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Coherent transfer of singlet-triplet qubit states in an architecture of triple quantum dots
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We propose two schemes to coherently transfer arbitrary quantum states of the two-electron singlet-triplet qubit
across a chain of three quantum dots. The schemes are based on electrical control over the detuning energy of the
quantum dots. The first is a pulse-gated scheme, requiring dc pulses and engineering of inter- and intradot Coulomb
energies. The second scheme is based on the adiabatic theorem, requiring time-dependent control of the detuning
energy through avoided crossings at a rate that the system remains in the ground state. We simulate the transfer
fidelity using typical experimental parameters for silicon quantum dots. Our results give state transfer fidelities
between 94.3% < F < 99.5% at sub-ns gate times for the pulse-gated scheme and between 75.4% < F < 99.0%
at tens of ns for the adiabatic scheme. Taking into account dephasing from charge noise, we obtain state transfer
fidelities between 94.0% < F < 99.2% for the pulse-gated scheme and between 64.9% < F < 93.6% for the
adiabatic scheme.
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I. INTRODUCTION

Spin qubits in semiconductor quantum dots are leading
candidates for quantum information processing due to their
long coherence times [1,2] and promise of scalability [3].
The exchange coupling is the spin-dependent part of the
Coulomb interaction between electrons and is essential in
the manipulation of qubit-qubit interaction [3], as well as
single-qubit rotations for qubits encoded by two [4,5] or three
[6,7] electron spins.

Because of the architectural and scaling constraints [8] im-
posed by the short range of the exchange interaction [9], studies
of spin qubit architectures invariably involve how quantum
information may be transferred from one location to another
with high fidelity and experimentally realistic requirements.
Existing proposals may be based on moving the electrons
themselves [10–12], or utilizing exchange-coupled spin chains
that require precise engineering of the exchange interaction
[13], strong couplings within a “spin bus” [14], or pulse
shaping of the tunnel couplings for the single spin qubit [15]
and the triple spin qubit [16]. Other proposals based on hybrid
systems that transduce spin information into photon modes
via a resonant cavity [17–20] introduce new experimental
constraints and may be more challenging to realize.

Despite the successes of the two-electron singlet-triplet
(ST) qubit [2,21–25], relatively little attention has been given
to elucidate techniques for the transfer of quantum information
encoded by the ST qubit without posing additional experimen-
tal challenges.
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In this paper, we study the coherent transfer of quantum
information encoded in the singlet (S) and unpolarized triplet
(T0) states of the ST qubit across a chain of three quantum
dots, as sketched in both Figs. 1(a) and 2(a). We investigate
the rate and fidelity of the transfer for two schemes that are
within reach of current experimental techniques, requiring only
control over the detuning energy ε of individual quantum dots
through applied dc and linear voltage pulses. Even though
in realistic systems, other parameters, e.g., tunnel coupling,
may be cross coupled to gates that control a particular ε, there
are sufficient tunable gates in typical experimental devices to
allow us to assume independent control over each parameter.
Varying detuning is preferred over tunnel coupling as it is
generally easier to achieve in experiments. Our schemes are
viable to quantum dots in Si [26] because Si has small spin-orbit
interaction [27], low proportion of spinful nuclei (5% of spin-
1/2 29Si), and can be further isotopically purified. Therefore,
our schemes are feasible and realistic for current experiments.

II. THEORETICAL MODEL

A. Hamiltonian

We consider a chain of three quantum dots with nearest
neighbor couplings, described by a Hubbard model [28,29]

H = Hμ + Ht + HU, (1)

where Hμ is a term that depends on the electrochemical
potential of the quantum dots and its detuning energy, Ht is
the term describing the nearest-neighbor interdot hopping, and
HU describes both intradot and interdot Coulomb interactions.
(See Appendix A for details.)

Equation (1) assumes each quantum dot is either empty,
singly, or doubly occupied with both electrons in the ground
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FIG. 1. Pulse-gated state transfer. (a) Schematic of the detunings
before, during, and after the pulse. Electrons are represented by filled
circles; black horizontal lines represent the ground orbitals. In the left
and right regimes, the two lowest-lying states are the S and T0 states
of the two leftmost and rightmost dots, respectively, as represented
by dashed ellipses. In the middle regime, the left and right dots are on
resonance, allowing state transfer between the |S,T0〉1,2 and |S,T0〉2,3

states (dashed ellipses). (b) Resonance condition during pulse gating.
Coupling via the intermediate states are shown in black arrows, while
coupling to leakage states of undesired charge occupation are shown
in gray arrows. These arrows showing tunnel couplings are sketched
against a vertical energy axis (not to scale). (c) Plot of infidelity (1 −
fidelity F) with mixing angle θ with dephasing (blue circles) and
without (yellow squares), where U = 2 K, K = 3.05 meV, and t =
0.12 meV. The upper and lower bounds for the values of infidelity are
labeled in the plot as well. We use � = 1 GHz in the simulations.

