M

2 . Putting it together, the Floquet operator generating the
evolution of the system over a complete driving period is

given by Û = e−i(1/3)Ĥ3e−i(1/3)Ĥ2e−i(1/3)Ĥ1 . To simplify the
notation, we introduce an “effective” Hamiltonian for each
step of quenched evolution as Ĥi = 1

3Ĥi (i = 1,2,3). Then
the system we are going to study is described by the Floquet
operator

Û = e−iĤ3e−iĤ2e−iĤ1 . (4)

Since only NN couplings in the lattice are required in
each step of the quench, our model should be in principle
realizable in photonic setups like those reported in Ref. [5].
In the following section, we will study the bulk Floquet
quasienergy spectrum and Chern numbers of Û at different
hopping parameters J1 or J2. We will further demonstrate that
by increasing the value of J1 or J2, a sequence of topological
phase transitions can be induced, in which the two Floquet
bands of Û exchange their Chern numbers alternatively upon
touching at quasienergies 0 and π , realizing the scheme we
described in Sec. II.

IV. BULK SPECTRUM AND CHERN NUMBER

In this section, we study the bulk Floquet spectrum
and Chern numbers of our periodically quenched lattice
model. For a lattice with Nx × Ny unit cells and under
periodic boundary conditions (PBCs) along both x and y

directions, we can perform a Fourier transform |kx,ky〉 =
1√

NxNy

∑Nx

nx=1

∑Ny

ny=1 ei(kxnx+kyny )|nx,ny〉 to find the Floquet

operator as Û = ∑
kx ,ky

|kx,ky〉U (kx,ky)〈kx,ky |, where kx,y ∈
[0,2π ) are two quasimomenta. The Bloch-Floquet operator
U (kx,ky) has the form

U (kx,ky) = e−iH3(kx ,ky )e−iH2(ky )e−iH1(kx ), (5)

with Bloch Hamiltonians

H1(kx) = J1 sin(kx)σx ≡ K1σx, (6)

H2(ky) = J2 sin(ky)σy ≡ K2σy, (7)

H3(kx,ky) = J3[M + cos(kx) + cos(ky)]σz ≡ K3σz. (8)

Note in passing that in the static limit, H1(kx) + H2(ky) +
H3(kx,ky) describes the paradigmatic Qi-Wu-Zhang (QWZ)
model of Chern insulators [46]. The QWZ model possesses two
topologically nontrivial phases in the range of M ∈ (−2,2),
separated by a phase transition at M = 0. In each of these
topological nontrivial phases, there is only a single pair of
chiral edge states traversing the band gap. As will be shown,
our simple quench protocol arms the QWZ-like model here
with much richer topological phase structures that are unique
to Floquet systems.

To see this, let us first check the Floquet spectrum of
U (kx,ky), which is obtained by solving the eigenvalue equa-
tion U (kx,ky)|ψ〉 = e−iE(kx ,ky )|ψ〉. It is directly seen that the
quasienergies (eigenphases) of U (kx,ky) group into two Flo-
quet bands with dispersions:

E±(kx,ky) = ± | arccos[cos(K3) cos(K2) cos(K1)

+ sin(K3) sin(K2) sin(K1)]|. (9)
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FIG. 3. Floquet spectrum gaps and Chern numbers vs the hopping
amplitude J2 at fixed values of (J1,J3,M) = (0.5π,0.2π,1). (a) Gaps
at quasienergies 0 (blue dashed line) and π (red solid line) as defined
in Eqs. (10) and (11), respectively. (b) Chern numbers C− (blue solid
line) and C+ (red dashed line) of the lower and higher Floquet bands
E− and E+, respectively.

