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Time-domain surface plasmon polaritons on a graphene sheet
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A time-domain analysis is presented of the transient field excited by a vertical electric dipole on a graphene
sheet described through a local scalar conductivity model valid in the intraband regime. The analysis is carried
out by means of the double-deformation method of Tsang and Kong [J. Math. Phys. 20, 1170 (1979)], a modified
modal technique which allows for defining a causal surface-plasmon-polariton (SPP) contribution to the total
transient field that is also computationally very efficient for a graphene sheet. Numerical results are presented and
validated against independent numerical full-wave simulations. The proposed approach provides a viable route to
the direct time-domain investigation of the role of SPPs in graphene-based structures employed in ultra-wide-band
nanosystems.
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I. INTRODUCTION

The excitation of surface plasmon polaritons (SPPs) on
graphene sheets and nanoribbons has been the subject of
intense research in the last decade [1–4], thanks to the
opportunities offered by their high-field confinement, long
propagation distance, and especially by the possibility of
controlling their propagation properties in real time via an
ambipolar electric-field effect through the simple application
of an external voltage [5–7]. SPPs belong to the modal
spectrum of graphene nanowaveguides and therefore their
electromagnetic characterization is customarily performed via
time-harmonic dispersion analyses in the frequency domain
(FD), based on both local and nonlocal models for the graphene
conductivity [8–13]. As concerns their excitation by means of
finite sources, the vast majority of the existing literature is also
focused on the time-harmonic regime [14–18]. A direct time-
domain (TD) analysis of the transient excitation of graphene
sheets is however necessary for studying nonlinear effects
[19] and would also be more convenient in the linear regime
for ultra-wide-band applications, where ultrashort pulses are
typically used as input wave forms [20]. In fact, besides
considerable computational advantages, a TD analysis would
afford valuable physical insights into the relevant transient
wave phenomena which, as is well known, are distinct from
those typical of the time-harmonic regime [21].

In this framework, a TD analysis of the transverse-electric
(TE) field excited by an electric line source parallel to a
graphene sheet was carried out using a modified Cagniard–
de Hoop (CdH) technique [22], assuming a local graphene
conductivity dominated by the relevant intraband contribution
[8]. In this regime, however, the SPP supported by the sheet is
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transverse magnetic (TM) [10], and therefore it is not excited
by the considered source. This analysis has been recently
extended to the case of a vertical electric-dipole (VED) source,
which produces an azimuthally symmetric TM field and is
thus capable of exciting an omnidirectional cylindrical SPP
wave along an infinite graphene sheet [23]. However, the CdH
method is an intrinsically nonmodal technique, which allows
for conveniently calculating the total field but is not capable of
sorting out the relevant SPP contribution.

In this paper we address the problem of performing a TD
modal analysis of the field excited by a VED on a graphene
sheet described through a local impedance boundary condition
in the intraband regime (see Fig. 1) in order to achieve a
direct characterization of the transient SPP wave form. Such a
characterization is, to the best of our knowledge, still missing in
the literature and aims at addressing the longstanding problem
of properly defining the SPP in the TD from exact solutions of
the time-dependent Maxwell equations. To this aim, we employ
the double-deformation technique (DDT) first proposed by
Tsang and Kong [24].

Focusing on the magnetic induction excited on the
graphene sheet, its standard expression as a double inverse-
Fourier/inverse-Hankel transform is manipulated in two steps,
by performing in sequence two deformations of the relevant
complex integration paths, first in the radial-wave-number
plane and then in the radian-frequency plane, to suitable
steepest-descent paths (SDPs). The total induction is thereby
represented as a sum of residue contributions arising from
the poles captured in the deformation process plus a double-
integral SDP contribution.

Note that the standard SPP field is well defined in the
FD as the residue contribution of the relevant pole in the
radial-wave-number plane. Furthermore, it is known to provide
the dominant contribution to the field excited by a nanoemitter
located in proximity of the graphene sheet, in a radial range
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FIG. 1. An infinite graphene sheet placed in vacuum on the z =
0 plane, excited by a transient vertical electric dipole (VED) with
electric-dipole moment pe(t)uz placed at the origin of the Cartesian
reference system. The graphene sheet is described in the frequency
domain through a local, scalar surface impedance Zg = Rg + jωLg.
Polar coordinates (ρ,φ) are also shown for an observation point P
located on the sheet.

up to tens or even hundreds of wavelengths from the source
[15]. On the other hand, its direct TD counterpart obtained
via a temporal inverse Fourier transform does not provide a
physically valid TD SPP. In fact, the analysis presented here
shows that the field resulting from such a direct inversion would
be noncausal and possibly also nondominant, depending on the
observation point and time. In contrast, the DDT allows for
pairing it with a second contribution, arising from a suitable
SPP-related pole singularity in the radian-frequency plane,
which is able to restore both causality and dominance to the
resulting field, which can then be properly defined as a TD SPP
field.

In addition to providing a viable route to TD SPPs, the DDT-
based approach is also computationally very efficient for thin
planar structures because of the reduced number of involved
poles [25,26], even more so for a graphene sheet that, as said,
supports a single TM SPP and for which it will be shown that
all the involved poles are known in analytical form.

II. STRUCTURE DESCRIPTION AND BACKGROUND

A. The configuration under analysis

We consider here an infinite graphene sheet placed on the
plane z = 0 in a vacuum with permittivity ε0, permeability
μ0, and light velocity c0 = 1/s0 = 1/

√
ε0μ0 (see Fig. 1). The

sheet is excited by a short, vertically directed electric-current
source with density ji(r,t) [A/m2], characterized by a length
� [m] and total current i(t) [A].

By retaining the lowest-order (electric-dipole) term in a
multipole expansion of the source, this can be collapsed to
a point VED, which can be assumed without loss of generality
to be located on the z axis, i.e., ji(r,t) = i(t)�δ(x)δ(y)δ(z −
z0)uz, where δ(·) indicates the Dirac δ distribution. Note that
i(t)�uz = ∂pe/∂t , where pe = pe(t)uz is the electric-dipole
moment of the source [27].

In what follows the VED is assumed to be located directly
on the graphene sheet (i.e., at z0 = 0) in order to maximize
its interaction with the SPP field, which is typically confined
in the close proximity of the sheet. This choice also simplifies
somewhat the subsequent analytical developments; however,

the general case of a source placed at a nonzero distance from
the sheet could be treated equally well with the same approach.

B. Electromagnetic model of graphene

As concerns the graphene sheet, this can generally be
modeled in the spectral domain as a conductive sheet with
a 2 × 2 dyadic surface conductivity [28]. The dyadic form is
due to the application of a magnetostatic bias together with
a nonzero chemical potential μc and/or to spatial-dispersion
effects [29,30]. As in Ref. [22], we will not consider the
presence of magnetic biasing fields and we will neglect the
role of spatial dispersion, since it has been shown that for
isolated graphene sheets nonlocal effects are unimportant, at
least below the high-THz range [31].

