
PHYSICAL REVIEW B 97, 245423 (2018)

Origin of the anapole condition as revealed by a simple expansion beyond the toroidal multipole
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Toroidal multipoles are a topic of increasing interest in the nanophotonics and metamaterials communities. In
this paper, we separate out the toroidal multipole components of multipole expansions in polar coordinates (two-
and three-dimensional) by expanding the Bessel or spherical Bessel functions. We discuss the formation of the
lowest order of magnetic anapoles from the interaction between the magnetic toroidal dipole and the magnetic
dipole. Our method also reveals that there are higher order current configurations other than the electric toroidal
multipole that have the same radiation characteristics as the pure electric dipole. Furthermore, we find that the
anapole condition requires that there is a perfect cancellation of all higher order current configurations.
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I. INTRODUCTION

The toroidal multipole is a class of complex current con-
figurations. The fundamental order of the toroidal multipole
is a toroidal dipole, whose current flow is similar to current
flowing inside a solenoid coil bent into the shape of a torus.
The radiation pattern of a toroidal dipole is the same as an
electric dipole, and paired strengths of the two result in a total
cancellation of radiation. This condition is a nonradiating but
nontrivial current configuration that is called an anapole. It was
first proposed in atomic physics by Zeldovich [1] and observed
later in cesium [2]. The toroidal multipole has also been found
responsible for some unusual phenomena in condensed matter
physics [3–6] and is currently the topic of much interest in the
nanophotonics and metamaterials communities [7–9].

One of the most prominent characteristics of the toroidal
multipoles is that each of the multipoles has the same radiation
pattern as its Cartesian electric multipole counterpart but has a
very different current configuration and scales with a different
order of kr , where k is the wave number and r is the radius of the
scatterer [9–13]. The toroidal dipole moment can be picked out
from the multipole expansion in Cartesian coordinates [14,15].
However, the complexity of the extraction makes it difficult to
obtain higher order toroidal moments (i.e., beyond dipoles).
By contrast, the classical multipole expansion in spherical
coordinates was discovered more than one century ago [16].
It expands an arbitrary radiation pattern as an incoherent
summation of orthogonal radiation patterns. Therefore, the
Cartesian electric multipole and the toroidal electric multipole
[17], which have the same radiation pattern, will be contained
in the same term of the expansion.

In this paper, we separate out the toroidal multipole in the
classical multipole expansion of the scattering current [18].
We expect that our method will be useful for any application
that involves toroidal multipoles including magnetoelectricity
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[19–22], metamaterials [7,9,23], and nanophotonics [24–26].
The structure of our paper is as follows. We first derive the two-
dimensional (2D) multipole expansion in polar coordinates,
which is simple to perform and understand. We then extend
the method to three-dimensional (3D) spherical coordinates.
Following this, we present examples of application of this
method to 2D (nanotube with both electric and magnetic
anapole excitations) and 3D (sphere with anapole excitation)
cases.

II. MULTIPOLE EXPANSION IN 2D POLAR
AND 3D SPHERICAL COORDINATES

Scattering from objects can be treated as radiation from
scattering currents. In bounded regions with scattering current
sources, we only need to consider the source electric current,
as long as the relative permeability μr is 1, which is valid for
nonmagnetic materials. Following Jackson’s formulation [27],
we obtain:

(∇2 + k2) �E′ = − i

k
η∇ × ∇ × �J, (1a)

∇ · �E′ = 0, (1b)

(∇2 + k2) �H = −∇ × �J, (1c)

∇ · �H = 0, (1d)

where k is the wave number, η is the wave impedance√
μ0/(ε0εh), �J is the scattering current, defined [15] as �J =

−iωε0(ε�r − εh) �E, and �E′ = �E + i
ωε0εh

�J, following the def-
inition by Jackson [27]. ω is the angular frequency of the
wave under consideration, ε�r is the relative permittivity at the
position �r , and εh is the relative permittivity of the host medium.
μ0 and ε0 are the permeability and the permittivity of the free
space, respectively. The purpose of the second term in �E′ is to
facilitate matching the field expansion with the local current
sources by the addition theorem. This technique is sometimes
referred to as the volume-current method for solving scattering
problems [28,29].
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In 2D polar coordinates, Eqs. (1a) to (1d) can be solved
separately for the TE wave (electric field �E = Ezẑ) and the TM
wave ( �H = Hzẑ) to obtain the following multipole coefficients

