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Exotic bilayer crystals in a strong magnetic field
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Electron bilayers in a strong magnetic field exhibit insulating behavior for a wide range of interlayer separation
d for total Landau level fillings ν � 1/2, which has been interpreted in terms of a pinned crystal. We study
theoretically the competition between many strongly correlated liquid and crystal states and obtain the phase
diagram as a function of quantum well width and d for several filling factors of interest. We predict that three
crystal structures can be realized: (i) At small d , the so-called triangular Ising antiferromagnetic (TIAF) crystal is
stabilized, in which the particles overall form a single-layer-like triangular crystal while satisfying the condition
that no nearest-neighbor triangle has all three particles in the same layer. (ii) At intermediate d , a correlated square
(CS) crystal is stabilized, in which particles in each layer form a square lattice, with the particles in one layer
located directly across the centers of the squares of the other. (iii) At large d , we find a bilayer graphene (BG)
crystal in which the A and B sites of the graphene lattice lie in different layers. All crystals that we predict are
strongly correlated crystals of composite fermions; a theory incorporating only electron Hartree-Fock crystals
does not find any crystals besides the “trivial” ones occurring at large interlayer separations for total filling factor
ν � 1/3 (when layers are uncorrelated and each layer is in the long familiar single-layer crystal phase). The TIAF,
CS, and BG crystals come in several varieties, with different flavors of composite fermions and different interlayer
correlations. The appearance of these exotic crystal phases adds to the richness of the physics of electron bilayers
in a strong magnetic field, and also provides insight into experimentally observed bilayer insulators as well as
transitions within the insulating part of the phase diagram.
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I. INTRODUCTION

The rich physics of the fractional quantum Hall effect
(FQHE) has been entangled with the search for a collective
electron solid. For a two-dimensional electron gas (2DEG), a
high magnetic field quenches the kinetic energy, suggesting
that an electron crystal state ought to be realizable for filling
factor ν < 1 [1,2]. However, experiments reveal a liquid state,
manifested through the FQHE [3]. The FQHE has a rich phe-
nomenology: A large number of fractions have been observed
so far, most of which have the form ν = n/(2pn ± 1) and
ν = 1 − n/(2pn ± 1). Calculations incorporating the physics
of the FQHE predicted that the crystal should occur at filling
factors ν < 1/6 [4–13]. Indeed, a large body of experimental
work has shown a transition from the FQH liquid to an
insulator at around ν = 1/6, with the insulating phase naturally
interpreted as a crystal pinned by disorder [14–25]. Subsequent
theoretical work clarified that the crystal is not an ordinary
electron crystal, but rather a crystal of composite fermions
(CFs), which provides an excellent representation of the crystal
phase [26–30]. Recent experiments provide some evidence for
the CF nature of the crystal [31–33].

In this paper, we study the nature of the crystal phase in
bilayer systems. Bilayer systems can be realized either by
fabricating two nearby quantum wells or through a single wide
quantum well (WQW) that behaves as a bilayer system for
sufficiently large widths. Previous theoretical investigations
of bilayer states have focused primarily on the nature of
two component liquid states, ignoring the electron crystal

phases [34–39]. Many new FQH states become available as
a function of the layer separation d. Such states have been
considered in detailed theoretical calculations and also studied
experimentally. A striking example is the appearance of FQHE
at total filling ν = 1/2 [40–43], which is understood in terms
of the Halperin 331 state [44]. (When used in the context of
a bilayer system, ν will always refer to the total filling factor
below.) Many phase transitions between various compressible
and incompressible states have been predicted at each filling
factor as a function of d/l, where l = √

h̄c/eB is the magnetic
length [38,39,45].

Multicomponent systems appear in many different contexts,
where the components can be either the electron spin, relevant
at low Zeeman energies, or the valley index in multivalley
systems such as silicon, AlAs quantum wells, or graphene
[46–49], or the layer index, as in bilayer systems. The bi-
layer systems in the limit of zero layer separation, when the
interaction is independent of the layer index, are formally
equivalent to the spin system at zero Zeeman energy. However,
for nonzero layer separations, the bilayer systems provide a
way of tuning the intercomponent interactions relative to the
intracomponent interactions, thus allowing realization of new
physics not available to multicomponent systems with SU(2)
symmetry.

It can be expected that the crystal will also show a rich
phase diagram in bilayer systems, with many competing liquid
and crystal states appearing as a function of the interlayer
separation and the filling factor. An interesting question is
the nature of the crystal phase, and whether crystals other
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than a triangular crystal may be stabilized. This issue has
been addressed theoretically in the past [9,45,50], but without
allowing for CF crystals [26,27,29,30]. For single layers,
CF crystals are energetically more favorable than electron
crystals, and necessary for explaining observed re-entrant
phase transitions. An example is the theoretical explanation
[30] of the re-entrant phase transitions observed [14–16,19]
in the vicinity of ν = 1/5, where the system is insulating
at ν < 1/5 and for a range of ν between 1/5 and 2/9, but
exhibits FQHE at ν = 1/5 and ν = 2/9. As we shall see below,
allowing for CF crystals will be crucial for identifying bilayer
crystal states.