In such a case, the infinite graphene sheet can be modeled
in the FD through a local scalar two-dimensional (2D) conduc-
tivity σg [S], which mainly depends on the radian frequency
ω = 2πf and a phenomenological scattering rate � = 1/τs

(where τs is the relaxation time depending on a variety of
factors and determined experimentally) [32], in addition to the
chemical potential μc. In particular, at room temperatures and
for frequencies below the low-THz regime, where interband
terms can also be neglected, the conductivity has a Drude-like
dispersion behavior,

σg(ω) = χ

� + jω
= σ0

1 + jω/�
, (1)

where j is the imaginary unit, σ0 = χ/� is the graphene dc
conductivity, and

χ = q2
e kBT

πh̄2 ln

{
2

[
1 + cosh

(
μc

kBT

)]}
, (2)

with −qe the electron charge, h̄ the reduced Planck constant,
kB the Boltzmann constant, and T the absolute temperature.
Actually, as also shown in Ref. [23], the consideration of
interband terms (whose effects are dominant starting from
the high-THz regime) produces negligible effects in the TD
Green’s function of the problem. The consideration of only
the intraband conductivity as in (1) is thus not a limiting
assumption for the subsequent developments.

The electromagnetic model of graphene can thus be ex-
pressed in the FD by enforcing the continuity of the tangential
electric field Eτ across the graphene sheet and relating such
a field to the jump of the tangential magnetic field through a
surface (transition) impedance boundary condition:

Eτ (x,y,z = 0+,ω) = Eτ (x,y,z = 0−,ω),

Eτ (x,y,z = 0,ω) = Zg(ω)[uz × Hτ (x,y,z = 0,ω)]+−,
(3)

where Zg(ω) is the graphene surface impedance [�], with

Zg(ω) = Rg + jωLg = 1

σg(ω)
= 1

σ0
+ jω

1

χ
, (4)

i.e., Rg = 1/σ0, Lg = 1/χ .

C. Frequency- and time-domain fields

The considered source excites a field purely transverse mag-
netic with respect to the z axis (TMz). Thanks to the rotational
symmetry of the configuration around the z axis, the field is also
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azimuthally symmetric, with nonzero cylindrical components
eρ(ρ,z,t), ez(ρ,z,t) of the electric field and bφ(ρ,z,t) of the
magnetic induction. In what follows we focus in particular on
the magnetic induction observed at a point P along the graphene
sheet, i.e., at z = 0 (see Fig. 1), written concisely as bφ(ρ,t).

The total magnetic induction bφ(ρ,t) can be decomposed
into incident and reflected components, bi

φ(ρ,t) and br
φ(ρ,t),

respectively:

bφ(ρ,t) = bi
φ(ρ,t) + br

φ(ρ,t). (5)

The former is the field produced by a transient dipole in free
space, i.e., in the absence of graphene, and its expression
is available in a closed analytical form [see, e.g., Ref. [33],
Eq. 3(c)]:

bi
φ(ρ,t) = μ0

4πρ

[
s0p

′′
e (t∗) + 1

ρ
p′

e(t∗)

]
t∗=t−s0ρ

, (6)

where the prime ′ indicates derivation with respect to the
retarded time t∗.

As concerns the reflected field, as is well known its FD
counterpart Br

φ(ρ,ω) can be cast in the form of an inverse
Hankel (or Fourier-Bessel) transform of order 1 [34]:

Br
φ(ρ,ω) =

∫ ∞

0
kρJ1(kρρ)B̃r

φ(kρ,ω) dkρ, (7)

where kρ is the radial wave number; J1(·) is the Bessel function
of first kind and of order 1; and the spectral reflected field,
denoted with a tilde, is

B̃r
φ(kρ,ω) = jμ0

4π
I (ω)�

kρ

kz(kρ,ω)
R(kρ,ω). (8)

Here kz =
√

k2
0 − k2

ρ is the vertical wave number, where
k0 = ωs0 is the free-space wave number; I (ω) is the Fourier
transform of the source current wave form i(t); and finally, the
spectral TM reflection coefficient R is

R(kρ,ω) = − kz(kρ,ω)

2ωs0Z̄g(ω) + kz(kρ,ω)
(9)

(where the overbar indicates normalization with respect to the
free-space impedanceη0 = √

μ0/ε0) [34]. By inserting (9) into
(8) we have

B̃r
φ(kρ,ω) = −jμ0

4π
I (ω)�

kρ

2ωs0Z̄g(ω) + kz(kρ,ω)
. (10)

The integration in (7) can customarily be extended to the
entire real axis by expressing the Bessel function J1(·) in terms
of the Hankel functions H

(1,2)
1 (·) and exploiting the appropriate

analytic-continuation properties [35], thus obtaining

Br
φ(ρ,ω) = 1

2

∫ ∞

−∞
kρH

(2)
1 (kρρ)B̃r

φ(kρ,ω) dkρ. (11)

FIG. 2. Sommerfeld integration path (SIP) for the calculation of
the FD field Bφ as an inverse Hankel transform of order 1. The
singularities of the spectral field are also indicated: branch points at
kρ = ±k0 (circles), associated with the determination of the vertical
wave number kz, and the relevant Sommerfeld branch cuts (red wiggly
lines); branch point at kρ = 0 (circle), associated with the Hankel
function H

(2)
1 (·), and the relevant branch cut (orange wiggly line); and

poles at kρ = ±kρSPP(ω) (crosses), associated with FD SPP modes.

Note that the integration path in (11), usually known as the
Sommerfeld integration path (SIP), should lie infinitesimally
above/below the branch points, located on the real axis at at
kρ = ±k0, introduced by the square-root function that defines
the vertical wave number kz. (See Fig. 2, where the associated
standard Sommerfeld branch cuts defined by Im{k2

z } = 0,
Re{k2

z } � 0 are also reported [34].) For definiteness, in what
follows the symbol kz will indicate the proper determination
of the vertical wave number, i.e., the one with Im{kz} � 0.
[Note that the Hankel function H

(2)
1 (·) introduces an additional

logarithmic branch point at kρ = 0; the associated branch cut
is customarily chosen to lie on the negative real axis of the kρ

plane, with the SIP lying below it, and is devoid of physical
meaning.]