orbital forming a spin singlet. We assume that the single
particle excited states are well separated from the ground state.
These excited states may be orbital or valley in nature [26]. The
lowest two valley states can be engineered to produce a gap of
several meV [30], up to 9 meV [31]. For orbital states, the gap
can be as large as 8 meV based on experimentally measured
orbital spectra in Si/SiGe quantum dots [32]. Experiments are
carried out at 100 mK temperatures, so thermal excitations
may be neglected. Also, the effect of higher orbitals causes
only a small renormalization of the Hubbard parameters [33].
For these reasons, we retain only ground orbitals in our model.

FIG. 2. Adiabatic state transfer. (a), (b) At far-detuned initial and
target regimes, charge occupation of the dots are good eigenstates,
and the system starts in an arbitrary superposition of the ground
|S,T0〉1,2 states. As the detuning is swept along the direction of the
blue arrows, the system evolves adiabatically to |S,T0〉2,3, with singlet
and triplet states picking up different dynamical phase contributions.
Here, the energies of the singlet and triplet states are plotted as a
function of ε3(τ ) − ε1(τ ). The detuning is applied on the first and
third dots as a simple linear ramp, while the detuning for the second
dot is kept constant. (See Appendix B for details.) (c) The plot of
infidelity (1 − fidelity F) with mixing angle θ with dephasing (blue
circles) and without (yellow squares), where U = 6.1 meV, K =
2.5 meV, and t = 0.12 meV. The upper and lower bounds for the
values of infidelity are also labeled in the plot. Similarly, the dephasing
rate, �, is given by 1 GHz.
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For the ST qubit, an interdot magnetic field difference
�B arises from nuclear spins [23] or micromagnets [21,34],
and offers control over two independent rotation axes on the
qubit Bloch sphere. While there is no direct control over �B,
electrical control over detuning allows the qubit to be pulsed
quickly into regimes where either exchange or magnetic cou-
pling energies dominate. In this work, we consider the regime
where the exchange energy dominates. The value of exchange
we adopt is several orders of magnitude larger than typical
experimental values of the magnetic energy term gμB�B in
Si: ∼3 neV in natural Si [35] or ∼60 neV with micromagnets
[21]. Here, g is the g factor of the host semiconductor; μB is the
Bohr magneton. Also, typical in-plane magnetic fields affect
the Zeeman energy of spin states outside the Sz = 0 basis; thus
we exclude magnetic terms in Eq. (1).

In our numerical simulations, we use typical quantum dot
parameters extracted from fits to a Hubbard Hamiltonian in
Refs. [29,33], which are based on data from experiments in
Si/SiGe quantum dots [36]. We assume identical dots with
identical, constant nearest-neighbor tunnel couplings, t = 0.12
meV [29,33]. We take identical intradot and nearest-neighbor
interdot Coulomb energies of Ui = U = 6.1 meV [29] and
Uij = K , respectively.

B. Fidelity of state transfer

We propose two schemes for state transfer. The first is
a pulse-gated scheme where dc pulses control the detuning.
The second is an adiabatic scheme where detuning is changed
linearly through energy anticrossings. Our aim is to coherently
transfer an arbitrary superposition of the S and T0 states of the
ST qubit from the leftmost dots, 1 and 2, to the rightmost
dots, 2 and 3. Because the Hamiltonian is spin conserving,
it is block diagonal in spin space. Although the singlet
and triplet states are uncoupled, the schemes do not require
knowledge of the initial admixture of singlet and triplet states.
This arbitrary superposition of states leads to the problem of
state transfer becoming nontrivial because of the nonidentical
interdot coupling of the different spin and charge states, errors
from phase accumulation, and leakage into states of undesired
charge occupation.

We start with a general arbitrary initial state in the first two
quantum dots, |ψ0〉 = cos θ |S〉1,2 + eiφ sin θ |T0〉1,2, where
|S/T0〉i,j = (| ↑i↓j 〉 ∓ | ↓i↑j 〉)/

√
2. The mixing angle θ de-

termines the admixture of the singlet and triplet states and φ is
the initial phase difference. The aim is to obtain the target state
|ψtgt〉 = cos θ |S〉2,3 + eiφ sin θ |T0〉2,3, for the triple dot chain.