Am = ηk

4

∫
Jze

imϕ[−Jm]ds, (2a)

Bm = i

4

∫
eimϕ

r
[(kr)JϕJm+1 + m(iJr − Jϕ)Jm]ds (2b)

Ez =
m=+∞∑
m=−∞

AmH (1)
m eimϕ (2c)

Hz =
m=+∞∑
m=−∞

BmH (1)
m eimϕ, (2d)

where �r =
√

(x2 + y2)(cos(ϕ)x̂ + sin(ϕ)ŷ), �ϕ = cos(ϕ)x̂ +
sin(ϕ)ŷ, H (1)

m is the Hankel function of the first kind with
argument kr , and Jm is the Bessel function of the first kind
with argument kr and order m. We use the boldface letter J to
represent the scattering current, with a subscript that indicates
which component of the three principal axes of cylindrical
coordinates is being referred to. A detailed derivation is
presented in Sec. 1 of the Supplemental Material [30]. With
these equations, we can calculate the partial scattering cross
section from each individual multipole m for any current
distribution.

Recall that the Cartesian multipole expansion is expanded in
terms of the order of kr , while the Mie expansion is performed
with respect to orthogonal radiation patterns [15]. Since the
Cartesian toroidal multipole has the same radiation pattern as
its corresponding electric multipole [9] but scales with two
more orders of kr , a natural way to separate the Cartesian
toroidal multipole from the spherical electric multipole is then
to group the terms in the integrands on the right-hand sides of
Eqs. (2a) and (2b) by their order of kr . However, care must
be taken here because the Bessel function is dependent on kr ,
thus it is necessary to expand the Bessel function Jm in powers
of kr by the method of Frobenius [31],

Jm = 1

m!

(
kr

2

)m

− 1

(m + 1)!

(
kr

2

)m+2

+ · · · . (3)

We denote the leading term 1
m! (

kr
2 )

m
as Jm,0 and the second

term − 1
(m+1)! (

kr
2 )

m+2
as Jm,1. This enables direct comparison

with the results of the Cartesian multipole expansion [9,11,13],
by keeping the two leading terms in the expansion, as shown
in Eqs. (4a) and (4b):

Am ≈ ηk

4

∫
Jze

imϕ[−(Jm,0 + Jm,1)]ds, (4a)

Bm ≈ i

4

∫
eimϕ

r
[(kr)JϕJm+1,0

+m(iJr − Jϕ)(Jm,0 + Jm,1)]ds. (4b)

In Eqs. (4a) and (4b), the underlined terms have a dependence
on kr , which is two orders higher kr (i.e., by (kr)2) than the
terms without underlines. We can now write these coefficients
down explicitly for m = 0 and m = 1, in a manner that
separates the pure dipole term from the toroidal term. This

is done as Eqs. (5a) and (5b) (for TE mode) and Eqs. (5c) and
(5b) (for TM mode). The top and bottom rows of each equation
are the pure dipole term and toroidal term, respectively. Note
that we need to treat B0 as a special case, as the second term
in Eq. (4b) vanishes when m = 0. We therefore include both
J1,0 and J1,1 in the expansion. We observe that the terms in the
bottom rows of Eqs. (5a)–5(d) are two orders of kr higher than
those in the top rows, and they have the same radiation pattern.
These match the characteristics of the known toroidal terms.
Based on the order (i.e., kr dependence) and the polarization
of the radiated field, we can further identify Eqs. (5a) and (5d)
as being the electric dipoles/toroidal dipoles and Eqs. (5b) and
(5c) as being the magnetic dipoles/toroidal dipoles.

A0 = ηk

4

∫ { −1
− (kr)2

4

}
Jzds (5a)

A1 = ηk

4

∫ { − kr
2

+ 1
2

(
kr
2

)3

}
Jze

iϕds (5b)

B0 = ik

4

∫ {
kr
2

− (kr)3

16

}
Jϕds (5c)

B1 = ik

4

∫ {
(iJr − Jϕ)

− (kr)2

2 (iJr − 3/2Jϕ)

}
eiϕ

2
ds (5d)

In general, the separated terms found by the expansion of
Bessel functions are not orthogonal. This is different from the
original spherical multipole expansion, in which the incoherent
summation of the partial scattering cross sections from differ-
ent multipoles gives the radiated power. A cross term of the
electric and toroidal multipole may be used to account for the
interaction between the terms with the same radiation pattern
[13]. That is the origin of the anapole condition [8,32,33], for
which there is destructive interference between the electric
dipole and toroidal dipole.