In addition to these branch-point singularities, the integrand
in (11) also has two pole singularities at kρ = ±kρSPP(ω),
associated with the well-known FD TM SPP mode supported
by an isolated graphene sheet [8,16,18]. The FD SPP wave
number kρSPP(ω) is a solution of the relevant TM dispersion
equation

2ωs0Z̄g(ω) + kz(kρ,ω) = 0, (12)

obtained equating to zero, the denominator of (10), and can be
expressed in a closed analytical form,

kρSPP(ω) = ωs0

√
1 − 4Z̄2

g(ω), (13)

where the determination of the square root lying in the fourth
quadrant of the kρ plane (i.e., the one with Im{kρSPP} < 0) will
be assumed henceforth (see Fig. 2).
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FIG. 3. Path deformation in the kρ plane: SDP through the branch
point kρ = k0 and evolution of the SPP pole kρSPP as a function of the
radian frequency ω.

Finally, the TD reflected field br
φ(ρ,t) can be calculated by

inverse Fourier transforming (11) with respect to time. Taking
into account that TD quantities are real, such an inverse Fourier
transform can be written as

br
φ(ρ,t) = 1

π
Re

{∫ ∞

0
Br

φ(ρ,ω)ejωt dω

}

= Re

{∫ ∞

0

∫ ∞

−∞

kρ

2π
H

(2)
1 (kρρ)B̃r

φ(kρ,ω) dkρe
jωt dω

}
.

(14)

In the next section the expression (14) for the TD reflected
field will be manipulated using the DDT in order to single out
the relevant TD SPP contribution.

III. DDT AND TIME-DOMAIN SPP FIELD

A. Summary of the DDT steps

The DDT is a two-step procedure based on sequential
deformations of the kρ and ω integration paths that requires a
careful analysis of the involved singularities of the integrands
in the kρ and ω complex planes, respectively. A detailed
exposition for the considered case of a graphene sheet in free
space is given in the Appendixes A and B. Here a sketchy
summary is given, aimed at providing the reader a quick route
to the proposed expression for the TD SPP field.

The first step of the DDT consists in deforming the
integration path of the inverse Hankel transform (11) into
the lower half of the kρ plane from the SIP to the vertical
SDP kρ = k0 − jq (q ∈ �+

0 ) passing through the branch point
kρ = k0 = ωs0 (see Fig. 3). Note that the SDP is folded onto
itself and lies partly on the proper Riemann sheet (solid line),
partly on the improper sheet (dashed line).

The FD field can thus be represented as the sum of two
contributions, BφSPP(ρ,ω) and BφSDP(ρ,ω), arising from the
residue of the SPP pole kρSPP and from the integration along
the SDP, respectively. By inverse Fourier transforming with
respect to time, we then have for the TD field

br
φ(ρ,t) = b′

φSPP(ρ,t) + bφSDP(ρ,t), (15)

where

b′
φSPP(ρ,t) = Re

{∫ ∞

ωc

1

2π
kρSPP(ω)H (2)

1 [kρSPP(ω)ρ]

× (−2πj )Res[B̃r
φ(kρ,ω); kρSPP(ω)]ejωt dω

}
(16)

and

bφSDP(ρ,t) = Re

{∫ ∞

0

∫
SDP

kρ

2π
H

(2)
1 (kρρ)

× B̃r
φ(kρ,ω) dkρe

jωt dω

}
. (17)

Note that, as shown in Appendix A, when ω = ωc the
FD SPP pole crosses the SDP at kρ = ωs0 − jqc, with ωc =
�/

√
1 + 4R̄2

g and q = qc = 4s0R̄
2
gω

2
c/�. Since the pole is

captured in the path deformation only if ω > ωc (see Fig. 3),
its residue contribution is zero if ω < ωc. (This is why the
lower integration limit of the ω integral in (16) has been set
equal to ωc.) As a consequence, the Fourier transform of (16)
is identically zero for ω < ωc and hence it does not satisfy
the well-known Paley-Wiener causality criterion (see, e.g.,
Ref. [36], p. 16, Theorem XII).

Therefore, (16) does not define a physical TD SPP field. As
shown in Appendix B, this can be obtained instead by adding
to (16) a second contribution, arising from a deformation of
the integration path of (17) in the ω plane and making causal
the resulting field.

To this aim, we first exchange the order of integrations in
(17) and then deform the integration path of the inner ω integral
from the positive real axis to the ω-SDP passing through the
origin; this is the positive imaginary axis when t > s0ρ, and
the negative imaginary axis when t < s0ρ (see Fig. 4).

In this last deformation due care has to be taken, of course,
of the various singularities of the integrand in the ω plane and
of their evolution as a function of the outer integration variable
q (i.e., the imaginary part of the kρ wave number along the
kρ-SDP). A detailed analysis (reported in Appendix B) shows
that the spectral Green’s function of a graphene sheet in free
space has four pole singularities in the ω plane. Of these, only
one, denoted asωSPP(q), crosses the positive real axis atω = ωc

when q = qc and can thus be associated with the FD SPP pole
kρSPP; its evolution as a function of q is also reported in Fig. 4.

The resulting representation for bφSDP can then be cast in
the following form:

bφSDP(ρ,t) = b′′
φSPP(ρ,t) + bφSDP2 (ρ,t) + bφother(ρ,t), (18)

where b′′
φSPP(ρ,t) arises from the residue contribution of the

pole ωSPP(q); bφSDP2 (ρ,t) is a double-integral SDP contri-
bution; and bφother(ρ,t) arises from the contribution of other
Green’s function poles as well as of the ω singularities of the
source spectrum I (ω) (if any).

We note that the above-described DDT-based approach is
valid for any Fourier-transformable source wave form i(t),
provided that the relevant spectrum I (ω) allows for deforming
the integration path in the ω plane from the positive real axis to
the positive or negative imaginary axis with a zero contribution
of the path at infinity. In particular, the wide class of wave
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FIG. 4. Path deformation in the ω plane: SDPs through the
origin for t > s0ρ (positive imaginary axis) and t < s0ρ (negative
imaginary axis) and evolution of the SPP pole ωρSPP as a function
of the imaginary part q of the radial wave number along the kρ-SDP
(kρ = k0 − jq). Two branch-point singularities are also shown with
the relevant branch cuts, arising from the square-root function in the
definition of the vertical wave number kz and from the Hankel function
H

(2)
1 (·).

forms having support and integrable on the positive real axis
can be considered, as well as Dirac δ functions. The proposed
formalism is thus able to provide a representation for the TD
Green’s function of the considered configuration.

B. Time-domain SPP field

As shown in Appendix B, the total field, sum of the incident
field (6) and of the DDT-based representation of the reflected
field (15) with (18), is identically zero before the first wave-
front arrival, i.e., for t < s0ρ, as required by causality.

But even more is true. If we consider the two SPP-related
terms b′

φSPP and b′′
φSPP, these are both different from zero;

however, for t < s0ρ they are exactly equal and opposite. A
causal TD SPP field can therefore be defined as

bφSPP(ρ,t) = b′
φSPP(ρ,t) + b′′

φSPP(ρ,t), (19)

i.e., summing the residue contributions of two pole singularities
(not one, as for the usual FD SPP field).