The primary motivation for our study comes from experi-
ments. In their study of bilayer systems, Eisenstein et al. [40]
found that the system becomes insulating in the vicinity of total
filling ν = 1/2, although it exhibits a FQH state at ν = 1/2 for
small interlayer separations. Magnetotransport experiments in
WQWs carried out by Manoharan et al. [51] explored a large
region of parameter space in terms of the two-dimensional
electron density and filling factors. They also found that the
insulating phase dominates for a large range of parameters for
total filling ν � 1/2. Shabani et al. [52] have performed an
extensive study of the phase diagram at ν = 1/2 in WQWs.
Microwave spectroscopy has also been used to characterize
the insulating states in the WQW systems [23,53–55], to
reveal structure that is inaccessible in DC magnetotransport
experiments. Sharp resonances are seen for the insulating
phases, which are interpreted as pinning modes of a crystal.
One of the interesting findings has been shifts in the resonant
frequency inside the insulating region of the phase diagram,
which the authors have taken as evidence that there may be a
reordering of the crystal configuration [53–55]. It is therefore
of interest to identify what kinds of crystals are feasible in
bilayer systems.

We consider in this paper electron and composite fermion
crystals (CFCs) in addition to the FQH liquid states. We
determine the energies of a large class of variational wave
functions for the liquid and crystal phases to determine the
lowest energy state as a function of the layer separation d/l.
We predict three new crystal phases in bilayer systems, shown
in Fig. 1:

(1) TIAF crystal: When viewed from above, this looks like
a single-layer triangular crystal, but half of the particles are
in one layer and half in the other, satisfying the condition that
no nearest-neighbor triangle has all three particles in the same
layer.

(2) CS crystal: This crystal consists of two interpenetrating
square lattices, such that the sites in one layer lie across the
centers of the squares in the opposite layer.

(3) BG crystal: This crystal, when viewed from above,
looks like a graphene lattice, with the A and B lattice sites
residing in different layers.

The CS and BG crystals were also considered previously
by Thiebaut, Regnault, and Goerbig [50] in their Hartree-Fock
study of the crystal phase at ν = 1/2 in the lowest and the first
excited Landau levels (LLs) in WQWs.

Before we come to the calculational details, we show in
Fig. 2 the phase diagrams for several total filling factors as a
function of the quantum well width and d/l for a system with
electron density of 1011 cm−2. This representation captures

FIG. 1. Two-dimensional lattices considered in our work. The
blue and red colors denote different layer indices. Triangular Ising
antiferromagnetic (TIAF) crystal is a triangular lattice with half of
the particles in one layer and half in the other, such that each triangle
contains two particles in one layer and one in the other. In the
correlated square (CS) lattice, each layer forms a square lattice whose
sites are aligned with the centers of the squares in the opposite layer.
Finally, the binary graphene (BG) crystal has the overall structure
of graphene, but with the A and B sublattices lying in different
layers. We have chosen these configurations because they are the
lowest energy solutions to the classical bilayer Thomson problem for
different ranges of layer separation.

the general behavior found for other parameters, although
the details of the phase boundary vary. (Many fine details
regarding the correlations of the crystals have been suppressed
here for simplicity; they are given later in the paper.) The
appearance of the three crystal states as a function of d/l can be
understood intuitively. For small d/l, the inter- and intralayer
interactions are approximately equal. A triangular crystal
forms as though the system were a single layer, and the two
layers are accommodated through a frustrated “pseudospin”
structure. At intermediate separations, when the intralayer
correlations become relatively weak, the CS crystal appears,
which builds good interlayer correlations between particles, as
also found in Hartree-Fock studies [8,45]. Finally, for large
separations, the layers act almost independently and form
two triangular crystals within their respective layers, but the
weak interlayer interaction stabilizes the BG lattice. Results for
filling factors at several densities are presented in detail later in
Sec. V.

We stress that the TIAF, CS, and BG crystals can each come
in several varieties, with different flavors of CFs and different
interlayer correlations. Their full identification will require two
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FIG. 2. Phase diagram of liquid and crystal phases as a function of the quantum well width and the interlayer separation d/l. To avoid
clutter, we have suppressed states that occur in very narrow ranges of parameters, and we have also omitted the nature of interlayer correlations
in this figure. These finer details can be found in what follows. This phase diagram corresponds to the density of 1011cm−2, and assumes
parameters appropriate for GaAs quantum wells. The shaded region above the dashed line is unphysical since here the quantum well width
exceeds the interlayer separation.

other integer labels (which have been suppressed in Fig. 2 to
avoid clutter).

It should be stressed that all of the bilayer crystals we find
are CF crystals. No crystals would be stabilized if we only
worked with electron Hartree-Fock crystals, with the trivial
exception of the large d phase at total filling ν � 1/3, where
electrons in each individual layer have filling factor � 1/6 and
thus form the long familiar single-layer crystal. The CF physics
is thus crucial for stabilizing crystals with inherently bilayer
character.