Within the same framework, we find that the 3D spherical
expansion can also be expressed in a similar manner as
follows (readers interested in the derivation should refer to
the Supplemental Material Sec. 3),

aE,d (l,m) = (−i)l−1k2ηOlm

[π (2l + 1)]1/2

∫
v
eimϕ (l + 1)

kr
jl,0

× {
lP m

l (cos θ )Jr + τlm(θ )Jθ + iπlm(θ )Jϕ

}
dv

(6a)

aE,t (l,m) = (−i)l−1k2ηOlm

[π (2l + 1)]1/2

∫
v
eimϕ −kr

4l + 6
jl,0

× {
(l + 1)P m

l (cos θ )Jr + (l + 3)

× [τlm(θ )Jθ + iπlm(θ )Jϕ]
}
dv, (6b)

where P m
l (cos θ ) are the associated Legendre polynomials

[27]. aE,d (l,m) is the term corresponding to the Cartesian
electric multipole and aE,t (l,m) corresponds to the toroidal
multipole. The other three terms in the equation are: Olm =

(2l+1)(l−m)!
4π[l(l+1)](l+m) , τlm = d

dθ
P m

l (cos θ ), and πlm = m
sin θ

P m
l (cos θ ).

We denote the small argument limit of the spherical Bessel
function as jl,0 = (2kr)l l!

(2l+1)! .
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III. EXAMPLES

We next verify our method by applying the above equations
to two example light scattering problems. We use the commer-
cial finite element method solver COMSOL for two purposes.
First, the scattering current distribution is found by numerically
solving Maxwell’s equations. Second, our theory is used to find
the partial scattering cross section from the scattering current.
A two-dimensional problem and a three-dimensional problem
are considered, both involving anapoles.

To demonstrate the application of our method in two
dimensions and the anapole condition, we choose to study
a hollow cylinder that we term a nanotube (Fig. 1). We plot
the partial scattering cross section with m ranging from 0 to
4 (shown as the solid line plots) with Am and Bm found from
Eqs. (2a) and (2b), in Figs. 1(a) and 1(b). We also plot the
result calculated from the definition of scattering cross section
(gray solid line), i.e., integrating the Poynting vector of the
scattered fields over a contour enclosing the nanotube. It is in
complete agreement with the result obtained by summing the
multipoles from m = 0 to 4 (shown as the square markers in
Fig. 1). Note that due to the circular symmetry of the nanotube,
the positive and negative orders of m are degenerate. For both
the TE and the TM polarizations, there are three very distinct
peaks and one distinct dip in the scattering spectra. The dips
are denoted with black dashed arrows and labeled Ta and Tb

in the figure. It can be seen that the electric field distribution
at each scattering-cross-section peak has the number of nodes
that would be expected from the order of the corresponding
multipole mode. For example, in panel (b) we have two nodes
for the dipole (m = 1), though the field pattern is distorted
due to the interference with the other modes. It is worth
noting that the quality factor increases significantly for modes
with higher orders. For instance, the hexapole mode (m = 3)
with the TM polarization has a full-width-at-half-maximum
FWHM of 10 nm and is located at a center wavelength of
500 nm.

In Figs. 1(a) and 1(b), the minima Ta and Tb are interesting
because they are almost scatteringless, a characteristic that is
associated with anapoles. With Eq. (4a), Eq. (4b), and Eq. (5a)
to Eq. (5d), we can calculate the partial scattering cross sections
of toroidal multipoles. We find that only the dipole terms (i.e.,
m = 0 and m = 1) are nontrivial at Ta and Tb. The partial
scattering cross sections of the expanded terms according to
Eqs. (5a) to (5d) are plotted in Figs. 1(c) and 1(d). In the figure
legends, we use subscript t to denote the toroidal components
of the multipole coefficients separated from either the magnetic
dipole or the electric dipole. These correspond to the bottom
rows of Eqs. 5(a)–(5d). For brevity, we henceforth use the
acronyms MTD and ETD to denote the magnetic toroidal
dipole and electric toroidal dipole, respectively. In the figure
legends, we use the subscripts m and e to denote the dipole
coefficients associated with the Cartesian magnetic (i.e., A1,m

and B0,m) and electric (i.e., A0,e and B1,e) dipoles, respectively.
For brevity, we also henceforth use the acronyms CMD and
CED to denote the Cartesian magnetic and electric dipoles,
respectively.