The contribution b′
φSPP has clearly a modal nature since

it is an (inverse Fourier) integral superposition of standard
FD (SPP) modes. As concerns the contribution b′′

φSPP, such
a term derives from bφSDP, i.e., from the inverse Fourier
transform of the FD nonmodal space wave [26]. However,
having interchanged the ω and q integrals and isolated the
residue contribution of an ω pole (associated with the SPP kρ

pole), it can be argued that b′′
φSPP has a modal character as well,

since it is an integral superposition of nonstandard TD modes
[37].

As concerns the computational aspects, it is remarkable that
for the case of a graphene sheet in free space, the involved kρ

poles and ω poles can be determined in closed analytical forms,
without the need of any root-searching procedure. Therefore,
the evaluation of (19) reduces to the numerical calculation of
two single integrals: an ω integral over the semi-infinite domain

[ωc, + ∞) (b′
φSPP) and a q integral over the finite domain [0,qc]

(b′′
φSPP).

IV. NUMERICAL RESULTS AND DISCUSSION

Numerical results will be presented in this section in order to
(i) validate the proposed DDT-based representation of the total
magnetic induction bφ(ρ,t) excited by a VED on a graphene
sheet in free space against independent computations; (ii) illus-
trate the significance of the various single DDT contributions
to the total induction; and (iii) discuss the role of the TD SPP
contribution for various spatiotemporal observation points.

The graphene sheet is modeled using (1) with τ = 0.5 ps,
μc = 0 eV, and T = 300 K. For simplicity, a damped sine with
radian frequency ω0 = 2π/Tc and damping parameter a > 0
will be assumed here as a source wave form:

i(t) = I0e
−at sin (ω0t)u−1(t), (20)

where u−1(·) is the Heaviside unit-step function, with Tc in the
range from τ = 0.5 ps to 10τ = 5 ps and a = 2ω0/π .

The only singularities of the relevant spectrum

I (ω) = I0
ω0

(a + jω)2 + ω2
0

(21)

are a pair of poles, located at ω = ±ωps = ±ω0 + ja in the
first and second quadrants of the complex ω plane.

The spectrum (21) is almost flat from dc to the frequency
f0 = ω0/(2π ) (beyond which it rapidly approaches the asymp-
totic decay ∼ 1/ω). For the considered values of Tc it results
f0max = 2 THz; hence, spatial-dispersion and interband terms
can be neglected in the graphene conductivity expression,
which can thus be correctly represented by (1). On the other
hand, it results f0min = 100 GHz, so that for all the considered
values of Tc the spectral content of the source is not negligible
above the SPP cutoff frequency fc = ωc/(2π ) 	 117 GHz and
thus the source is capable of exciting appreciably the TD SPP.

FIG. 5. Normalized time-domain magnetic induction b̂φ(ρ,t) as
a function of the normalized time t/(s0ρ): comparison between our
formulation (blue solid line) and a brute-force numerical inversion of
the relevant spectral induction (cyan dashed curve). The incident in-
duction is also reported for reference (gray dashed curve). Parameters:
ρ = 0.1 mm, Tc = 5 ps.
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The incident magnetic induction produced by a VED with
current wave form (20) is, from (6),

bi
φ(ρ,t) = b0(ρ)e−at sin [ω0t + φb(ρ)]u−1(t), (22)

where

b0(ρ) = μ0I0�

4πρ

√(
1

ρ
− as0

)2

+ ω2
0s

2
0 (23)

and

φb(ρ) = arctan

(
ω0s0ρ

1 − as0ρ

)
. (24)

A. Validation

In Fig. 5 the normalized time-domain magnetic in-
duction b̂φ(ρ,t) (where the hat indicates normalization to
max{|bφ(ρ,t)|}) is reported as a function of the normalized time
t/(s0ρ) for ρ = 0.1 mm and a current profile as in (20) with
Tc = 5 ps. The induction is calculated both with our formula-
tion (blue solid line) and with a purely numerical evaluation
of its double inverse Fourier/Hankel representation (14) (cyan
dashed line). The two curves are perfectly superimposed.

As a further validation, the same configuration as in Fig. 5 is
considered, using as a source wave form the damped sinusoidal
function (20) multiplied times t . The DDT formulation remains
unchanged, except for the contribution b̂φps(ρ,t), which now
derives from a double pole at ωps whose residue has a more
elaborate expression (not reported here for brevity). In this
case the total induction is continuous at t = s0ρ (i.e., at the
time of the first wave-front arrival) and a simulation with the
electromagnetic simulation software CST MICROWAVE STUDIO

is thus feasible [38]. This software discretizes the time-domain
integral form of Maxwell’s equations in a three-dimensional re-
gion by using the finite integration technique (FIT); a perfectly
matched layer (PML) has been included here to terminate the

FIG. 6. Normalized time-domain magnetic induction b̂φ(ρ,t) as
a function of the normalized time t/(s0ρ): comparison between our
formulation (blue solid line), a brute-force numerical inversion of the
relevant spectral induction (cyan dashed curve), and results obtained
with CST (black circles). Parameters: As in Fig. 5, with a source wave
form multiplied by t .

computational domain. As can be seen in Fig. 6, the agreement
between our DDT-based formulation and both the brute-force
numerical inversion and the results obtained with CST is again
excellent; note that to obtain convergence, tens of millions of
cells have been employed in the CST simulation.

B. DDT constituents of the TD wave form

In Fig. 7 b̂φ(ρ,t) and its constituent parts according to (B14),
(B15) are reported as functions of the normalized time t/(s0ρ)
for ρ = 0.1 mm and current profile as in (20) with Tc = τ =
0.5 ps. The incident field can be seen from Fig. 7(a) to be
dominant for early times. However, for t/(s0ρ) > 3 it rapidly
becomes negligible [see Fig. 7(b)], while the TD SPP field
bφSPP simultaneously becomes the dominant contribution to
the reflected field. In particular, for this choice of parameters
the TD SPP is almost completely given by the term b′

φSPP alone.
Note, however, that b′

φSPP and b′′
φSPP are equal and opposite

for t/(s0ρ) < 1, i.e., before the arrival of the first wave front,

FIG. 7. Normalized time-domain magnetic induction and its con-
stituent parts as functions of the normalized time t/(s0ρ) for ρ = 0.1
mm and current profile as in (20) with Tc = 0.5 ps: (a) 0 < t/(s0ρ) <

3 and (b) t/(s0ρ) > 3.
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FIG. 8. Same as in Fig. 7 for Tc = 2 ps (a) and Tc = 5 ps (b).

as required to have a causal response. As concerns the other
contributions, i.e., bφSDP, bφp3, and bφps, they are negligible
for all times. (Although not shown here, the SDP term could
be seen to give an appreciable though modest contribution to
the reflected field for very early times; however, this cannot be
observed in the total field, which is dominated by the incident
field at those times.)