The paper is structured as follows. In Sec. II, we present
a general background for the theory used to construct the
wave functions. We then describe the method for obtaining
the crystal coordinates in a spherical geometry in Sec. III.
Section IV outlines our computational method. In Sec. V,
we present results for a quantitative study of FQH systems
in a bilayer, focusing on zero width and double quantum well
systems. In Sec. VI, we conclude by comparing with existing
experiments and make predictions for future experiments.

II. MODEL STATES

For our study, we will consider several liquid and crystal
wave functions from CF theory. These wave functions have
been demonstrated to be very accurate in describing the
physics, in single layers, of both liquids [56,57] and crystals

[29]. We begin each section by describing the construction
of the single-layer wave functions, followed by bilayer wave
functions. Unlike the single-layer crystals where the triangular
lattice is the only (known) energetically favorable configu-
ration, multiple lattice structures can be realized in bilayer
systems, depending on the layer separation and the filling
factor.

A. CF theory of the FQH liquid

CFs are bound states of electrons and an even number (2p)
of vortices [56–59]. CFs are weakly interacting and experience
an effective magnetic field B∗ = B − 2pρφ0, where φ0 =
hc/e is a flux quantum and ρ is the 2D electron or CF
density. They form LL-like levels referred to as � levels (�Ls),
and fill ν∗ of them, where ν = ν∗/(2pν∗ ± 1). The FQHE at
ν = n/(2pn ± 1) is a manifestation of the integer quantum
Hall effect of weakly interacting CFs at CF filling ν∗ = n. The
CFs with 2p vortices bound to them are denoted as 2pCFs.

For fully spin polarized electrons in a single layer, the Jain
CF wave function for the ground state at ν = n/(2pn + 1) is
given by

� n
2np+1

= PLLL�n�i<j (zi − zj )2p, (1)

where �n is the wave function for electrons at ν∗ = n and zi =
xi − iyi are the coordinates of the ith electron. PLLL denotes
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lowest Landau level (LLL) projection, which will be evaluated
numerically via the Jain-Kamilla method [60]. For the ground
state at ν = 1/(2p + 1), i.e., for ν∗ = 1, this wave function
reproduces the Laughlin wave function.

The above construction can be generalized straightfor-
wardly to a system of spinful electrons in a single layer [61–63].
Here we haven = n↑ + n↓, wheren↑ andn↓ are the numbers of
occupied spin-up and spin-down � levels. Since the interaction
is spin independent, the ground-state wave function is an
eigenstate of the total spin operator S2 = (	Ntot

i Si)2, where Si
is the spin operator acting on the ith particle and Ntot is the
total number of particles. The Jain wave functions for spinful
CFs at ν = n/(2pn + 1) are given by

�
(n↑,n↓)

n
2np+1

= A[PLLL�i<j (zi − zj )2p�n↑�n↓α1...αN1β1...βN2 ],

(2)

where A is the antisymmetrization operator, N1 and N2 are
the numbers of CFs with up and down spins, and α and β are
up and down spinors. This wave function satisfies the Fock
cyclic conditions with total spin quantum number S = Sz =
(N1 − N2)/2 [64]. Spinful electrons in general have several
states at any given filling factor due to the freedom to choose
different combinations of n↑ and n↓. At zero Zeeman energy,
the ground state corresponds to n↑ = n↓ = n/2 for even n,
while for odd n we have n↑ = (n + 1)/2 and n↓ = (n − 1)/2.
In the special case of n = 1, a fully spin polarized state is
obtained with n↑ = 1 and n↓ = 0.

We now come to bilayer systems. A bilayer system with zero
layer separation (d/l = 0) is formally equivalent to the spin
degree of freedom in a single-layer system with Zeeman energy
set to zero [56,57], with the two layers representing spin up and
spin down. This follows because the interaction is independent
of the layer index in this limit, so the Hamiltonian satisfies
the exact SU(2) symmetry. The bilayer degree of freedom is
sometimes referred to as the pseudospin.

The layer pseudospin degree of freedom can create further
new structures for d/l �= 0 because the interaction becomes
pseudospin dependent, and the wave function no longer needs
to satisfy the Fock conditions. Following Scarola and Jain [38],
we consider here the following class of wave functions

�(ν̄−1 ν̄−1|m)
ν = �i,j (zi − wj )m�ν̄({zi})�ν̄({wi}), (3)

where {zi} and {wi} are the coordinates of particles in dif-
ferent layers, and we have assumed equal carrier densities
in each layer. We take for the single-layer wave function
�ν̄({zi}) = PLLL

∏
j<k(zj − zk)2p�n with ν̄ = n/(2pn + 1).

The factor �i,j (zi − wj )m introduces correlation between the
layers through interlayer vortices. The total filling factor ν is
given by [38]

ν = 2ν̄

1 + mν̄
. (4)

We can now enumerate all the candidate states for a given total
filling factor. We consider m � 2p + 1 because m > 2p + 1
would represent stronger interlayer correlations than intralayer
correlations, which is physically unreasonable. The limiting
form for d/l = 0 is known from the spin problem described
previously.