The key figure of merit is the fidelity of state transfer [3,11–
13,20,22,37–39] as functions of the initial mixing angle and
phase. While there are other measures of state transfer quality,
fidelity is intuitively simple; it is a measure of how close we are
to achieving the target state [40]. We report the best and worst
fidelities (see Tables I, II and Appendix D) as well as the fidelity
averaged over the entire range of mixing angles (see Appendix
E). Calculations over the entire range of initial mixing angles
and phases indicate that fidelity contains no dependence on the
initial phase (see Appendix F). We therefore present results for
one initial phase angle φ = 0, in the main text; identical results
apply for other values of φ.

III. STATE TRANSFER SIMULATIONS

A. Master equation

In all our numerical simulations, we use nine basis states,
comprising three different charge states within the unpolarized
triplet spin space and six singly and doubly occupied charge
states within the singlet spin space (see Appendix A).

We simulate the state transfer outlined in Sec. II by solving
the 9 × 9 density matrix for our three dot, two electron system
using a Markovian master equation [37,41]

∂ρ(τ )

∂τ
= − i

h̄
[H (τ ),ρ(τ )] − D[ρ(τ )], (2)

where τ is time, the first term on the right-hand side de-
scribes the coherent evolution, and the second term describes
dephasing effects. The latter is explained in Sec. III B next and
Appendix G details the calculations.

B. Dephasing

We now examine the effects of orbital dephasing in the
solid state environment. We assume weak coupling between
the system and a bosonic environment which may consist of
phonons or charge degrees of freedom (“charge noise”). We
assume that charge noise induces uncorrelated variations in
the detuning parameter and result in fluctuations in the energy
differences in the system, leading to dephasing effects [37,41].
Although it is possible that charge noise affects the tunnel
coupling parameter, we do not specifically include this as it is
not thought to be a dominant noise source [42].

Charge noise can be characterized by two types of noise:
double occupation dephasing noise [41] and single occupation
dephasing noise [43]. Double-occupation dephasing is for-
mulated in Eq. (2) as DD = ∑

i
�
2 [ni↑ + ni↓,[ni↑ + ni↓,ρ]],

where niσ is the electron number operator with spin σ , ρ

is the density matrix we want to solve, and � is the de-
phasing rate, which we take to be 1 GHz [37]. This term is
attributed to virtual transitions to the doubly occupied states
during the state transfer. Single occupation dephasing is given
by DS = ∑

i,j γijρij (τ )|i〉〈j |, where i 	= j , which describes
dephasing between singly occupied states at rates γij that
depend on the energy splitting of the states Eij with respect
to detuning of the leftmost and rightmost dots (1 and 3), i.e.,

γij = �

√
(∂Eij /∂ε1)2 + (∂Eij /∂ε3)2, where Eij ≡ Ei − Ej .

The second term on the right-hand side of Eq. (2) is defined as
the sum of both dephasing terms, D[ρ(τ )] ≡ DD + DS .

IV. PULSE-GATED STATE TRANSFER

In the pulse-gated state transfer scheme, dc pulses are
applied to control detuning εi . The pulse sequence moves the
dots through several regimes [Fig. 1(a)]: first, the right dot is
far detuned from the other dots (|ε3| � ε1,ε2), next the left
and right dots are moved such that they are on resonance, but
detuned from the middle dot (ε2 > ε ≡ ε1 = ε3), and finally
a regime where the left dot is far detuned from the other dots
(|ε1| � ε3,ε2).

We bring the |S/T0〉1,2 and |S/T0〉2,3 states into resonance
with each other via control over the detuning energies of dots
1 and 3 as shown in the schematics of Fig. 1(b) and the middle
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panel of Fig. 1(a). The initial and target states for the singlet
are coupled via intermediate states |S〉1,3 and |S〉2,2, while
those for the triplet are coupled via |T0〉1,3, as shown in black
arrows in Fig. 1(b). The singlet states also couple to leakage
states of undesired charge occupation |S〉1,1 and |S〉3,3, shown
in gray arrows.

The Schrieffer-Wolff transformation [44–46] allows us to
gain insight into the effective couplings between the initial
and target states. We can obtain the couplings to be JS =
t2( −4

U−K+ε
+ 2

K+ε
) and JT = t2( 2

K+ε
) for the singlet and triplet

states, respectively. This suggests that, for a pure singlet or
triplet state, the target state may be reached with the highest
fidelity after a gate time of τgate = h̄π/JS/T on resonance.
However, this gate time differs for the singlet and triplet states
if JS and JT are different. Therefore, for an arbitrary initial
state, we require the gating times to be equal, |JS | = |JT | ≡
J , in order to achieve maximum fidelity with simultaneous
transfer of both spin states. This can be satisfied if the ratio
of the intradot to interdot Coulomb repulsion is given by
U/K = 2. This condition corresponds to a realistic constraint
on the ratio of interdot distance to dot size and is detailed in
Appendix H. We emphasize here again that the Schrieffer-
Wolff Hamiltonian was useful for gaining insight into the
gating time, and was not used in the simulations since it is
effectively an approximation.