By increasing the characteristic time Tc of the source
wave form beyond the collision time τ of the graphene
sheet, the source spectrum shrinks to lower frequencies, where
the Drude-like graphene conductivity (1) is higher in abso-
lute value and hence the graphene sheet is more reflective.
Accordingly, the reflected field gradually gains significance
with respect to the incident field, as can be observed in
Figs. 8(a) and 8(b), where the values Tc = 4τ = 2 ps and Tc =
10τ = 5 ps are considered, respectively. On the other hand,
now the incident field decays more slowly and hence, after
being dominant for early times, remains non-negligible for a
larger time interval. It can also be observed that by increasing
Tc, the TD SPP term bφSPP tends to become dominant at larger

FIG. 9. Normalized time-domain magnetic induction and its con-
stituent parts as functions of the normalized time t/(s0ρ) for ρ = 1
mm and current profile as in (20) with Tc = 1 ps.

times, with the contribution b′′
φSPP gradually increasing relative

importance with respect to b′
φSPP.

By increasing the observation distance ρ, however, the
situation changes. For instance, in Fig. 9 the case ρ = 1 mm is
considered, with Tc = 2τ = 1 ps. Again, the incident field is
dominant for early times (not reported here). For late times the
TD SPP field becomes dominant, but now its main constituent
is the term b′′

φSPP, which can be seen to oscillate synchronously
and in phase opposition with respect to b′

φSPP.
The role of the various DDT contributions to the total field

indeed changes by varying the observation distance ρ, as it
can be more clearly appreciated from Fig. 10, where they are
reported in normalized form and in absolute value as a function
of ρ in the range from 0.01 to 10 mm, at a time t equal to a
fixed multiple of the wave-front arrival time s0ρ.

In particular, in Fig. 10(a) the case t = 3s0ρ is considered. It
can be seen that for ρ < 0.07 mm the total field is dominated by
the incident field. For ρ between 0.07 and 0.2 mm the incident
and TD SPP field are comparable, and for ρ > 0.2 mm the
TD SPP field is dominant. As concerns the TD SPP, the term
b′

φSPP is dominant for ρ < 0.2 mm, whereas b′′
φSPP becomes

dominant for ρ > 0.5 mm. Finally, the terms bφSDP, bφp3, and
bφps are negligible for all ρ (although the latter two are much
larger than the first one for small ρ).

By increasing the observation time to t = 7s0ρ, it can
be seen in in Fig. 10(b) that the incident field is always
negligible except extremely close to the source, the TD SPP
field becoming dominant already at ρ > 0.04 mm. However,
now the TD SPP field is dominated by b′

φSPP up to ρ = 0.2
mm, so that this term accurately represents the total field in the
range from 0.04 to 0.2 mm. From 0.2 to 1 mm b′

φSPP and b′′
φSPP

are comparable; finally, for ρ > 1 mm the latter term becomes
dominant and accurately represents the TD SPP (and hence the
total) field.

C. Discussion

From the results reported in Figs. 7–10 the following general
remarks can be made.

245418-7



BURGHIGNOLI, LOVAT, ARANEO, AND CELOZZI PHYSICAL REVIEW B 97, 245418 (2018)

FIG. 10. Absolute value of the normalized time-domain magnetic
induction and its constituent parts in a logarithmic scale as functions
of ρ with and current profile as in (20) with Tc = 1 ps for t = 3s0ρ

(a) and t = 7s0ρ (b).

First, the TD SPP field consistently provides an excellent
representation for the reflected field observed at points on the
graphene sheet (except for very early times).

Second, for a fixed observation point the TD SPP field also
provides a very accurate representation of the total field at late
times, i.e., when the incident field has decayed to negligible
values. The exact definition of such a time frame depends on
the characteristics of the source wave form, in particular, on
its spectral occupancy in relation to the Drude-like spectrum
of the graphene conductivity.

Third, there is a complex interplay between the two con-
stituents of the TD SPP, namely, b′

φSPP and b′′
φSPP, whose

relative importance depends on both the observation point and
time. Before the first wave-front arrival, they are equal and
opposite, as already observed. After that, their weight depends
on the observation distance, b′

φSPP being dominant for small
distances, b′′

φSPP for large distances.
In order to discuss the physical implications of these

findings, in Fig. 11 “phase diagrams” are reported, showing
the main character of the transient field as a function of time

FIG. 11. “Phase diagrams” showing the main character of the
transient field as a function of the normalized time t/(s0ρ) (horizontal
axis) and normalized radial distance ρ/λs, with λs = cTc (vertical
axis, logarithmic scale): (a) case of Tc = 1 ps and (b) case of
Tc = 5 ps.

(normalized to the first wave-front arrival s0ρ) and radial
distance (normalized to the free-space wavelength λs = cTc

corresponding to the oscillation frequency of the source) for
the cases Tc = 1 and 5 ps.

In these diagrams, which provide a possible TD counterpart
of those reported in Fig. 5 of Ref. [15], each pixel has a
color corresponding to the field component that is dominant at
the corresponding space-time location, according to the code
reported in the vertical color bar on the right. The criterion for
dominance of a component bφ,n of the total induction bφ has
been chosen as |bφ − bφ,n| < 0.1|bφ |; if no component satisfies
such a criterion, the black color has been used. Note that no
color has been attributed to bφSDP2 nor to bφps, since they are
never dominant.

A number of interesting observations can be made by
examining Fig. 11 and the relevant field values. First, it can
be noted that the incident field is dominant immediately after
the first wave-front arrival, in a time interval whose length
decreases with the distance from the source. Second, for larger
distances and after a transition time interval in which there
is not a clearly dominant component, the field is essentially
dominated by the TD SPP [for small distances from the
source this occurs for times larger than the range shown
in Fig. 11(b)], in particular, as already noted, by b′

φSPP for
large radial distances, by b′′

φSPP for small distances, and by
a combination of the two for intermediate distances. Third,
when the TD SPP dominates, the magnitude of the field is
considerably enhanced with respect to that of the incident field,
of the order of 102 or more depending on the observation time.

As concerns the physics of these findings, we may conclude
that the time-domain scenario in terms of dominance of the
plasmonic field as well as of enhancement with respect to
the incident, free-space field is very different from the one
in the time-harmonic case.

In fact, in the low-terahertz range considered here, the field
excited by a time-harmonic vertical dipole has the following
main properties [15]: (1) In a core region close to the emitter, of
the order of about ten propagation lengths Lp = 1/Im{kρSPP},
the field is dominated by the frequency-domain SPP. Further-
more, in this region it is greatly enhanced in magnitude with
respect to the incident, free-space field. (2) Outside such a core
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region and after a short transition region, the field is essentially
equal to the incident field. Because of (1), radiation/matter
interaction can be greatly enhanced in the core region close
to the source (leading to, e.g., high Purcell factors and other
notable effects) [1].