In this paper, we will consider total filling factors ν = 1/2,
2/5, 1/3, and 1/5. Table I enumerates all of the liquid states
of the form given in Eq. (3) at these filling factors. For ν̄ =
1/(2p + 1) these wave functions reduce to the Halperin wave
functions [44].

The above wave functions are written for the planar geom-
etry. For our calculations, we work in the spherical geometry
to avoid potential problems resulting from edge effects on
disks [26,65]. We confine our particles to a spherical shell
with a magnetic monopole of strength Q placed at the center
generating a radial magnetic field. The value of 2Q is restricted
to be an integer, equal to the number of flux quanta penetrating
the surface of the sphere. The radius of the sphere is 2

√
Ql.

When considering the FQHE in spherical geometry, we follow
Haldane [65] to define spinor coordinates ui and vi :

ui = cos(θi/2)eiφi/2,

vi = sin(θi/2)e−iφi/2, (5)

where θ and φ are the angular coordinates. The wave function
is then written as

�(ν̄−1 ν̄−1|m)
ν = �i,j (uivj − ujvi)

m�ν̄({zi})�ν̄({wi}). (6)

The single particle states in �ν̄ are the monopole harmonics
YQ∗,l,m, where Q∗ is the effective magnetic monopole strength
and l = |Q∗| + n with n the number of the current �L. The
index m is restricted to be between ±l [60]. The above bilayer
wave functions correspond to the total flux [38]

2Q = (2pn + mn + 1)N − (2pn + n2)

n
. (7)

We assume here and below the notation in which the total
number of particles in a bilayer is Ntot = 2N , so that each
layer individually has N particles.

B. CF crystal states

We begin with the CF crystal (CFC) wave function for a
single-layer system. Because it is not possible to fit a triangular
crystal perfectly on the surface of a sphere, we consider a
“Thomson crystal,” where the lattice positions are determined
by finding the lowest energy configuration of classical point
charges on a sphere. More details on the Thomson problem
are given in the following section. We denote the Thomson
crystal positions as

(Ui,Vi) = (cos(γi/2)eiδi/2, sin(γi/2)e−iδi /2). (8)

In a spherical geometry, the wave function for a Gaussian wave
packet localized at (U,V ) is given by (U ∗u + V ∗v)2Q∗

for
a system at flux 2Q∗. The CFC wave function is then given
by [30]

�X(2p)
ν ({ui,vi})=det(U ∗

i uj + V ∗
i vj )2Q∗

�i<j (uivj − ujvi)
2p,

(9)

where Ui and Vi are the spinors corresponding to each lat-
tice site at coordinates (γi,δi). These wave functions are by
construction in the LLL. The symbol X(2p) denotes different
possible crystal structures of CFs carrying 2p vortices.
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TABLE I. CF liquid wave functions. This table lists all filling factors and liquid states considered in this study. The wave function �ν̄({zi})
at ν̄ = n

2pn+1 is defined in the text, and m is the number of interlayer zeros. Wave functions are labeled (ν̄−1 ν̄−1| m).

Liquid states and wave functions

ν State Wave function

(4 4| 0) � 1
4
({zi})� 1

4
({wi})

1
2 (3 3| 1) � 1

3
({zi})� 1

3
({wi})�i,j (zi − wj )

(2 2| 2) � 1
2
({zi})� 1

2
({wi})�i,j (zi − wj )2

(5 5| 0) � 1
5
({zi})� 1

5
({wi})

2
5 (4 4| 1) � 1

4
({zi})� 1

4
({wi})�i,j (zi − wj )

(3 3| 2) � 1
3
({zi})� 1

3
({wi})�i,j (zi − wj )2

(6 6| 0) � 1
6
({zi})� 1

6
({wi})

(5 5| 1) � 1
5
({zi})� 1

5
({wi})�i,j (zi − wj )

1
3 (4 4| 2) � 1

4
({zi})� 1

4
({wi})�i,j (zi − wj )2

(3 3| 3) � 1
3
({zi})� 1

3
({wi})�i,j (zi − wj )3

(10 10| 0) � 1
10

({zi})� 1
10

({wi})
(9 9| 1) � 1

9
({zi})� 1

9
({wi})�i,j (zi − wj )

1
5 (8 8| 2) � 1

8
({zi})� 1

8
({wi})�i,j (zi − wj )2

(7 7| 3) � 1
7
({zi})� 1

7
({wi})�i,j (zi − wj )3

(6 6| 4) � 1
6
({zi})� 1

6
({wi})�i,j (zi − wj )4

(5 5| 5) � 1
5
({zi})� 1

5
({wi})�i,j (zi − wj )5

We now form bilayer crystal wave functions:

�X(2p,m)
ν = �

X(2p)
ν̄ ({u1,i ,v1,i})�X(2p)

ν̄ ({u2,i ,v2,i})
×�i,j (u1,iv2,j − u2,j v1,i)

m. (10)

In this notation, X(2p,m) refers to a bilayer crystal of type
X (which can be TIAF, CS, or BG) of CFs carrying 2p

vortices, with m interlayer zeros. The filling factor ν̄ is given
by ν̄ = N/(2Q∗ + 2p(N − 1)). The positions of the crystal
lattice sites are determined by solving the bilayer Thomson
problem (see next section for further details).