In general, there are two spectrum gaps at quasienergies 0 and
π . We characterize them by the gap functions:

�0 = min
{kx ,ky }

2|E±(kx,ky)|, (10)

�π = min
{kx ,ky }

2[π − |E±(kx,ky)|]. (11)

So the spectrum gap closes at quasienergy 0 (π ) if �0 = 0
(�π = 0). In Fig. 3(a), we plot �0 (blue dashed line) and
�π (red solid line) versus J2 at fixed values of J1 = 0.5π ,
J3 = 0.2π , and M = 1. We observe that the bulk quasienergy
dispersions E±(kx,ky) become gapless every time J2 hits an
integer multiple of π . Furthermore, the following pattern of
gap closing conditions are identified:

J2 =
{

2nπ, �0 = 0
(2n + 1)π, �π = 0 n = 0,1,2, . . . . (12)

That is, the spectrum gap closes alternatively at quasienergies
0 and π with the increase of J2. Similar behaviors of �0 and �π

versus J1 are also found at fixed values of the other parameters.
Also we note that besides an initial parameter window, the
maximal sizes of spectrum gaps at both quasienergies 0 and π

are maintained under the increase of either J1 or J2.
As discussed in Sec. II, in order for such a gap evolution

process to generate large winding numbers in both the 0- and
π -quasienergy gaps, the two Floquet bands need to exchange
their Chern numbers every time when they touch each other. To
check this, we compute the Floquet band Chern numbers C± of
U (kx,ky) versus J2 at fixed values of J1 = 0.5π , J3 = 0.2π ,
and M = 1. The Chern number of the Floquet band below
(above) quasienergy 0 [44] is denoted by the blue solid (red
dashed) line in Fig. 3(b). We see that the two bands indeed

exchange their Chern numbers every time when J2 passes
through an integer (n) multiple of π , where the gap closes at
(0 ) π quasienergy if n is even (odd). Furthermore, this process
happens periodically under the increase ofJ2. A similar process
is also observed under the increase of J1 with other system
parameters fixed. Putting it together, the quenched lattice
model described by Floquet operator (4) indeed exemplifies
the scheme of generating large gap winding numbers and chiral
edge states as we proposed in Sec. II. In the following section,
we will illustrate this point more explicitly by investigating the
spectrum of Û under open boundary conditions and discussing
its bulk-edge correspondence.

V. CHIRAL EDGE STATES

According to the bulk-edge correspondence of 2D Floquet
insulators [34], the Chern number Cα of a bulk Floquet band
α can be expressed as

Cα = WE[Û ] − WE′[Û ], (13)

where WE (WE′) is the winding number of the system’s Floquet
operator Û at quasienergy E (E′) in the quasienergy gap
above (below) [44] the band α. Furthermore, under a PBC
along one dimension of the 2D lattice and an open boundary
condition (OBC) along the other, the number of chiral edge
states localized around one edge of the lattice nedge(E) with a
quasienergy E in the gap is related to the winding number as
[34]

nedge(E) = |WE[Û ]|. (14)

Since a two-band Floquet insulator has two gaps at
quasienergies 0 and π , the bulk-edge relations (13) and (14)
make it possible for the system to have small bulk Chern num-
bers C± but large winding numbers (W0,Wπ ), and therefore
many chiral edge states traversing both of the quasienergy gaps.

The model we introduced in Sec. III belongs exactly to this
situation. To be explicit, we compute the Floquet spectrum
of Û under a mixed boundary condition (MBC), for which
we denote the case with the OBC/PBC along the x direction
and the PBC/OBC along the y direction of the lattice as
MBCX/MBCY. The Floquet operator under MBCX is denoted
by Û (ky) = e−iĤ3(ky )e−iĤ2(ky )e−iĤ1 , where

H1 = J1

2i

Nx−1∑
nx=1

(|nx〉〈nx + 1| − H.c.) ⊗ σx, (15)

H2(ky) = J2 sin(ky)
Nx∑

nx=1

|nx〉〈nx | ⊗ σy, (16)

H3(ky) = J3[M + cos(ky)]
Nx∑

nx=1

|nx〉〈nx | ⊗ σz

+ J3

2

Nx−1∑
nx=1

(|nx〉〈nx + 1| + H.c.) ⊗ σz. (17)
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FIG. 4. The Floquet spectrum of Û (ky) under OBC and PBC
along x and y directions of the lattice, respectively. Gray regions
represent bulk bands. Blue solid (red dashed) lines refer to edge states
localized at the left (right) edge of the lattice. The lattice has Nx = 200
unit cells along x direction. The hopping amplitude J2 take values
as (a) J2 = 0.5π , (b) J2 = 1.5π , (c) J2 = 2.5π , and (d) J2 = 3.5π .
Other system parameters are set at (J1,J3,M) = (0.5π,0.2π,1). C−
(C+) is the Chern numbers of the lower (upper) Floquet band and W0

(Wπ ) is the edge state winding number at quasienergy 0 (π ).