In contrast, for the TD field excited by a transient vertical
dipole, the TD SPP is never dominant for early times. When
it becomes dominant, it does produce a significant magnitude
enhancement with respect to the incident field; however, when
this happens, the amplitude has already considerably decayed
with respect to its early time values. These considerations have
a direct impact on the design of any experimental system aimed
at realizing the transient interaction of matter with radiation
inside subwavelength regions via SPP fields.

V. CONCLUSIONS

A time-domain analysis of transverse-magnetic surface
plasmon polaritons excited on a freestanding graphene sheet
by a vertical electric dipole has been carried out by means of
the double-deformation technique. This approach allows for
identifying a causal field associated with the surface plasmon
pole singularities of the relevant spectral Green’s function by
pairing the contribution arising from the standard plasmon pole
in the complex plane of the radial wave number with another
contribution arising from an associated pole in the complex
plane of the radian frequency. This can be contrasted with
other time-domain techniques such as the Cagniard–de Hoop
technique, which does not allow for sorting out the contribu-
tion of pole singularities and thus extract modal components
from the total field, or the direct numerical inversion of the
modal plasmon field in the frequency domain, which produces
noncausal results.

The time-domain surface plasmon polariton thus defined
has been shown to be the dominant contribution to the field
reflected by the graphene sheet. This is a nontrivial result, as
it has been shown that the direct inverse Fourier transform
of the standard modal plasmon field, typically dominant in the
frequency domain up to radial distances of several wavelengths
from the source, may be nondominant or even negligible,
depending on the chosen observation distance and time.

On the other hand, considering the total transient field, it has
been found that the properties of dominance of the plasmonic
field and the associated enhancement of the field magnitude
with respect to the free-space case are quite different from
those typical of the time-harmonic case, an indication that
transient plasmonics requires specific time-domain investiga-
tions for the correct design and interpretation of the relevant
experiments.

APPENDIX A: PATH DEFORMATION IN THE kρ PLANE

By deforming the integration path of the inverse Hankel
transform (11) into the lower half of the kρ plane from the SIP
to the vertical SDP kρ = k0 − jq (q ∈ �+

0 ) passing through
the branch point kρ = k0 = ωs0 (see Fig. 3), the FD field can
be represented as the sum of two contributions arising from the
residue of the SPP pole kρSPP and from the integration along
the SDP, respectively:

Br
φ(ρ,ω) = BφSPP(ρ,ω) + BφSDP(ρ,ω). (A1)

Regarding the first term, we have

BφSPP(ρ,ω)=−πjkρSPP(ω)H (2)
1 [kρSPP(ω)ρ]

×Res
[
B̃r

φ(kρ,ω); kρSPP(ω)
]
u−1(ω − ωc), (A2)

where ωc is the cutoff radian frequency of the FD SPP mode.
This is defined as the radian frequency at which the SPP pole
crosses the SDP (see Fig. 3), i.e., kρSPP(ωc) = ωs0 − jqc, thus
being captured in the path deformation only if ω > ωc. Both
ωc and qc can be calculated in a closed form from (13)

ωc = �√
1 + 4R̄2

g

,

qc = 4s0R̄
2
g

�
ω2

c . (A3)

The residue in (A2) can also be calculated explicitly:

Res
[
B̃r

φ(kρ,ω); kρSPP(ω)
] = jμ0

4π
I (ω)�

kρSPP(ω)

kzSPP(ω)

×Res[R(kρ,ω); kρSPP(ω)]

= −jωμ0

2π
I (ω)�s0Z̄g(ω), (A4)

where kzSPP =
√

k2
0 − k2

ρSPP = −2ωs0Z̄g [having used (12)],
so that

BφSPP(ρ,ω) = −ωμ0s0

2
I (ω)�Z̄g(ω)kρSPP(ω)H (2)

1 [kρSPP(ω)ρ]

(A5)

for ω > ωc and BφSPP(ρ,ω) = 0 for ω < ωc.
Regarding the second term in (A1), we have

BφSDP(ρ,ω) = 1

2

∫ ∞

0
(ωs0 − jq)H (2)

1 [(ωs0 − jq)ρ]

×D(q,ω)(−j ) dq, (A6)

where the function D(q,ω) is defined as the difference between
the spectral fields on the top and bottom parts of the SDP, i.e.,

D(q,ω) = [
B̃r

φ[kρ = ωs0 − jq,ω]
]Top

Bottom

= jμ0

2π
I (ω)�

kρkz

4ω2s2
0 Z̄2

g(ω) − k2
z

∣∣∣∣∣
kρ=ωs0−jq

= jμ0

2π
I (ω)�

(ωs0 − jq)
√

2jωs0q + q2

4ω2s2
0 Z̄2

g(ω) − 2jωs0q − q2
, (A7)

having used

kz = kz(kρ = ωs0 − jq,ω) =
√

2jωs0q + q2. (A8)

In order to illustrate the typical behavior of the SPP pole
kρSPP = βρSPP − jαρSPP as a function of the radian frequency,
numerical results are presented in Fig. 12 for the case study
of a graphene sheet described by (1) with τs = 0.5 ps (hence
� = 2 × 1012 rad/s), μc = 0 eV, and T = 300 K.

In Fig. 12(a) the root locus of the SPP pole is reported in
the complex plane of the normalized radial wave number k̂ρ =
kρ/k0. The locus starts on the negative imaginary axis at k̂ρ =
−j

√
4R̄2

g − 1 = −j2.309. By increasing the radian frequency,
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FIG. 12. SPP pole singularity kρSPP = βρSPP − jαρSPP of the
spectral field B̃φ(kρ,ω): (a) pole locus (blue line) in the complex plane
of the normalized radial wave number k̂ρ = kρ/k0, parameterized by
the radian frequency ω; (b) the relevant dispersion curves for the
normalized phase constant β̂ρSPP (black line) and attenuation constant
α̂ρSPP (red line). Parameters: τs = 0.5 ps, μc = 0 eV, T = 300 K.

both the normalized phase constant β̂ρSPP and the normalized
attenuation constant α̂ρSPP monotonically increase; the former
has an asymptotically linear trend with frequency, whereas the
latter tends to the limit value α̂ρSPP = 2R̄g = 2.517, as it can
be observed in the dispersion plot reported in Fig. 12(b). The
SDP is crossed at ωc = 2πfc = 0.369� (which corresponds
to fc = 117 GHz) with α̂ρSPP = qc/k0 = 2.34, in agreement
with (A3).