We also note that the lowest-lying excited states must be
well separated from those involved in the pulse-gating scheme
to avoid undesired resonances. For singlets, this means that the
energy difference between the doubly occupied (2,2) singlet
and singly occupied (1,2) and (2,3) excited states must be
�ES = K − U − ε + Eex , where Eex is the single particle
excited energy in each dot which we take to be 8 meV [32].
For triplet states, the excited (1,3) state must be much higher
than the energies of the (1,2) and (2,3) states, with a gap of
�ET = ε − K + Eex .

After solving Eq. (2) with the pulses, we obtain the final
state which we then use for the calculation of fidelity, which
is shown in Table I. In Fig. 1(c), we plot the infidelity (1 − F)
against various mixing angles θ of the initial state, with φ = 0,
for both cases—without and with dephasing. The best fidelity
is achieved when the state vector is a pure triplet state and the
inclusion of the dephasing rate � = 1 GHz reduces fidelity
across θ .

V. ADIABATIC STATE TRANSFER

In the adiabatic scheme, the initial state adiabatically
evolves to the desired target state by tuning the detuning
energies at a rate that the system remains in the ground
state through the anticrossings, as shown in the schematics
of Figs. 2(a) and 2(b). This scheme provides an alternative to
pulse gating in the case where engineering the ratio U/K =
2 is challenging. We therefore consider a different interdot
Coulomb interaction strength of K = 2.5 meV [29], keeping
other parameters the same.

The avoided crossings occur around ε3(τ ) = ε1(τ ), as
shown in Fig. 2(b). We observe that avoided crossings for
singlets arises from the tunnel couplings between |S〉1,2 and
|S〉2,3 with |S〉2,2, while the avoided crossing for triplets
[Fig. 2(b)] arises from the tunnel couplings between |T0〉1,2

TABLE I. Fidelities for the pulse-gated scheme. � = 1 GHz was
used in calculations with dephasing.

Pulse-gated Worst Best Average
scheme fidelity fidelity fidelity

Without dephasing 94.3% 99.5% 96.2%
With dephasing 94.0% 99.2% 95.8%

and |T0〉2,3 with |T0〉1,3. Therefore, the energy gap for singlets
and triplets are respectively of the order εgap,S ∼ O(t), and
εgap,T ∼ O(t2/(ε + K)), with εgap,T < εgap,S. The smaller of
the two gaps, εgap,T sets a lower bound on the duration for
adiabatic passage.

In this scheme, detuning ε1 and ε3 are evolved at a constant
rate over a duration R such that ε1 = ε3 at time τ = R/2 while
ε2 remain detuned. This is shown schematically in Fig. 2.
(See Appendix B.) The strategy we employ is as follows: first,
we estimate R based on dephasing estimates; then, using this
R, we determine the optimal state transfer time from average
fidelity calculations (see Fig. 4 in Appendix E). The latter step
is needed because precise dephasing rates in real experiments
are typically unknown.

To estimate the duration R, we make use of the adiabaticity
condition, R � h̄(− ln PD)(ε − 1)/2πt2, based on a simple
Landau-Zener model [47]. Here, PD is the threshold probabil-
ity tolerable for the state transfer, which we set to be negligibly
small. This sets the duration, which we calculate to be R =
9.9 ns. In the absence of noise, an infinitely long duration
would yield arbitrarily high fidelities; our choice of finite R

is of the same order of magnitude or less than dephasing times
in isotopically natural silicon dots, which range from ∼10 ns to
900 ns [23,38,48]. We argue that this value of R is reasonable
since we expect realistic adiabatic durations to be bounded
by dephasing times. (In isotopically purified silicon dots, the
dephasing time is much longer, at 2.31 μs [49].)

We find that the best fidelities occur after a transfer time
of about 6.9 ns, which is approximately of the correct order
that we anticipated above [39]. The fidelities obtained at that
instant are shown in Table II. Figure 2(c) contains the plots of
the infidelity (1 − F) across θ with φ = 0 for both cases with
and without dephasing.

VI. DISCUSSION

Comparing the fidelities in Tables I and II, we see that the
highest fidelity achieved for both schemes with or without
dephasing are comparable. However, the lowest fidelity is
significantly better for pulse gating than the adiabatic scheme.
This is not surprising because in any adiabatic scheme, there is
a natural trade-off between speed and adiabaticity—too slow

TABLE II. Fidelities for the adiabatic scheme. � = 1 GHz was
used in calculations with dephasing.