As discussed, from Figs. 1(a) and 1(b), it can be seen
that coefficients A1 and B0 exhibit dips around Ta and Tb,
respectively. Figures 1(c) and 1(d) provide insight into this

phenomenon. From Fig. 1(c), it can be seen that the MTD com-
ponent A1,t has the same magnitude as its CMD counterpart
A1,m at Ta . This allows destructive interference, provided that
the phases differ by a factor π (which is indeed the case at Ta).
Similarly, Fig. 1(d) reveals that this is also true for the TM case,
with the MTD component B0,t having the same magnitude as
the CMD term B0,m at Tb. Destructive interference is again
possible because the phases differ by a factor of π at Tb. We
thus conclude that magnetic anapoles occur at wavelengths
Ta and Tb. It can be seen from Fig. 1(c) that there is another
wavelength (other than Ta) at which A1,m and A1,t are of equal
magnitude. Similarly, there is another wavelength (other than
Tb) at which B0,m and B0,t match. A1 and B0 do not show
zeros at these wavelengths, however, as the phase condition is
not met.

We now consider the ETD and CED components, it can be
seen that A0 displays a dip at approx 0.63 μm. From Fig. 1(c),
it can be seen that the magnitude of the ETD component
A0,t matches that of the CED component A0,e. Destructive
interference occurs because the phase condition is met. We also
note that while A0,t and A0,e have appreciable magnitudes at
shorter wavelengths, A0 is relatively small. This is because
the phases of A0,t and A0,e in this spectral range are such
that destructive interference occurs. From Fig. 1(b), it can be
seen that B1 is small for wavelengths shorter than 0.6 μm.
This is due to destructive interference between B1,e and B1,t .
The terms have comparable magnitudes and appropriate phase
differences in this wavelength range. It can also be seen that
B1,e and B1,t intersect at a wavelength of approx. 0.76 μm. B1

is not zero at that wavelength however, due to the fact that the
phase condition is not met.

Although the destructive interference of the far-field radia-
tion from the dipole pairs [i.e., (CED, ETD) and (CMD, MTD)]
leads to the scattering dips at Ta and Tb, there are strong field
perturbations locally. These can be seen from the field profiles
we present as Fig. 2. The distribution of electric/magnetic field
strengths in Fig. 2 reveals an intriguing phenomenon. The roles
of the magnetic field and the electric field are swapped. In
the TE case [Fig. 2(a)], the toroidal moment can be easily
identified by the toroidal distribution of the magnetic field
vector, whose double curl defines the direction of the toroidal
moment (denoted by the boldface symbol Ta). On the other
hand, for the TM case, it is the double curl of the electric field
that defines the direction of the toroidal moment(denoted by
the boldface symbol Tb). Although magnetic anapoles form at
wavelengths Ta and Tb due to destructive interference between
the CMD and MTD components shown in Fig. 1, we note that
for the TE case, at Ta , the strengths of the fields associated with
the CED and ETD are around three times higher than for the
CMD and MTD. For the TM case, at Tb, the fields associated
with the CED and ETD are comparable to those of the CMD
and MTD. In both cases, therefore, the field patterns of Fig. 2
have contributions from all components (CED, CMD, ETD,
and MTD). The field patterns of Fig. 2 are thus not purely
magnetic or electric anapole.