Similarly, the Floquet operator under MBCY is denoted by
Û (kx) = e−iĤ3(kx )e−iĤ2e−iĤ1(kx ), with

H1(kx) = J1 sin(kx)
Ny∑

ny=1

|ny〉〈ny | ⊗ σx, (18)

H2 = J2

2i

Ny−1∑
ny=1

(|ny〉〈ny + 1| − H.c.) ⊗ σy, (19)

H3(kx) = J3[M + cos(kx)]
Ny∑

ny=1

|ny〉〈ny | ⊗ σz

+ J3

2

Ny−1∑
ny=1

(|ny〉〈ny + 1| + H.c.) ⊗ σz. (20)

The quasienergy dispersions of Û (ky) and Û (kx) at several
different values of J2 are shown in Figs. 4 and 5, with the
number of unit cells Nx = 200 and Ny = 200 for the two cases,
respectively. In all the panels, gray regions represent bulk Flo-
quet bands and blue solid (red dashed) lines denote chiral edge
states localized around the left (right) boundary of the lattice.
The Chern numbers C± of bulk Floquet bands and winding
numbers W0,π of chiral edge states at quasienergies 0 and π

are also denoted in the figure. The other system parameters are
set at (J1,J3,M) = (0.5π,0.2π,1) for all the calculations.

In both Figs. 4 and 5, we see that two more pairs of chiral
edge states emerge every time the value of J2 increases by π .
If the gap closes at quasienergy 0 (π ) during this process, these

FIG. 5. The Floquet spectrum of Û (kx) under OBC and PBC
along y and x directions of the lattice, respectively. Gray regions
represent bulk bands. Blue solid (red dashed) lines refer to edge states
localized at the left (right) edge of the lattice. The lattice has Ny = 200
unit cells along y direction. The hopping amplitude J2 take values
as (a) J2 = 0.5π , (b) J2 = 1.5π , (c) J2 = 2.5π , and (d) J2 = 3.5π .
Other system parameters are set at (J1,J3,M) = (0.5π,0.2π,1). C−
(C+) is the Chern numbers of the lower (upper) Floquet band and W0

(Wπ ) is the edge state winding number at quasienergy 0 (π ).

new edge states will appear in the gap centered at quasienergy 0
(π ) after the transition. Furthermore, for a given J2, the number
of chiral edge states in each gap is the same for both Û (ky) and
Û (kx), indicating that these edge states are insensitive to the
configuration of boundary conditions. More generally, under
the chosen set of parameters (J1,J3,M) = (0.5π,0.2π,1), we
can infer the following pattern of edge state winding numbers
W0,π at quasienergies 0 and π :

W0 = − 2n − 1 for 2nπ < J2 < (2n + 2)π, (21)

Wπ = − 2n for (2n − 1)π < J2 < (2n + 1)π, (22)

where n ∈ N takes all possible natural numbers. Therefore, by
tuning the value of hopping amplitude J2, one can in principle
obtain arbitrarily large winding numbers for both Floquet gaps
centered around quasienergies 0 and π . Then according to
Eq. (14), arbitrarily many chiral edge states could appear in
the gaps around quasienergies 0 and π . An example of the
spectrum with 9 or 10 pairs of chiral edge states is shown in
Appendix A. By varying J1 with other system parameters fixed,
we observe a similar pattern for the winding numbers and edge
states, with more details presented in Appendix B. Two other
examples are discussed in Appendix C.

Note in passing that in Fig. 5, all the eigenstates at
quasienergy 0 or π in each panel have the same quasimomen-
tum kx = 0 and also almost the same group velocity ∂kx

E.
Then for a large enough sample in a large winding number
phase, there will be a significant “synchronous” and “parallel”
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topological current flowing along its edge. Such a current might
be more robust to perturbations and dephasing introduced by
the environment, and therefore has the potential of realizing
robust quantum information transfer.