We will determine the lowest energy state out of all
candidate states as a function of various parameters. For bilayer
systems, we consider the effective interaction

V↑↑(ri ,r j ) = V↓↓(ri ,r j ) = 1

|ri − r j | , (11)

V↑↓(ri ,r j ) = 1√|ri − r j |2 + d2
, (12)

where d is the distance between the layers and the arrows
label the pseudospin corresponding to left and right layers. We
denote all lengths in units of the magnetic length l and energies
in units of e2/εl. We have assumed that there is no nearby
conducting layer to screen the Coulomb interaction within our
bilayer system.

For a proper comparison, the crystal state must correspond
to the same filling factor as the liquid state. We accomplish
this by using the same number of particles as well as the same
value for the physical magnetic flux 2Q. We construct multiple
states at filling factor ν by considering all values of 2p and m

such that 2Q∗ = 2Q − 2p(N − 1) − mN is nonnegative and
2p � m. For a full summary of the states we have studied,
see Tables I and II. We stress that we confine our search to

the crystal structures that appear prominently in the bilayer
Thomson problem.

III. THOMSON CRYSTAL FOR A BILAYER SYSTEM

A crucial task is to determine what are the most promising
crystal configurations for the bilayer problem, and also the
best representations of these crystals on a sphere. For this, a
variant of the classical Thomson problem to include two types
of charged particles was studied. The resulting low-energy
configurations, created in the absence of magnetic fields,
were then used as seeds for the more detailed magnetic field
calculations.

Finding the lowest energy arrangement of N classical point
charges confined to the surface of a sphere is known as the
Thomson problem [66]. For N = 2 − 6 and 12, analytical
solutions are known. These values are significant, as the
structures are invariant if the Coulombic potential is replaced
with a limiting potential of the form V (r̃) = limn→∞ r̃−n, or a
logarithmic interaction [67], where r̃ is the distance between
the charged particles. Solving the problem with the first of these
potentials corresponds to the Tammes problem [68] of packing
N particles on the surface of a sphere whilst maximizing all
particle-particle arc lengths. This potential invariance reveals
the power of symmetry as a structural determinant for small
N , though computational methods must be used for larger N

as the geometrical symmetry is lost [67].
In previous work, the Thomson problem has been used as

an approximate basis for designing carbon cages larger than
the stable truncated icosahedron form of C60. 860 and 1160
particle Thomson problem minima were used as starting points
for C860 and C1160, and minimized using density-functional
theory [69,70]. This study highlights the utility of the Thom-
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TABLE II. This table lists the form for all crystal wave functions considered in the paper. �
X(2p)
ν̄ is the wave function of the LLL crystal of

2pCFs at filling ν̄, and the integer m represents the strength of the interlayer correlations. Superscripts BG, CS, and TIAF correspond to binary
graphene, correlated square, and triangular Ising antiferromagnet. The representations of these crystals on a bilayer sphere are obtained through
analysis of the bilayer Thomson problem.

Crystal notation and wave functions

Notation Name wave function

BG(2p,m) Binary graphene CF crystal �
BG(2p)
ν̄ ({zi})�BG(2p)

ν̄ ({wi})�i,j (zi − wj )m

CS(2p,m) Correlated square CF crystal �
CS(2p)
ν̄ ({zi})�CS(2p)

ν̄ ({wi})�i,j (zi − wj )m

TIAF(2p,m) Triangular Ising antiferromagnetic CF crystal �
TIAF(2p)
ν̄ ({zi})�TIAF(2p)

ν̄ ({wi})�i,j (zi − wj )m

son problem minima as starting points for more detailed
calculations.

The process of finding energy minima for different systems
employs geometry optimization. For a given configuration of
particles and an arbitrary potential between them, local opti-
mization produces a minimum on the potential energy surface
(PES). The global minimum is the minimum with the lowest
energy. Even small systems, such as a cluster of 38 Lennard-
Jones atoms [71], have a large number of minima [72,73], and
enumerating all of them is usually either not possible or an
extremely inefficient way of locating the global minimum.

Global optimization for Thomson systems is complicated
by the fact that there are many metastable states separated by
only small energy differences, with the number of minima ris-
ing exponentially with N [67,69,74]. However, basin-hopping
global optimisation [75,76] has been effective for selected N up
to 4352 [69,70]. In this approach, steps are taken between local
minima, and are accepted or rejected based on a Metropolis
condition with a fictitious temperature parameter.

Perfect 2D hexagonal close-packed structures cannot be
bent to exist on the surface of a sphere, and so defects must be
introduced in the Thomson problem minima. It is not possible
to transform a 2D surface into a spherical form without cuts
or distortions, which here manifest as different coordination
sites. If the number of nearest neighbours of a particle is C,
then a disclination charge, Q, can be defined as Q = 6 − C.
Euler’s theorem [77] states that the total disclination charge
must be equal to 12 for close-packed structures on the surface
of a sphere. There are many ways in which Euler’s theorem
can be satisfied, and the Thomson problem has been studied
for thousands of particles [69,70]. The presence and nature of
these defect motifs is central to determining system properties
in the presence of external forces, and can aid understanding
of macroscopic systems [78].