APPENDIX B: PATH DEFORMATION IN THE ω PLANE

The TD field resulting at this stage is the sum of two
contributions, obtained by inverse Fourier transforming (A1)
with respect to time:

br
φ(ρ,t) = b′

φSPP(ρ,t) + bφSDP(ρ,t) (B1)

where

b′
φSPP(ρ,t) = 1

π
Re

{∫ ∞

0
BφSPP(ρ,ω)ejωt dω

}

= Re

{∫ ∞

ωc

−ωμ0s0

2π
I (ω)�kρSPP(ω)Z̄g(ω)

× H
(2)
1 [kρSPP(ω)ρ]ejωt dω

}
(B2)

and

bφSDP(ρ,t) = 1

π
Re

{∫ ∞

0
BφSDP(ρ,ω)ejωt dω

}

= Re

{∫ ∞

0

∫ ∞

0

(ωs0 − jq)

2π
H

(2)
1 [(ωs0 − jq)ρ]

× D(q,ω)(−j ) dqejωt dω

}
. (B3)

As already noted in Sec. III, the first term is not causal. A
causal TD SPP field can be obtained by adding to (B2) a second
contribution, arising from a deformation of the integration path
of (B3) in the ω plane and making causal the resulting field, as
described in the following.

Considering then (B3), we first exchange the order of
integrations, thus obtaining

bφSDP(ρ,t) = 1

2π
Re

{∫ ∞

0
F (q)(−j ) dq

}
(B4)

where

F (q) =
∫ ∞

0
(ωs0 − jq)H (2)

1 [(ωs0 − jq)ρ]D(q,ω)ejωt dω.

(B5)
The singularities of the integrand in (B5) are discussed next.

1. Singularities in the ω plane

The integrand of (B5) has pole singularities in the complex
ω plane that arise from the zeros of the denominator of D(q,ω)
in (A7). This is readily seen to be a fourth-order polynomial in
ω; the relevant quartic equation can be written as

ω̂4 − 2jω̂3 − ω̂ + j
q̂

2R̄2
g

ω̂ + 1

4R̄2
g

q̂2 = 0 (B6)

in terms of the normalized radian frequency ω̂ = ω/� and
the normalized wave number q̂ = q/(s0�). Equation (B6) has
four roots, denoted as ω̂p,i , i = 1,2,3,4, and parameterized by
the normalized wave number q̂. Importantly, such roots can
be written explicitly as functions of the coefficients in (B6)
and thus of q̂ through the well-known Ferrari formulas (they
are rather lengthy and thus are not reported here; see, e.g.,
Ref. [39]).

From (B6) it is seen that for q̂ = 0 we have two double roots,
one at ω̂ = 0 and one at ω̂ = j . By increasing q̂, the former
double root splits into two distinct complex roots ω̂p,i , i = 1,2,
symmetrical with respect to the imaginary axis (see Fig. 13,
where the pole loci ω̂p,i(q) are reported for the same case study
considered in Fig. 12). These cross the real axis at ω̂ = ±ω̂c

when q̂ = q̂c. Therefore, and this is a crucial point, we can
associate the solution ω̂p,1, i.e., the one crossing the positive
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FIG. 13. Pole singularities in the complex plane of the normalized
radian frequency ω̂: pole loci ω̂p,i (i = 1,2,3,4), parameterized by the
imaginary part q of the radial wave number on the SDP kρ = ωs0 −
jq, and poles of the source spectrum ±ωps (black and gray diamonds),
independent of q. The graphene conductivity has parameters as in
Fig. 12. Source parameters: Tc = 20 ps, a = 4/Tc.

real axis, with the SPP modal solution examined in the previous
section, which crosses the SDP at q̂ = q̂c when ω̂ = ω̂c.

As concerns the second pair of solutions ω̂p,i , i = 3,4, by
increasing q this splits from ω̂ = j remaining first on the real
axis and moving in opposite directions. Then they invert their
direction, coalescing again at q̂ = q̂d into a double solution,
which then splits into two complex solutions, symmetrical with
respect to the imaginary axis (see Fig. 13).

The dynamics of the ω poles can be further appreciated from
the curves in Fig. 14, where the real and imaginary parts of ω̂p,i ,
i = 1,2 [Fig. 14(a)] and i = 3,4 [Fig. 14(b)] are reported as a
function of q̂.

In addition to the four poles discussed so far, there may
be additional singularities arising from the source spectrum
function I (ω). Assuming a damped sine as in (20), the relevant
spectrum (21) has only a pair of poles in the first and second
quadrants of the complex ω plane, also shown in Fig. 13 for
the case Tc = 20 ps, a = 2ω0/π = 4/Tc.

The integrand of (B5) has also two branch-point singulari-
ties. The first one arises from the square-root function (A8) that
defines the vertical wave number in the numerator of D(q,ω).
The relevant branch point is thus located at ωBP,1 = jq/(2s0),
i.e., at ω̂BP,1 = j q̂/2, and, having agreed to choose the proper
determination of such a square-root function, the associated
branch cut lies along the imaginary axis below ωBP,1. The
second branch point is due to the Hankel function H

(2)
1 (·) and

occurs at ωs0 − jq = 0, i.e., at ω̂BP,2 = j q̂; by choosing as is
customary the associated branch cut along the negative real axis
of the argument of the Hankel function, the resulting branch
cut in the ω plane lies entirely in the second quadrant running
parallel to the negative real axis.

FIG. 14. Pole singularities in the complex plane of the normalized
radian frequency ω̂: real and imaginary parts of ω̂p,i as functions of
the normalized imaginary part q̂ of the radial wave number on the
SDP kρ = ωs0 − jq: (a) i = 1,2 and (b) i = 3,4.

2. Complete time-domain field

On the basis of the previous discussion of the in-
volved ω-plane singularities, it is now possible to de-
rive an alternative representation for (B4) via deforma-
tion to the ω-SDP passing through the origin. From the
asymptotic behavior of the Hankel function for large ar-
guments H

(2)
1 (z) ≈ j 3/2 exp(−jz)

√
2/(πz), we deduce that

the integrand in (B5) has an exponential term of the form
exp [jω(t − s0ρ)] exp(−qρ). Therefore, the ω-SDP will lie
along the positive imaginary axis when t > s0ρ and on the
negative imaginary axis when t < s0ρ.