In both static [47–53] and Floquet [13,19,22,24,37,54] 2D
topological insulators, efforts have been made to engineer
bulk bands with large (>1) Chern numbers. An important
aim is to find more chiral edge states, and therefore realize
more quantized and topologically protected transport channels
along the sample edge [37,38]. However, many of the existing
approaches require either more than two bulk bands, or longer
range hoppings plus a careful engineering of the local sym-
metry of the Brillouin zone. The scheme based on a quenched
lattice model here goes around most of these complications,
and at the same time allows the generation of any requested
number of chiral edge states in a well controlled manner.
Our results could then serve as a starting point for both the
theoretical exploration of rich Floquet topological phases in the
regime of large winding numbers, and the practical design of
Floquet devices with many quantized edge transport channels.

In the next section, we will demonstrate the transport of chi-
ral edge states in our system by investigating their two-terminal
conductance. The results show that both the normal and
anomalous chiral edge states yield quantized conductances,
which are equal to their corresponding winding numbers.

VI. TWO-TERMINAL CONDUCTANCE

In this section, we study the two-terminal transport of chiral
edge states in our quenched lattice model using the approach
of the Floquet scattering matrix [55–59]. The 2D lattice is
chosen to have a patch geometry with the OBC along both
the x and y directions. The unit-cell coordinates nx and ny

take values in 1,2, . . . ,Nx and 1,2, . . . ,Ny , respectively. Two
absorbing leads are coupled to the quenched lattice at its left
(nx = 1) and right (nx = Nx) ends. These leads are assumed to
act stroboscopically at the start and end of each Floquet driving
period. In the lattice representation, their effects are described
by the following projector onto leads [58,59]:

P =
[

INy
ONy×(Nx−1)Ny

ONy×(Nx−1)Ny
INy

]
⊗ σ0, (23)

where I (O) represents identity (zero) matrix and σ0 is a 2 × 2
identity corresponding to the internal degrees of freedom. Then
for an incoming state with quasienergy E from the left lead to
the quenched lattice, we have a simplified, fictitious scatter-
ing problem described by a quasienergy-dependent scattering
matrix [58,59]:

S(E) ≡
[
r(E) t(E)

t ′(E) r ′(E)

]
(24)

= P
[
1 − eiEÛ

(
1 − P T P

)]−1
eiEÛP T , (25)

where the Floquet operator Û is given by Eq. (4). Here
the transmission amplitude t(E) is a 2Ny by 2Ny matrix,
from which the conductance of the quenched lattice (i.e.,
transmission from left to right leads) is obtained as G(E) =
Tr[t†(E)t(E)].

In Fig. 6 we present the calculation of G(E) versus the
hopping amplitude J2 at fixed incoming quasienergies E ≈ 0

0 1 2 3 4 5
-1

0

1

2

3

4

5

G(E 0.935 ) 
G(E 0.065 ) 
B−

FIG. 6. Two-terminal conductance G(E) and Bott index B− of
Û vs the hopping amplitude J2. Other system parameters are fixed
at (J1,J3,M) = (0.5π,0.2π,1) and the lattice size is Nx = Ny = 70.
Red triangles (blue dots) represent the transmission of an incoming
state whose quasienergy E is inside the Floquet spectrum gap centered
around E = π (E = 0). The Bott index B− vs J2 (magenta dashed
line) follows the pattern of the lower band’s Chern number as shown
in Fig. 1.

(blue dots) and E ≈ π (red triangles). Referring to the Chern
number pattern and Floquet spectrum presented in Figs. 3
and 4, we clearly see that G(E) = nedge(E) for all values
of J2 studied here. This further verifies that the chiral edge
states found in our system indeed give quantized conductances
equaling to their winding numbers. For completeness, we also
calculated the Bott index [23,60–65] of the lower Floquet band
B− in our system (see Appendix D for the definition). For
a filled Floquet band, the Bott index is equal to the Chern
number, but it is also well defined in a torus or patch geometry
in position representation. Our results show that the change of
B− versus J2 (dashed line in Fig. 6) follows exactly the Chern
number pattern of the lower band, but is unable to capture the
winding number and the number of chiral edge states traversing
a Floquet gap in our model. This suggests that the winding
number introduced in Ref. [34] might be the most appropriate
invariant to describe topological phases and phase transitions
related to chiral edge states in 2D Floquet insulators.

Note in passing that in a realistic two-terminal transport
setting, an incoming state is prepared at a certain energy
instead of quasienergy. In this situation, the quantized edge
state conductance is only recovered after applying a “Floquet
sum rule” [29], as also explored in Refs. [37,38].