Adiabatic Worst Best Average
scheme fidelity fidelity fidelity

Without dephasing 75.4% 99.0% 84.8%
With dephasing 64.9% 93.6% 77.6%
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and dephasing reduces quality; too fast and diabatic transitions
reduce fidelity.

In contrast, pulsed-gate fidelities are not reduced as signif-
icantly with dephasing, as long as the rise time is sufficiently
short to satisfy diabaticity (see Appendix C), and when the gate
time is much faster than dephasing time. The latter condition
is favorable when tunnel coupling is large, as it is the case in
our calculations. On the other hand, a large tunnel coupling
sets an upper bound on the pulse rise time; a short rise time
may be challenging to implement, depending on the signal
generator bandwidth. This can be overcome by a suitable
reduction of the tunnel coupling: in experiments, there are
typically sufficient gates that tunnel coupling is tunable over a
wide range [36,50,51].

One of the challenges in determining the best fidelity in
the adiabatic scheme comes from the nontrivial oscillations
in fidelity that occur right after adiabatic passage through the
energy gaps (see Fig. 4 of Appendix E). A complete analysis
of the dynamical evolution of fidelity is out of the scope of this
paper, however. We surmise that different phase accumulation
for triplet and singlet states and the coupling of the target state
to the multiple levels in the system produce these oscillations.
The consequence is that the adiabatic scheme will require
careful experimental calibration with known initial states for
the optimization of fidelity.

VII. CONCLUSIONS

In summary, we presented two schemes for ST qubit state
transfer in a chain of three quantum dots. That these schemes

are feasible and accessible to current experiments is central
to addressing the practical implementation of the transfer of
quantum information, so as to advance the scalability of ST
qubits. The scalability of ST qubits will be the next step in our
implementation of the coherent transfer of the coherent state.
The key question will be how much the fidelity of state transfer
will be affected if the two schemes we discussed here are to be
repeated over a chain of arbitrarily many quantum dots, instead
of just three in our scenario.

In our scheme of three dots, the pulse-gated scheme gives
fidelities between 94.3% < F < 99.5% across θ within a short
transfer time of 0.076 ns, by requiring U/K = 2. Adiabatic
state transfer achieves fidelities between 75.4% < F < 99.0%
at a longer time (6 ns), but without the condition on the
Coulomb energies ratio. Taking into account dephasing effects,
the values of fidelity are now between 94.0% < F < 99.2%
for the pulse-gated scheme and between 64.9% < F < 93.6%
for the adiabatic scheme.
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APPENDIX A: HAMILTONIAN

The Hamiltonian in Eq. (1) of the main text contains the following terms:

Hμ = −
∑
i,σ

[μi + εi(τ )]ni,σ , (A1)

Ht = −
∑

〈i,j〉,σ
tc

†
iσ cjσ , (A2)

HU =
∑

i

Uini,↑ni,↓ + 1

2

∑
〈i,j〉

Uij (ni,↑nj,↓ + nj,↓ni,↑), (A3)

where μi is the electrochemical potential of the ith dot and εi(τ ) is the experimentally controlled detuning energy of the ith dot
with time τ , ni,σ = c

†
iσ cjσ is the electron number operator on the ith dot with spin σ , t is tunnel coupling, Ui describes the intradot

Coulomb energy, and Uij describes the interdot direct Coulomb energy. In our model, we take the interdot direct Coulomb energy
to be equal between each dot, U12 = U23.

The basis singlet states are

|1〉 ≡ |S〉3,3 = |↑3↓3〉, (A4)

|2〉 ≡ |S〉2,3 = 1√
2

(|↑2↓3〉 − |↓2↑3〉), (A5)

|3〉 ≡ |S〉1,3 = 1√
2

(|↑1↓3〉 − |↓1↑3〉), (A6)

|4〉 ≡ |S〉2,2 = |↑2↓2〉, (A7)

|5〉 ≡ |S〉1,2 = 1√
2

(|↑1↓2〉 − |↓1↑2〉), (A8)

|6〉 ≡ |S〉1,1 = |↑1↓1〉, (A9)
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while the basis states for triplets are

|7〉 ≡ |T0〉1,2 = 1√
2

(|↑1↓2〉 + |↓1↑2〉), (A10)

|8〉 ≡ |T0〉1,3 = 1√
2

(|↑1↓3〉 + |↓1↑3〉), (A11)

|9〉 ≡ |T0〉2,3 = 1√
2

(|↑2↓3〉 + |↓2↑3〉). (A12)

The Hamiltonian is block diagonal in spin space and the singlet and triplet blocks are given by

ĤS =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U − 2(ε3 + μ) −√
2t 0 0 0 0