Here, the binary, or bilayer, Thomson problem is consid-
ered, in which two types of charged particles are confined to
the surface of a sphere. The interactions within each group are
Coulombic, but the interactions between particles in different
groups have a damped form, with the damping strength deter-
mined by an adjustable parameter, δ, the interlayer separation.
We note that this δ is not the same as d/l. The pairwise potential
for N particles on a sphere of radius R is

V bin
ij =

⎧⎪⎨
⎪⎩

1(
r̃ij

R

) , for i,j in the same group.

1√(
r̃ij

R

)2
+
(

δ
N

)2
, for i,j in different groups. (13)

In the potential, r̃ij /R is used as r̃ij is measured in units of
the sphere radius R. The ratio δ/N can be considered as the
separation between two infinite bilayers, which is the limit
for a sphere of infinite radius. The adjustable parameter δ is
scaled by N as behavior is expected to change on a length
scale comparable to the interparticle separation. The aim of
this scaling was to align similar regimes of behavior to similar
values of δ for different system sizes.

Following the success of basin-hopping global optimization
for the regular Thomson problem [78], the same approach was
used here to locate the global minima for a variety of different
compositions. The GMIN program [79] was employed for
the basin-hopping calculations, using the L-BFGS (limited-
memory BFGS) algorithm [80] for energy minimization. The
energies of the minima are not changed by the basin-hopping
algorithm, but downhill transition state barriers are removed,
which allows more rapid sampling of the energy landscape.
The use of the basin-hopping algorithm in combination with
combinatorial searching [81] allows for efficient relaxation to
the global minimum in multicomponent systems [82].

For 45 particles of each type, around 50 000 basin-hopping
steps were required to achieve convergence to the same
minimum from ten random starting points. The number of
steps required decreases as the systems are made smaller, since
there are fewer minima on the energy landscape. The proposed
global minima for different compositions were used as seeds
for the calculations in Sec. IV. Tuning the interlayer separation
provided three sets of coordinates to consider, corresponding
to the BG, CS, and TIAF crystals.

IV. TECHNICAL DETAILS

We determine the best variational ground state for the
pseudospin dependent interaction in Eqs. (11) and (12) by
calculating the energies for a series of trial wave functions of
the form presented in Tables I and II. We compute the energy
expectation value, which is a 4N dimensional integral (recall
we have Ntot = 2N particles), by the Monte Carlo method,
which allows us to determine the energy with up to 0.01% accu-
racy with 107 iterations. Using this method, we have calculated
energies for total particle numbers up to 2N = 98. We calculate
the energy for several system sizes and use a linear extrapola-
tion to obtain the thermodynamic energy for every candidate
state. The errors quoted below originate primarily from the
uncertainty in the linear fit; the Monte Carlo simulation error
for each energy is typically smaller by an order of magnitude.
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The fitting error is particularly significant for crystals as they
necessarily have some defects due to the curvature.

To obtain an energy value that is intensive, it is neces-
sary to consider the total energy, including the background-
background and electron-background interactions. In our case,
since we are interested in comparing states, we measure the
electron-electron Coulomb interaction relative to one of the
candidate states.

Some of our wave functions will involve compressible CF
Fermi sea, for which we will use total particle numbers 2N =
18, 32, 50, 72, and 98, so that the effective magnetic field
vanishes in each layer.

The total filling factor in spherical coordinates is defined
to be ν = limN→∞ 2N

2Q
, where N is the number of particles

in a single layer. Due to the finite size shift in the spherical
geometry, the density for a finite N is not the same as that
in the thermodynamic limit, which provides an N dependent
correction to the energy. To compensate for this effect, we
multiply the energy by the ratio of the interparticle separation
in the thermodynamic limit to that in the finite system, i.e.,√

ρ∞
ρN

=
√

2Qν

2N
. This density correction reduces the dependence

of the energy on the particle number, thus facilitating the
comparison between the different candidate states [57].

To connect with experimental systems, we also consider
2DEGs with finite width. We consider a double quantum well
geometry, consisting of two wells of equal width. The effective
intralayer and interlayer Coulomb interactions are of the form

V↑,↑ eff (r) = e2

ε

∫
dζ1

∫
dζ2

|ξ (ζ1)|2|ξ (ζ2)|2√
r2 + (ζ1 − ζ2)2

, (14)

V↑,↓ eff (r) = e2

ε

∫
dζ1

∫
dζ2

|ξ (ζ1)|2|ξ (ζ2)|2√
r2 + (ζ1 − ζ2 + d)2

, (15)

where ζi is the distance perpendicular to the 2DEG and r is the
coordinate in the plane of the 2DEG. The transverse component
of the wave function, ξ , is obtained via self-consistently solving
the Schrödinger and Poisson equations and applying the local
density approximation (LDA). To carry out these calculations,
we only need to know the shape of the confinement potential
and the density of electrons. We have calculated the energies in
the zero width limit and for double quantum well widths, 180
Å, 300 Å, 400 Å, and 500 Å. For further details on how the finite
width calculation is carried out we refer the reader to Ref. [83].