VII. SUMMARY

In this paper, we proposed a simple Floquet engineering
recipe to generate many topological chiral edge states in
a controlled manner. The essence of our approach is to
let the Floquet bands of the system exchange their Chern
numbers periodically and alternatively upon touching at 0
and π quasienergies. A prototypical quenched lattice model
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is introduced to demonstrate our idea. The quantized edge
state conductance of the model in several different topological
phases was obtained from the Floquet scattering matrix of
the system. Our results reveal an intriguing mechanism in the
engineering of Floquet transport devices.

In a realistic system, disorder could have important impacts
on its topology and transport properties [66,67]. The quenched
lattice model proposed in this paper could be a promising
platform to explore these effects. On the one hand, the phases
with many topological chiral edge states in our system could
be more robust to disorder effects, and potentially also more
efficient in the realization of Floquet edge state pumps. On
the other hand, topological phases with many chiral edge
states are characterized by large winding numbers at both 0-
and π -quasienergy gaps. Exploring possible topological phase
transitions induced by disorder in these large winding number
phases is also an interesting topic for future study.
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APPENDIX A: FLOQUET SPECTRUM OF Û WITH MANY
CHIRAL EDGE STATES: AN EXAMPLE

In this appendix, we give an example of the Floquet
spectrum of Û defined in Eq. (4) of the main text with many
chiral edge states traversing both the gaps around 0 and π

quasienergies. The spectrum is shown in Fig. 7, where 9/10

FIG. 7. The Floquet spectrum of Û (ky) under OBC and PBC
along x and y directions of the lattice, respectively. Shaded regions
represent bulk bands. Blue crosses (red dots) refer to edge states
localized at the left (right) edge of the lattice. The lattice has Nx = 300
unit cells along x direction. The hopping amplitude J2 = 9.5π . Other
system parameters are set at (J1,J3,M) = (0.5π,0.2π,1). C− (C+) is
the Chern numbers of the lower (upper) Floquet band and W0 (Wπ )
is the edge state winding number at quasienergy 0 (π ).

FIG. 8. The Floquet spectrum of Û (ky) under OBC and PBC
along x and y directions of the lattice, respectively. Gray regions
represent bulk bands. Blue solid (red dashed) lines refer to edge states
localized at the left (right) edge of the lattice. The lattice has Nx = 200
unit cells along x direction. The hopping amplitude J1 take values
as (a) J1 = 1.5π , (b) J1 = 2.5π , (c) J1 = 3.5π , and (d) J1 = 4.5π .
Other system parameters are set at (J2,J3,M) = (0.5π,0.2π,1). C−
(C+) is the Chern numbers of the lower (upper) Floquet band and W0

(Wπ ) is the edge state winding number at quasienergy 0 (π ).

pairs of chiral edge states are found in the spectrum gap
centered around quasienergy 0/π . For presentation purposes,
only the range of spectrum in which edge states appear is
shown.

APPENDIX B: FLOQUET SPECTRUM OF Û
AT DIFFERENT VALUES OF J1

In this appendix, we present several more examples of the
Floquet spectrum of Û versus the hopping amplitude J1, with
the other system parameters fixed. Results under MBCX and
MBCY are both studied. We see from Figs. 8 and 9 that the
bulk and edge states configurations are similar to the cases
obtained at different values of J2 in the main text. This further
demonstrates the generality of our Floquet engineering scheme
in the generation of topological phases with large winding
numbers and many chiral edge states.

APPENDIX C: MORE EXAMPLES
ON THE FLOQUET SPECTRUM

Here we present two more examples of the quasienergy
spectrum of Û (ky) at different hopping amplitudes J1 = J2,
with other system parameters fixed at (J3,M) = (0.3π,1).
Numerical results are shown in Figs. 10 and 11. Similar
to the situation in which only one hopping amplitude (J1

or J2) is varied, increasing J1 together with J2 could also
induce Chern number exchanges of the two Floquet bands and
therefore the growth of the number of chiral edge states in
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FIG. 9. The Floquet spectrum of Û (kx) under OBC and PBC
along y and x directions of the lattice, respectively. Gray regions
represent bulk bands. Blue solid (red dashed) lines refer to edge states
localized at the left (right) edge of the lattice. The lattice has Ny = 200
unit cells along y direction. The hopping amplitude J1 take values as
(a) J1 = 1.5π , (b) J1 = 2.5π , (c) J1 = 3.5π and (d) J1 = 4.5π . Other
system parameters are set at (J2,J3,M) = (0.5π,0.2π,1). C− (C+) is
the Chern numbers of the lower (upper) Floquet band and W0 (Wπ )
is the edge state winding number at quasienergy 0 (π ).