−√
2t U12 − ε2 − ε3 − 2μ −t −√

2t 0 0

0 −t −(ε1 + ε3 + 2μ) 0 −t 0

0 −√
2t 0 U − 2(ε2 + μ) −√

2t 0

0 0 −t −√
2t U12 − ε1 − ε2 − 2μ −√

2t

0 0 0 0 −√
2t U − 2(ε1 + μ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A13)

ĤT =

⎛
⎜⎝

U12 − ε1 − ε2 − 2μ −t 0
−t −(ε1 + ε3 + 2μ) −t

0 −t U12 − ε2 − ε3 − 2μ

⎞
⎟⎠, (A14)

where ĤS is the Hamiltonian for singlet states and ĤT is the Hamiltonian for triplet states. Together, they form a block diagonal
Hamiltonian Ĥ since the singlet and triplet states do not mix due to the absence of spin-orbit coupling and magnetic field.

APPENDIX B: DETUNING PULSES

The detuning pulses used in our simulations are given here. For pulse-gating simulations, we used dc pulses with smoothly
rising and falling steps, in a total time ranging from τstart − τrise to τend + τrise, given by

ε1(τ ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ε + εd ), τ < τstart − τrise,

−εd cos[ω(τ − τstart)] + (ε + εd ), τstart − τrise < τ < τstart,

ε, τstart < τ < τend,

εd cos[ω(τ − τend)] + (ε − εd ), τend < τ < τend + τrise,

(ε − εd ), τ > τend + τrise,

(B1)

ε2(τ ) = ε, (B2)

ε3(τ ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ε − εd ), τ < τstart − τrise,

εd cos[ω(τ − τstart)] + (ε − εd ), τstart − τrise < τ < τstart,

ε, τstart < τ < τend,

−εd cos[ω(τ − τend)] + (ε + εd ), τend < τ < τend + τrise,

(ε + εd ), τ > τend + τrise,

(B3)

where ε = −2 meV and εd = 3 meV. For the adiabatic scheme, detuning pulses used in simulations are

ε1(τ ) =
⎧⎨
⎩

εhigh, τ < 0,
(εlow−εhigh)τ

R
+ εhigh, 0 < τ < R,

εlow, τ > R,

(B4)

ε2(τ ) = εhigh, (B5)

ε3(τ ) =
⎧⎨
⎩

εlow, τ < 0,
(εhigh−εlow)τ

R
+ εlow, 0 < τ < R,

εhigh, τ > R,

(B6)

where εlow = −8 meV and εhigh = −1 meV.
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FIG. 3. Comparison of infidelities (1−fidelity F) against mixing
angle θ obtained for pulse- gating without dephasing, for two sets
of pulse rise time and tunnel coupling. For tunnel coupling t =
0.12 meV, we reported fidelity results in Fig. 2 of the main text, using
a short rise time τrise = 0.076 ps, in order to simulate an effectively
square pulse. A longer and more realistic rise time of τrise = 121 ps
can be achieved using a smaller tunnel coupling t = 3 μeV to obtain
identical fidelities. This demonstrates that rise time (or, equivalently,
bandwidth of the signal generator) is not a limiting factor because
tunnel coupling is tunable, as reported in Refs. [36,50,51].

For pulse gating, the results we report are for a rise time
τrise = τgate/1000 = 0.076 ps to satisfy diabaticity, so that it
is effectively a square pulse. Although this imposes a require-
ment on experimental bandwidth capabilities, as explained in
Appendix C, it is not essential for obtaining good fidelities. In
Fig. 3, we show that similar fidelity can be obtained for a much
longer rise time, provided tunnel coupling is tuned to a smaller
magnitude.

APPENDIX C: DIABATICITY OF PULSE-GATED
RISE TIMES

For the pulse-gating scheme, detuning pulses may move
the initial state through undesired anticrossings in the energy
landscape of the system during the rise and fall of the pulse. The
rise time must be short enough that the evolution is effectively
instantaneous. In the ideal limit, pulse gating requires instan-
taneous pulses. However, due to finite bandwidths of signal
generators, rise times in real experiments are necessarily finite.
The rate of change of detuning must satisfy dε

dτ
� t2/h in order

to be effectively instantaneous. With t = 0.12 meV used in our
calculations, this leads to a rise time of less than 1 ps, which is
rather demanding for current experiments. If tunnel coupling
is tuned by two orders of magnitude lower, e.g., t = 3 μeV,
a more achievable rise time of 121 ps is needed, for identical
fidelities. This is shown in Fig. 3. This demonstrates that rise
time (or, equivalently, bandwidth of the signal generator) is not
a limiting factor because of the tunability of tunnel coupling
[36,50,51].