V. RESULTS

We now present our results for total filling factors ν =
1/3, 2/5, 1/2, and 1/5. As defined in Sec. II, our notation
is (ν̄−1 ν̄−1| m) for liquid states, and X(2p,m) for crystal
states. X = CS, BG, and TIAF represent correlated square,
binary graphene, and triangular Ising antiferromagnetic lat-
tices, respectively. The integers 2p and m correspond to the
CF vorticity and the number of interlayer correlation zeros.

A. Zero width

We first consider a bilayer system with each layer of zero
width. Figure 3 shows energies of various states at ν = 1/3,
2/5, 1/2, and 1/5 as a function of layer separation. At each
filling, the energies are quoted relative to the energy of a refer-

ence state, which itself shows up as the zero energy state in our
plots. Level crossing transitions occur at interlayer separations
d/l marked by vertical dashed lines. The ground state in each
region is indicated on the figures. (We note that due to the high
number of possible crystal states at ν = 1/5, 39 in total, we
have only plotted those with the most competitive energies.)

The richness of the bilayer phase diagram is evident. At ν =
2/5, the states that we find to be realized are (3,3| 2), CS(2,1),
(4,4| 1), BG(2,0), and (5,5| 0). At ν = 1/3, (3,3| 3), CS(2,2),
CS(2,1), (5,5| 1), and BG(4,0) are realized. At ν = 1/2, the
phase diagram is the same as that found by Scarola and Jain [38]
with no crystal states. At ν = 1/5, we see the polarized FQH
liquid (5,5| 5), followed by a series of crystals with different
symmetries, flavors of CFs, and number of interlayer zeros.

Many features of the phase diagram are consistent with our
expectation.

(1) In the limit of d/l = 0, we obtain (3,3| 2), (3,3| 3),
(2,2| 2), and (5,5| 5) states at ν = 2/5, 1/3, 1/2, and 1/5. With
mapping to the single-layer spinful system, these correspond
to spin singlet 2/5, fully spin polarized 1/3, spin singlet 1/2,
and fully spin polarized 1/5, which are known to be the lowest
energy states.

(2) As expected, the integer m, which represents the
strength of the interlayer correlations, decreases with increas-
ing d/l.

(3) The state in the limit of large d/l is also consistent with
our expectation. For ν = 2/5, we get two uncorrelated 1/5
states, and at ν = 1/2 two uncorrelated 1/4 CF Fermi seas.
At ν = 1/3 and ν = 1/5, each layer has a triangular CFC,
as expected for the individual layer fillings of ν = 1/6 and
ν = 1/10, but these crystals are correlated into a BG crystal.
The former is a 4CFC and the latter a 6CFC, as expected from
previous calculations [29,30].

(4) For the total filling ν = 1/2, no crystal is stabilized
according to our calculations. However, we note that the energy
of the crystal BG(2,0) is very close (within 0.002e2/εl) to
that of the independent layer state (4 4| 0) in the limit of large
separation.

(5) At total filling ν = 1/5 we see that a crystal state
appears quickly as we increase d/l. We see a large number
of crystal-to-crystal transitions, and achieve each of the three
crystal lattices that we have considered. We note here that
for states at this filling factor, the estimated error in the
thermodynamic limit increases significantly, making it difficult
to precisely ascertain the value of d/l where the transition into
the BG(6,0) crystal takes place.

We thus find a rich phase diagram of liquids and crystals
resulting from tuning the relative strengths of the intralayer
and interlayer interactions. Each filling factor considered here
has its own complex evolution as the interlayer interaction is
weakened.

B. Finite width

We next consider the effects of finite width by looking at
the same set of parameters for an effective Coulomb potential
in several double well geometries.

In our finite width calculations, we consider double quan-
tum well geometries with well widths of 18 nm, 30 nm,
40 nm, and 50 nm. The bilayer separation d is taken as the
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FIG. 3. Energies of bilayer liquid and crystal states for zero width layers as a function of the interlayer separation. The energy of each state
is measured relative to a chosen reference incompressible liquid state (which itself appears as the zero energy state). All energy differences
represent the thermodynamic limits, obtained as described in Sec. IV. The vertical dashed lines separate different ground state phases labeled
on the plot. Here black corresponds to liquid states, while red, blue, and green denote CS, BG, and TIAF crystals.

center-to-center distance. The finite width effects serve to alter
the values of the separation at which the phase transitions occur,
typically not changing the ordering of the states. Figures 4–7
show the phase diagrams for various widths for each filling
in the ρ − d/l plane, where ρ is the electron density. It is
important to note that the region with w > d is unphysical

(two wells overlap) and has been shaded red. For each filling
factor, the states are labeled only in the case of 18 nm well
width because the ordering of states for larger well widths is the
same. We have not considered tunneling between layers, which
may be important for small d/l or for the bilayer interpretation
with WQWs.
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FIG. 4. Finite width phase diagram for ν = 2
5 . We plot the phases

expected in DQWs with individual well widths 18 nm, 30 nm, 40 nm,
and 50 nm as a function of carrier density in units of 1010 cm−2

and layer separation in units of magnetic length. The shaded area
is unphysical, as here the quantum well width exceeds the layer
separation. The phase diagram is qualitatively similar to that for zero
width, except for the absence of the binary graphene crystal phase.