FIG. 10. The Floquet spectrum of Û (ky) under OBC and PBC
along x and y directions of the lattice, respectively. Gray regions
represent bulk bands. Blue solid (red dashed) lines refer to edge states
localized at the left (right) edge of the lattice. The lattice has Nx = 300
unit cells along x direction. The hopping amplitudes J1 = J2 = 1.4π .
Other system parameters are set at (J3,M) = (0.3π,1). C− (C+) is the
Chern number of the lower (upper) Floquet band and W0 (Wπ ) is the
edge state winding number at quasienergy 0 (π ).

FIG. 11. The Floquet spectrum of Û (ky) under OBC and PBC
along x and y directions of the lattice, respectively. Gray regions
represent bulk bands. Blue solid (red dashed) lines refer to edge states
localized at the left (right) edge of the lattice. The lattice has Ny = 300
unit cells along x direction. The hopping amplitudes J1 = J2 = 2.1π .
Other system parameters are set at (J3,M) = (0.3π,1). C− (C+) is the
Chern numbers of the lower (upper) Floquet band and W0 (Wπ ) is the
edge state winding number at quasienergy 0 (π ).

both quasienergy gaps. Furthermore, Floquet bands with Chern
numbers larger than 1 appear in certain parameter windows.
However, our numerical calculations suggest that the size of
quasienergy gaps will shrink under the joint growth of J1 and
J2, accompanied by a more complicated gap closing pattern
compared with the one shown in Fig. 3(a) of the main text.
These make it harder to resolve chiral edge states at larger
values of J1 = J2. From another perspective, the complicated
topological phase pattern encountered in this situation may call
for a statistical analysis of the distribution of winding numbers
(W0,Wπ ) in a wide range of J1 = J2, as considered recently in
a one-dimensional system [68].

APPENDIX D: CALCULATION OF THE BOTT INDEX

In this appendix, we explain a bit more on the calculation
of the Bott index of our quenched lattice model. Taking a torus
geometry of size Nx × Ny for the lattice (i.e., the PBC along
both x and y directions), we will have two bulk Floquet bands.
We denote P− and P+ as projectors to the lower and higher
band in the first quasienergy Brillouin zone, respectively. In
the spectrum representation, these projectors are given by

P− =
∑

E∈(−π,0)

E|E〉〈E| = V

[
IN1N2 0

0 0

]
V †, (D1)

P+ =
∑

E∈(0,+π)

E|E〉〈E| = V

[
0 0

0 IN1N2

]
V †, (D2)

where V is the unitary transformation which diagonalizes the
Floquet operator Û , i.e., Û = V e−i

∑
E E|E〉〈E|V †.
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To evaluate the Bott index, we introduce the “exponential
(unitary) position operators” as [65]:

ÛX = ei 2π
Nx

∑Nx
nx=1 nx |nx 〉〈nx |⊗INy ⊗σ0 , (D3)

ÛY = e
i 2π

Ny
INx ⊗∑Ny

ny=1 ny |ny 〉〈ny |⊗σ0 . (D4)

Then the projections of these operators to the lower Floquet
band UX− and UY− are given by

P−ÛαP− = V

[
Uα− 0

0 0

]
V †, α = X,Y. (D5)

Finally, the Bott index of the lower Floquet band B− reads

B− = 1

2π
Im

{
Tr

[
ln

(
UX−UY−U

†
X−U

†
Y−

)]}
. (D6)

The numerical values of B− for our quenched lattice model are
presented in Fig. 6 of the main text. For a clean sample, it has
been shown that the Bott index of a filled band is equivalent
to its Chern number [61,64]. However, since the Bott index is
defined on a discrete lattice in position space, it is also well
defined for a disordered system. Therefore the Bott index could
be useful to describe topological phase transitions induced by
disorder in both static and Floquet systems.
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