APPENDIX D: FIDELITY CALCULATION

To obtain the solutions making use of the density matrix
formalism, we first recast the definition of fidelity in density

FIG. 4. Figure depicts how the average values of fidelity in
the adiabatic scheme evolve with time, for both the case without
dephasing (blue circles) and with dephasing (yellow squares). The
average fidelity [Eq. (E1)] is constantly oscillating throughout the
adiabatic transfer with a range of about 10% for the case with
dephasing and a range of about 20% when without dephasing.

matrix form [40]:

F(ρ,σ ) ≡ tr
√

ρ1/2σρ1/2.

We can simplify this definition if one of the density matrices
describes our initial and target states which are pure states. The
below form is obtained when we consider the fidelity between
a pure state |ψ〉 and an arbitrary state, ρ:

F(|ψ〉 ,ρ) = tr
√

〈ψ | ρ |ψ〉 |ψ〉 〈ψ | =
√

〈ψ | ρ |ψ〉.
The initial density matrix elements are ρ55(0) = cos2 θ ,

ρ77(0)= sin2 θ , ρ57(0)= sin θ cos θ e−iφ , ρ75(0)= sin θ

cos θ eiφ , corresponding to the initial state, |ψ0〉 =
cos(θ ) |S〉1,2 + eiφ sin(θ ) |T0〉1,2. The target density matrix
elements are σ22(τ ) = cos2 θ , σ99(τ ) = sin2 θ , σ29(τ ) =
sin θ cos θ e−iφ , σ92(τ ) = sin θ cos θ eiφ , corresponding to
the target state, |ψtgt〉 = cos(θ ) |S〉2,3 + sin(θ )eiφ |T0〉2,3.
Therefore, fidelity can be written as

F = [
cos2(θ )ρ22(τ ) + sin2(θ )ρ99(τ )

+ cos(θ ) sin(θ )eiφρ29(τ ) + cos(θ ) sin(θ )e−iφρ92(τ )
]1/2

.

APPENDIX E: AVERAGE FIDELITY

The fidelity averaged over all mixing angles thus allows
comparison of fidelities at different instants of time. Average
fidelity is given by

Favg(τ ) = 1

2

∫ π

0
F(θ,τ ) sin θ dθ. (E1)

Average fidelity was used to obtain the optimal adiabatic state
transfer time, as illustrated in Fig. 4.

APPENDIX F: FIDELITY IS INDEPENDENT OF PHASE φ

In the main text, we reported results from simulations with
initial phase angle φ = 0. Here, we show numerical results,
plotted in Fig. 5, that indicate that fidelity is independent of φ.
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FIG. 5. 3D plot of fidelity with mixing angle θ and phase φ.
The maximum difference in fidelity across all initial phase angles is
less than 10−7, indicating that fidelity is independent of initial phase
angle φ.

We checked the fidelity calculated for the entire range of 0 �
φ � 2π for each mixing angle θ and found that the maximum
difference in fidelity across initial phase angles is less than
10−7.

APPENDIX G: DEPHASING TERMS

As given in the main text, the double- and single-occupation
dephasing terms in the master equation, Eq. (2), are given by

DD =
∑

i

�

2
[ni↑ + ni↓,[ni↑ + ni↓,ρ]], (G1)

DS =
∑
i,j

γijρij (τ )|i〉〈j |, (G2)

where � = 1 GHz is the double-occupation dephasing rate,

γij = �

√
(∂Eij /∂ε1)2 + (∂Eij /∂ε3)2 is the single-occupation

dephasing rate, and Eij ≡ Ei − Ej is the energy splitting. Note
that we only consider the treatment of fluctuations of the energy
splitting with respect to ε1 and ε3, because ε2 is held constant
in both schemes.

Here, we write the dephasing matrices in the basis states
explicitly:

DD =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 �ρ12(τ ) �ρ13(τ ) 4�ρ14(τ ) 3�ρ15(τ ) 4�ρ16(τ ) 3�ρ17(τ ) �ρ18(τ ) �ρ19(τ )
�ρ21(τ ) 0 �ρ23(τ ) �ρ24(τ ) �ρ25(τ ) 3�ρ26(τ ) �ρ27(τ ) �ρ28(τ ) 0
�ρ31(τ ) �ρ32(τ ) 0 3�ρ34(τ ) �ρ35(τ ) �ρ36(τ ) �ρ37(τ ) 0 �ρ39(τ )