Note that, excluding the above-mentioned exponential and
the source term I (ω), the remaining part of the ω integrand
decays algebraically as 1/ω2 at infinity in both the first and
second quadrants. Therefore, Jordan’s lemma allows for con-
cluding that the contribution of the closing contour at infinity
is zero, provided that I (ω)/ω2 is infinitesimal at infinity.
This accommodates a wide class of source wave forms i(t),
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FIG. 15. Path deformation in the complex plane of the normalized
radian frequency ω̂ = ω/� from the positive real axis (dashed line)
to the vertical SDP through the origin (solid line), for t > s0ρ. The
poles (crosses) and the BPs (circles) with the relevant BCs (wiggly
lines) are also indicated.

including those having support and integrable on the positive
real axis, whose spectrum is infinitesimal at infinity, as well as
Dirac δ’s, whose spectrum is constant.

a. The case t > s0ρ

In this case the integration path is deformed to the vertical
SDP through the origin, infinitesimally displaced on the right
of the positive imaginary axis, as illustrated in Fig. 15. It
can be noted that for q < qc the pole ωSPP is captured and
thus provides a residue contribution that will be denoted as
b′′

φSPP(ρ,t):

b′′
φSPP(ρ,t) = Re

{∫ qc

0
(ωSPPs0 − jq)H (2)

1 [(ωSPPs0 − jq)ρ]

× Res[D(q,ω),ωSPP]ejωSPPt dq

}
, (B7)

where, of course, ωSPP = ωSPP(q). Note that the upper integra-
tion limit has been set equal to qc, since for q > qc the ω-SPP
pole lies in the fourth quadrant and thus it is not captured in
the path deformation.

On the other hand, for q > qd the pole ωp,3 lies in the
first quadrant and thus it is also captured, and the relevant
contribution will be denoted as bφp3(ρ,t):

bφp3(ρ,t) = Re

{∫ ∞

qd

(ωp3s0 − jq)H (2)
1 [(ωp3s0 − jq)ρ]

× Res[D(q,ω),ωp3]ejωp3t dq

}
, (B8)

where ωp3 = ωp3(q). Note that in this case the lower integration
limit has been set to qd, since for q < qd the pole ωp,3 lies on the
imaginary axis and thus is not captured in the path deformation.

Note that the residues in (B7) and (B8) can be calculated
analytically from (A7). The result is

Res[D(q,ω),ωp]

= −jμ0

2π
I (ωp)�(ωps0 − jq)

×
√

2jωps0q + q2

16s2
0 L̄2

gω
3
p − 24js2

0 R̄gL̄gω2
p − 8s2

0 R̄2
gωp + 2js0q

,

(B9)

where ωp = ωSPP,ωp,3.
The considered source spectrum (21) has a pole in the first

quadrant at ωps = ω0 + ja that is independent of q and is thus
always captured in the path deformation. The relevant residue
contribution is

bφps(ρ,t) = Re

{∫ ∞

0
(ωpss0 − jq)H (2)

1 [(ωpss0 − jq)ρ]

× Res[D(q,ω),ωps]e
jωps t dq

}
, (B10)

where

Res[D(q,ω),ωps]=−jμ0

2π

I0

2
�

× (ωpss0−jq)
√

2jωpss0q+q2

4ω2
pss

2
0 Z̄2

g(ωps)−2jωpss0q−q2
. (B11)

Finally, the ω-SDP integral gives rise to a fourth contribu-
tion, which will be denoted as bφSDP2 (ρ,t):

bφSDP2 (ρ,t) = Re

{∫ ∞

0

∫ ∞

q/(2s0)
j

(ps0 − q)

2π
H

(2)
1 [j (ps0 − q)ρ]

×D(q,ω = jp)e−pt dp dq

}
. (B12)

Here the integration along the ω-SDP has been parameterized
by letting ω = jp, p ∈ �+

0 and the lower integration limit has
ben set to q/(2s0), since for p < q/(2s0) the integrand is purely
imaginary and hence gives no contribution to (B12).

Note that when q < qd, the pair of poles ωp,i , i = 3,4
is located on the imaginary axis, i.e., ωp,i = jpp,i , i = 3,4.
An analysis of (B6) shows that pp,i > q/(2s0), i.e., these
poles always lie on the ω-SDP. However, the relevant residue
contributions to the integral are purely imaginary; therefore
they do not contribute to bφSDP2 (ρ,t), and thus the p integral
can be evaluated as a Cauchy principal value around those poles
or, alternatively, the ω-SDP can detour around them either on
the left or on the right side.

Taking into account the four previously described contribu-
tions, we may write

bφSDP(ρ,t) = b′′
φSPP(ρ,t) + bφp3(ρ,t) + bφps(ρ,t)

+ bφSDP2 (ρ,t), (B13)

so that from (5), (B1), and (B13), the complete TD field for
t > s0ρ can finally be written as follows:

bφ(ρ,t) = bi
φ(ρ,t) + b′

φSPP(ρ,t) + b′′
φSPP(ρ,t)

+ bφp3(ρ,t) + bφps(ρ,t) + bφSDP2 (ρ,t), (B14)

245418-12
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FIG. 16. Same as in Fig. 15, for t < s0ρ.

i.e., as the sum of six contributions—the incident field bi
φ ,

three graphene-related pole contributions b′
φSPP, b′′

φSPP(ρ,t),
and bφp3(ρ,t) (the first one arising from a kρ pole, the latter
two from ω poles), one source-related pole contribution bφps,
and a double-integral SDP contribution bφSDP2 .

b. The case t < s0ρ

In this case, the ω-SDP lies along the negative imaginary
axis and thus the only pole singularity that can be involved
in the process is ωSPP, which is captured when q > qc (see
Fig. 16).

The complete TD field can thus be written as

bφ(ρ,t)=bi
φ(ρ,t)+b′

φSPP(ρ,t)+b′′
φSPP(ρ,t)+bφSDP2 (ρ,t),

(B15)

where

b′′
φSPP(ρ,t) = −Re

{∫ +∞

qc

(ωSPPs0 − jq)H (2)
1 [(ωSPPs0 − jq)ρ]

× Res[D(q,ω),ωSPP]ejωSPPt dq

}
(B16)

and

bφSDP2 (ρ,t) = Re

{∫ ∞

0

∫ ∞

0
j

(ps0 + q)

2π
H

(2)
1 [−j (ps0 + q)ρ]

×D(q,ω = −jp)ept dp dq

}
. (B17)

3. Causality

The total field is identically zero before the first wave-front
arrival, i.e., for t < s0ρ, as required by causality. In fact, let us
consider the terms in (B15). The incident field bi

φ is from (6)
manifestly zero for t < s0ρ. As concerns bφSDP2 , the integrand
in (B17) is purely imaginary, so that also this term vanishes
identically.

As concerns b′
φSPP and b′′

φSPP, these contributions are both
different from zero; however, it can be shown that for t < s0ρ,
they are exactly equal and opposite [24]. In fact, by performing
the change of variable ω = ωSPP(q), the q integral in (B16) is
transformed into an ω integral along the pole locus ωSPP(q),
parameterized by q ∈ [qc, + ∞), whose integrand is equal and
opposite to the integrand in (B2). By deforming the integra-
tion path onto the real interval [ωc, + ∞), as is permissible
thanks to the exponentially damped behavior at infinity of the
integrand and the absence of captured singularities, we obtain
(B2) with the sign changed and we may then conclude that
b′

φSPP = −b′′
φSPP, as claimed.
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