We now consider a three-dimensional problem. We compare
the results of applying our method to light scattering by a
sphere (with anapole excitation) with the results reported by
Miroshnichenko et al. [8] using Cartesian expansions. The
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FIG. 1. Decomposition of the scattering cross section of a nanotube in the 2D multipole expansion. The incident plane wave has a wave
vector along the x̂ direction. TE wave case is shown as panel (a) and TM wave case is shown as panel (b). Inset of (a) shows a schematic of a
cross section of the nanotube, whose inner r and outer R radii are 50 nm and 150 nm, respectively. The host medium is air with n = 1 and the
tube has a refractive index of 3.5. Insets in panels (a) and (b) are mode profiles of various orders (amplitude of the electric field), with details
explained in the text. The expanded toroidal terms and Cartesian dipole terms are plotted in (c) and (d) for TE and TM cases, respectively.
These are partial scattering cross sections calculated based on the separation shown in Eq. (5).

expansion results from our spherical expansion [Eqs. (6a) and
(6b)] are plotted in Fig. 3(a). They are in agreement with the
results calculated and plotted in Fig. 2 of Miroshnichenko et al.
(the curves with diamond markers in Fig. 3).

To consider this in further detail, we first recall the equations
for the Cartesian electric dipole and the toroidal dipole from
Miroshnichenko et al. [8],

�p = i

ω

∫
v

�Jdv, (7)

�t = 1

10

∫
v
[(�r · �J)�r − 2r2�J]dv. (8)

Comparing these equations with Eqs. (6a) and (6b), we get:

px = − 3πi

ωk2η
[aE,d (1,1) − aE,d (1, − 1)], (9a)

py = − 3π

ωk2η
[aE,d (1,1) + aE,d (1, − 1)], (9b)

pz = 3
√

2πi

ωk2η
aE,d (1,0), (9c)

tx = − 3π

k4η
[aE,t (1,1) − aE,t (1, − 1)], (10a)

ty = − 3π

k4ηi
[aE,t (1,1) + aE,t (1, − 1)], (10b)

tz = 3
√

2π

k4η
aE,t (1,0). (10c)

The detailed derivation can be found in Sec. 4 of the
Supplemental Material. Note that in Eqs. (6a) and (6b), the
spherical Bessel function jl(kr) is expanded only up to order
(kr)3, but this fully accounts for the toroidal moments. We
have plotted the next higher order moment having the order
of (kr)5 in Fig. 3(a) as the solid purple curve. We denote it as
aE,h(1,1). Although this coefficient is quite small compared to
aE,t (1,1) and aE,d (1,1), its presence is ultimately the reason
why the anapole condition does not coincide with the perfect
cancellation of aE,t (1,1) and aE,d (1,1). This can be seen from
careful examination of Fig. 3, i.e., the perfect cancellation
occurs at slightly longer wavelength than the wavelength at
which aE(1,1) takes a value of zero. The same shift can
also be observed from Fig. 2 of the work by Miroshnichenko
et al. [8]. The field distribution of aE,h(1,1), however, cannot
be identified due to the small strength in comparison to the
lower order poles. Nevertheless, we point out that, for larger
particles, retaining additional expansion terms might reveal the
existence of moments other than the toroidal moment that have
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FIG. 2. (a) Instantaneous electric (Ez, color map) and magnetic
(Hx and Hy, quiver plot) fields around nanotube for TE mode. It can be
seen that two loops are formed in the magnetic field pattern. Fields are
calculated for illumination wavelength, denoted by Ta , in Fig. 1(b).
Direction of toroidal moment is indicated in this panel by vector
also denoted by Ta. (b) Instantaneous magnetic (Hz, color map) and
electric (Ex and Ey, quiver plot) fields around nanotube for TM mode.
Calculation is performed for illumination wavelength, denoted by Tb,
in Fig. 1(a). Vector also denoted by Tb in this panel gives direction of
toroidal moment.

even more complicated current configurations but the same
radiation pattern.

Next, we show that Eqs. (6a) and (6b) can be used for
obtaining any higher order toroidal multipole. We set l to 2 and
m to 1 and we solve for electrical quadrupoles. We plot the
calculated quadrupole coefficients in Fig. 3(b). Surprisingly,
toroidal quadrupole and its corresponding anapole show up
for a sphere with radius that is 30 nm larger than that for
which the toroidal dipole and its anapole occur, indicating
the existence of other modes can no longer be ignored. This
is fully justified by the mode scaling with (kr)5 but having
the same radiating pattern, shown as the purple curve in
the plot. From the field patterns, we can clearly see the
vortices of electric field, similar to the toroidal dipole shown
in Fig. 3(a). Furthermore, there are additional nodes in the
field variation, which is due to the quadrupolar nature of the
moments.