4�ρ41(τ ) �ρ42(τ ) 3�ρ43(τ ) 0 �ρ45(τ ) 4�ρ46(τ ) �ρ47(τ ) 3�ρ48(τ ) �ρ49(τ )
3�ρ51(τ ) �ρ52(τ ) �ρ53(τ ) �ρ54(τ ) 0 �ρ56(τ ) 0 �ρ58(τ ) �ρ59(τ )
4�ρ61(τ ) 3�ρ62(τ ) �ρ63(τ ) 4�ρ64(τ ) �ρ65(τ ) 0 �ρ67(τ ) �ρ68(τ ) 3�ρ69(τ )
3�ρ71(τ ) �ρ72(τ ) �ρ73(τ ) �ρ74(τ ) 0 �ρ76(τ ) 0 �ρ78(τ ) �ρ79(τ )
�ρ81(τ ) �ρ82(τ ) 0 3�ρ84(τ ) �ρ85(τ ) �ρ86(τ ) �ρ87(τ ) 0 �ρ89(τ )
�ρ91(τ ) 0 �ρ93(τ ) �ρ94(τ ) �ρ95(τ ) 3�ρ96(τ ) �ρ97(τ ) �ρ98(τ ) 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

DS =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0
0 0 γ23(τ )ρ23(τ ) 0 γ25(τ )ρ25(τ ) 0 γ27(τ )ρ27(τ ) γ28(τ )ρ28(τ ) γ29(τ )ρ29(τ )
0 γ32(τ )ρ32(τ ) 0 0 γ35(τ )ρ35(τ ) 0 γ37(τ )ρ37(τ ) γ38(τ )ρ38(τ ) γ39(τ )ρ39(τ )
0 0 0 0 0 0 0 0 0
0 γ52(τ )ρ52(τ ) γ53(τ )ρ53(τ ) 0 0 0 γ57(τ )ρ57(τ ) γ58(τ )ρ58(τ ) γ59(τ )ρ59(τ )
0 0 0 0 0 0 0 0 0
0 γ72(τ )ρ72(τ ) γ73(τ )ρ73(τ ) 0 γ75(τ )ρ75(τ ) 0 0 γ78(τ )ρ78(τ ) γ79(τ )ρ79(τ )
0 γ82(τ )ρ82(τ ) γ83(τ )ρ83(τ ) 0 γ85(τ )ρ85(τ ) 0 γ87(τ )ρ87(τ ) 0 γ89(τ )ρ89(τ )
0 γ92(τ )ρ92(τ ) γ93(τ )ρ93(τ ) 0 γ95(τ )ρ95(τ ) 0 γ97(τ )ρ97(τ ) γ98(τ )ρ98(τ ) 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

APPENDIX H: FEASIBILITY CHECK ON PULSE-GATING
CONSTRAINTS

The pulse-gated scheme required a condition on the ratio of
intra- to interdot Coulomb energies, U/K = 2. We show here
that this condition corresponds to a feasible interdot distance
to effective dot size ratio, a/l. By considering a biquadratic
potential for a double quantum dot, where the interdot distance
is 2a and l is the effective length of the ground, s orbital

wave function, the intra- and interdot Coulomb energies, are
respectively given by [29]

U = k e2

√
π

2

1

l
, (H1)

K = k e2

√
π

2l2
exp

[
−a2

l2

]
I0

(
a2

l2

)
, (H2)
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FIG. 6. Ratio of intra- to interdot Coulomb energy U/K plotted
against interdot distance to effective dot size ratio a/l, for a double
dot system modeled by a biquadratic potential. The pulse-gated
requirement of U/K = 2 corresponds to an a/l ≈ 0.94, which is
a realistic constraint on the quantum dots. U/K ≈ 2.44 corresponds
to a/l ≈ 1.12 for the parameters used in the adiabatic scheme.

where k = 1/(4πε0εr), e is the electronic charge, l is the width
of the dot, 2a is the distance between the two dots, I0 is the

zeroth order modified Bessel function, ε0 is the vacuum per-
mittivity (8.85 × 10−12 F m−1), and εr is the dielectric constant
(12.375 for Si/SiGe [29]). From here we can determine the ratio
of U/K to be given by

U

K
= exp

(
a2

l2

)
I0

(
a2

l2

) .

The result is that U/K = 2 corresponds to an a/l ≈ 0.94.
On the other hand, we are not constrained by the U/K ratio in
the adiabatic scheme and the numerical values used yield ratios
of U/K ≈ 2.44 and a/l ≈ 1.12. A graphical representation
of the relation between U/K and a/l is shown in Fig. 6. As
the ratio a/l decreases, the tunnel barrier becomes thinner
relative to the width of the potential well and conversely, as
a/l increases, the tunnel barrier widens relative to the width
of the potential wells.

Therefore, in order to engineer the desired U/K ratio,
it is sufficient to manipulate the interdot distance to dot
confinement. This is necessary in the pulse-gated scheme, and
is also advantageous in the adiabatic scheme because it allows
tunability of the positions of energy gaps via the energies of
the singly and doubly occupied states.
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