We find that the ordering of states at each filling factor does
not drastically change from that found for d = 0. At filling
factors 1/2, 1/3, and 1/5, we obtain the same states with
the same ordering as for a zero width bilayer in the physical
(unshaded) region. (Any differences from the zero width phase
diagrams occur in the red shaded unphysical region.) For filling
factor 2/5, we find that the binary graphene phase is present

FIG. 5. Same as in Fig. 4 but for ν = 1
3 . The phase diagram is

qualitatively similar to that for zero width.

FIG. 6. Same as in Fig. 4 but for ν = 1
2 . The phase diagram is

qualitatively similar to that for zero width.

in a narrow range for zero width, but is suppressed when we
consider the finite width interaction.

VI. COMPARISON WITH EXPERIMENT

The results presented in this work apply to double quantum
wells studied by Eisenstein et al. [40]. These authors find
an incompressible state at total filling ν = 1/2 in bilayers of
quantum wells of width 18 nm each for separations d/l ≈
2.4 − 2.9. That is consistent with our phase diagram for

FIG. 7. Same as in Fig. 4 but for ν = 1
5 . Here various crystal

phases dominate the phase diagram. The phase diagram is qualita-
tively similar to that for zero width.
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ν = 1/2. For separation d/l = 3.6 they find an insulator,
whereas in our phase diagram, the system with density 1.3 ×
1011 cm−2 at d/l = 3.6 is predicted to lie in the compressible
phase (4,4|0) which consists of two uncorrelated 1/4 CF Fermi
seas in each layer. There is no doubt that the (4,4,|0) phase must
ideally occur in the d/l 
 1 limit, and therefore it is tempting
to attribute the experimental insulating phase here to disorder.
We suspect that disorder (enhanced due to the thin AlAs barrier
layer) either freezes out the CF Fermi seas or stabilizes a bilayer
crystal phase, which in this case would be a bilayer graphene
crystal of CFs whose energy is very close to that of the (4,4,|0)
compressible state. A reliable account of disorder is outside
the scope of our current study, but we note that disorder is
expected to favor the crystal phase, which can accommodate
disorder more readily than an incompressible liquid phase. In
this context, it is also worth recalling that a crystal is often
more competitive slightly away from the special fillings (an
example being ν = 1/5 in a single-layer system), and thus
can swamp an incompressible FQH state in the presence of
significant density inhomogeneities.

A direct comparison of our studies with the experimental
results of Manoharan et al. and Hatke et al. [51,53] in WQW
is not possible. In a WQW, the two “layers” correspond to
even and odd combinations of the lowest symmetric and
antisymmetric subbands, which are separated by a gap �SAS,
with the system making a transition from single-layer-like
at large �SAS to bilayerlike at small �SAS. This system is
akin to a bilayer with interlayer tunneling, which we have not
considered in our paper. However, we can hope for a qualitative
comparison, because in the bilayerlike region, reducing �SAS

is qualitatively similar to increasing the layer separation d.
We list certain similarities and differences between previous
WQW results and our predictions.

At ν = 2/5, our calculations do not find a wide region
of insulating phase that is present in WQW. In addition, we
only find one crystal state when we consider finite width
interactions as opposed to two crystals suggested by microwave

spectroscopy measurements. At ν = 1/3, we predict a reen-
trant incompressible FQH phase at intermediate separations,
not seen in WQWs. We do find two separate crystals, correlated
square and binary graphene, consistent with the transitions seen
in microwave spectroscopy. At ν = 1/5, we find the crystal
phase to dominate the phase diagram, in qualitative agreement
with the WQW experiment, which finds a crystal phase imme-
diately upon transition into a bilayer phase. For filling ν = 1/2,
we do not find any crystal states to be stabilized, which is
at odds with insulating behavior seen in WQW experiments.
Again, disorder may be playing an important role in stabilizing
some of the insulating phases.

We note here that Thiebaut, Regnault, and Goerbig [50]
have studied the WQW system at ν = 1/2 in the Hartree-
Fock approximation. They find that a single-layer crystal state
occupying the second subband is stabilized for a parameter
range that is in good agreement with the experimental phase
diagram of Shabani et al. [52].

In summary, we have performed a comprehensive study
of both crystal and liquid phases in a bilayer system and
obtained phase diagrams at several filling factors. In addition
to the incompressible and compressible CF liquids, the phase
diagrams also contain three types of CFCs, namely TIAF,
CS, and BG. We find that in addition to liquid-to-liquid
transitions and liquid-to-crystal transitions, there are several
crystal-to-crystal transitions in which the CF lattice reorders
itself. We have made preliminary comparisons with existing
experiments, and hope that this work will motivate a more
systematic study of the insulating states in bilayer systems.
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