Similarly, the toroidal moments of any arbitrary order l

and degree m can be found, using the same set of equa-
tions [Eqs. (6a) and (6b)]. The results are trivial in the
region of interest studied here thus we do not present them
here.

We note that the magnetic-type anapole was discussed re-
cently by Luk’yanchuk et al. [34]. This anapole was uncovered
by comparing the zeros of the Mie coefficients with those of
the Cartesian magnetic dipole and the Cartesian magnetic-type
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FIG. 3. (a) Spherical multipole coefficients for the dipole mo-
ments of order 1 and degree 1. The dipole moments with (solid
red line) and without (solid blue line) toroidal moment separation
are calculated with Eq. (6a). The toroidal moment [found using
Eq. (6b)] is plotted as the solid yellow curve. The curve with red
diamond markers is the coefficient converted from Eq. (7) and
that with yellow markers is the coefficient converted from Eq. (8).
The insets are the field patterns of the electric field strength cut
at the center of the nanosphere at two representative wavelengths
(the pure toroidal condition and the anapole condition). The solid
purple curve plots the next higher order term [(kr)5]. (b) The spherical
multipole coefficients for the quadrupole moments of order 2 and
degree 1. The quadrupole moments with (solid red line) and without
(solid blue line) toroidal quadrupole moment separation are calculated
with Eq. (6a). The toroidal quadrupole moment [found using Eq. (6b)]
is plotted as the solid yellow curve. The solid purple curve plots the
next higher order term [(kr)5]. The insets are the field patterns of the
electric field strength cut at the center of the nanosphere at the toroidal
condition and the anapole condition.

toroidal dipole. As shown in Sec. 5 of the Supplemental
Material, the direct expansion of the spherical Bessel function
used in our work can also be applied to the spherical magnetic
multipole terms, giving the counterpart of the toroidal moment
from the magnetic multipole [13,35,36]. We find this term for
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TABLE I. A summary of the four types of multipoles discussed in this paper.

Category Order of kr Dipole expression Multipole expression

Cartesian electric multipole l �d = i

k

∫
v
�Jdv Eq. (6a)

Cartesian magnetic multipole l + 1 �m = 1
2

∫
v �r × �Jdv Eq. (A.46)

Electric toroidal multipole l + 2 �te = k2

10

∫
v [(�r · �J)�r − 2r2�J]dv Eq. (6b)

Magnetic toroidal multipole l + 3 �tm = − k2

20

∫
v r2�r × �Jdv Eq. (A.47)

the dipole can be defined by:

�tm = k2

20

∫
v
�r × �r × (�r × �J)dv = k2

20

∫
v
r2�r × �Jdv. (11)

This is exactly the mean square radius of magnetic dipole
defined in the literature [13,35,36]. This term has the same
radiation pattern as the Cartesian magnetic dipole, while it
is composed of toroidal magnetic current distribution defined
by the double cross product of the magnetic moment with
position vector �r [see the middle expression of Eq. (11)]. It
has a dependence of position in the integration of order (kr)3.
Note that we have used kr instead of r , which is used in most
references. The introduction of wave number k ensures that
the dipole moments can be substituted into formulas (e.g.,
scattering cross sections) developed for electric and magnetic
dipoles without any scaling factors. In Table I, we summarize
the four multipoles discussed in this paper.

Lastly, we note that Alaee et al. have performed a related
study [37] that reaches similar conclusions using a different
methodology. The work of Alaee et al. was published after the
submission of our paper.

IV. CONCLUSIONS

In conclusion, we demonstrated a simple but general
method to separate higher order terms from curvilinear

coordinate systems, including the classical Mie expansion
(3D) and the cylindrical expansion (2D). By expanding each
electric multipole term with respect to kr , we found that the
leading term is the Cartesian electric multipole, while the
next term is the toroidal multipole. Our expansion approach
reveals the existence of terms of order even higher [>(kr)3]
than toroidal multipoles. There might be situations (e.g.,
larger particles) for which these higher order terms provide
valuable physical insights. In addition, we discovered a means
to readily separate toroidal terms from magnetic multipole
expansions. This represents a counterpart to the separation of
toroidal terms from electric multipole expansions. Through
this study, it is obvious that the toroidal multipoles arise
from the subtle differences between multipole expansions of
field and multipole expansions of scattering/radiating current
distribution.
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